Đề thi thử Đại học lần V môn Toán năm 2013 - Trường THPT Chuyên - ĐHSP
lượt xem 6
download
Đề thi thử Đại học lần V môn Toán năm 2013 gồm hai phần chung và phần riêng có kèm đáp án là tài liệu tham khảo bổ ích để các em tự ôn tập, kiểm tra kiến thức chuẩn bị tốt cho kì thi Đại học, Cao đẳng sắp tới.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học lần V môn Toán năm 2013 - Trường THPT Chuyên - ĐHSP
- WWW.VNMATH.COM ĐÁP ÁN − THANG ĐIỂM THI THỬ ĐH LẦN V - NĂM 2013 Câu ĐÁP ÁN 1. (1,0 điểm). Học sinh tự giải. 1,00 2. (1,0 điểm) Chứng minh. … Đường thẳng ∆ : y =k(x + 1) + 3 cắt (C) tại 3 điểm phân biệt pt sau có 3 nghiệm phân biệt : 3 2 x + 3x + 1 = k(x + 1) + 3 (x + 1)(x2 + 2x – k – 2) = 0. Để pt trên có 3 nghiệm phân biệt thì pt x2 + 2x – k – 2 = 0 (*) có 2 nghiệm phân biệt khác –1 0,50 ∆ 1 2 0 k > – 3. 1 2 2 0 I (2 điểm) Gọi D(xD; yD) , E(xE; yE) khi đó xD , xE là nghiệm của (*). Theo hệ thức Viet ta có xD + xE = – 2. Hệ số góc của các tiếp tuyến tại D và E là k1 = y’(xD) = 3xD + 6xD , k2 = y’(xE) = 3xE + 6xE . Do xD , xE là nghiệm của (*) nên 3xD + 6xD = 3(k + 2) = 3xE + 6xE . 0,50 Suy ra các tiếp tuyến tại D và E của (C) có cung hệ số góc. Mặt khác xD + xE = – 2 = 2xA và 3 điểm A, D, E thẳng hàng nên A là trung điểm của DE. Suy ra d(A, d1) = d(A, d2) (đpcm) 1. ( 1,0 điểm) . Giải phương trình … Điều kiện : sinx ≠ 0, cos3x + 2cosx ≠ 0. 0,50 Pt = cot2x = cot2x = cot2x II (1 điểm) = cot2x = cot2x cot3x = 1 cotx = 1 x= + kπ , k Z. Kiểm tra điều kiện ta thấy thỏa mãn. 0,50 Vậy nghiệm của phương trình là x = + kπ , k Z. 1. (1,0 điểm) . Giải hệ phương trình …………..… Từ pt x3 + xy – 2 = 0 suy ra x ≠ 0 và y = , thay vào pt thứ hai ta được + 3(2 – x3) + 3 = 0 III 1,00 Đặt t = x3 ≠ 0, phương trình trên trở thành t3 – 3t2 + 3t – 8 = 0 (t – 1)3 = 7 t = 1 + √7 (1 điểm) √ Từ đó ta có : x = 1 √7 và y = √ (1,0 điểm). Tính tích phân ………………. √ Ta có I = dx = 1.dx = .dx Đặt t = tanx dt = dx = (1 + tan2x)dx dt = dx 0,50 IV Với x = 0 thì t = 0; x = thì t = 1. (1 điểm) Ta có = (1 + tan2x)2 = (1 + t2)2 1 1 Suy ra I = 1 t √t dt = t .dt + t .dt = .t + .t = + = . 0 0 0,50 Vậy I = . 1
- WWW.VNMATH.COM (1,0 điểm). Tính thể tích và khoảng cách……….. Trong ∆ABC cân tại A kẻ AH BC ∆ABH vuông tại H có AB = a, D √ = 60o AH = và HB = HC = HD = (vì ∆BCD vuông). Ta có : HA2 + HD2 = + = a2 = AD2 E J H B C o F I 0,50 AH HD do đó AH (BCD). ∆ABD cân có = 60 nên ∆ABD đều BD = a và DC = √ = a√2. √ . √ M A Vậy, VABCD = AH.SBCD = . . = (đvtt). V (1 điểm) Ta sẽ tạo ra mặt phẳng chứa AD song song với BC. Qua A kẻ đường thẳng d song song với BC. Trong mp(BCD) kẻ DE BC, trong mp(ABC) qua E kẻ đường thẳng song song với AH cắt d tại M, khi đó BC//(ADM) và BC (DEM). Trong ∆DEM kẻ EF DM thì độ dài EF bằng khoảng cách giữa hai đường thẳng AD và BC. Do AH (BCD) nên (BCD) (ABC) DE (ABC) DE ME. Trong ∆DEM vuông tại E có EF là đường cao, ta có = + (*). 0,50 . √ Ta có EM = AH = , SBCD = BC.DE = DB.DC DE = = . √ Do đó từ (*) ta có = + = EF = . √ Vậy khoảng cách giữa hai đường thẳng AD và BC bằng . 1. (1,0 điểm). Chứng minh rằng ……………… Từ giả thiết x, y > 0 và x + 2y = 1 x = 1 – 2y và 0 < y < . Bất đẳng thức trở thành : + ≥ VI 1,00 (1 điểm) 2 2 – 3y [1 + 48y (1 – 2y)] ≥ 25y(1 – 2y) (2 – 3y)(1 + 48y2 – 96y3) – 25y(1 – 2y) ≥ 0 2 – 28y + 146y2 – 336y3 + 288y4 ≥ 0 144y4 – 168y3 + 73y2 – 14y + 1 ≥ 0 (12y2 – 7y + 1)2 ≥ 0 . (đpcm). (1,0 điểm). Viết phương trình các cạnh …… Gọi độ dài cạnh hình vuông là 2a, khi đó AM2 = AB2 + BM2 = 5a2, mà AM2 = 125 a = 5. Kẻ BH AM MH = = √5. Gọi H(x; y), do và cùng hướng và D C 5 x 10 10 x 8 0,50 = 5 = H : M 5 y 5 5 y 4 H Điểm B là giao của đường thẳng qua H vuông góc với AM và đường tròn đường kính AM. A B VII Ta có (10; 5). (1 điểm) Phương trình đường thẳng BH : 2x + y – 20 = 0 Phương trình đường tròn đường kính AM : (x – 5)2 + (y – )2 = . 10 Gọi B(t; 20 – 2t) (t – 5)2 + ( – 2t)2 = t2 – 16t + 60 = 0 0,50 6 Với t = 10. Ta có B(10; 0) C(10; 10). Khi đó phương trình các cạnh của hình vuông ABCD là : AB : y = 0, BC : x = 10, CD : y = 10 và AD : x = 0. Với t = 6. Ta có B(6; 8) C(14; 2) . Khi đó phương trình các cạnh của hình vuông ABCD là : AB : 4x – 3y = 0, BC : 3x + 4y – 50 = 0, CD : 4x – 3y – 50 = 0, AD : 3x + 4y = 0. 2
- WWW.VNMATH.COM (1,0 điểm). Tìm tọa độ điểm……………… Đường thẳng AM thuộc mặt phẳng (Q) vuông góc với ∆. Phương trình (Q) : x + y – z = 0. Giao điểm của (Q) với ∆ là điểm H(2; –1; 1). Giao tuyến d của (P) và (Q) có véc tơ chỉ phương cùng 0,50 1 1 1 1 1 1 phương với véc tơ [ , ]= , , = (– 2; 2; 0) . Chọn = (1; –1; 0). 1 1 1 1 1 1 VIII (1 điểm) ∆ Điểm N(0; 1; 1) d, suy ra phương trình của d : 1 M(t; 1– t; 1). 1 A 0,50 Ta có d(M,∆) = MH = 3√2 (2 – t)2 + (2 – t)2 = 18 t = 5 hoặc t = –1. d H Vậy có hai điểm thỏa mãn bài toán : M1(5; – 4; 1) và M2(–1; 2; 1). Q M (1,0 điểm). Tìm số phức ………………… Giả sử z = x + yi; x, y R . Ta có |z – 2|2 + |z + 2|2 = 26 (x – 2)2 + y2 + (x + 2)2 + y2 = 26 x2 + y2 = 9. Suy ra tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện 1. là đường tròn (S) tâm là gốc tọa độ O, bán kính R = 3. 0,50 √ √ √ √ Ta có |z – ( + i)| = x y . IX = 9 nên điểm K ( ) thuộc đường tròn (S). (1 điểm) √ √ √ √ Vì + ; √ √ √ √ Gọi M(x; y) là điểm thuộc (S), khi đó |z – ( + i)| = x y = MK . 0,50 M (– ). √ √ √ √ Suy ra |z – ( + i)| lớn nhất MK lớn nhất MK là đường kính của (S) ;– √ √ Vậy z = – – i. 3
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học lần 1 (2007-2008)
1 p | 872 | 155
-
Đề thi thử Đại học lần 3 môn Tiếng Anh (Mã đề thi 135) - Trường THPT chuyên Lê Quý Đôn
48 p | 256 | 12
-
Đề thi thử Đại học lần 1 môn Vật lý (Mã đề 069) - Trường THPT Ngô Quyền
6 p | 151 | 6
-
Đề thi thử Đại học lần 4 môn Toán
6 p | 108 | 5
-
Đề thi thử Đại học lần II môn Ngữ văn khối D
1 p | 89 | 3
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 722) - Trường THPT Lương Thế Vinh
7 p | 124 | 3
-
Đề thi thử Đại học lần IV năm học 2012 môn Vật lý (Mã đề 896) - Trường THPT chuyên Nguyễn Huệ
6 p | 94 | 3
-
Đề thi thử Đại học lần 2 năm 2013-2014 môn Sinh học - Trường THPT chuyên Lý Tự Trọng (Mã đề thi 231)
9 p | 126 | 3
-
Đề thi thử đại học lần III năm học 2011-2012 môn Hóa học (Mã đề 935)
5 p | 85 | 3
-
Đề thi thử Đại học lần 3 năm 2014 môn Toán (khối D) - Trường THPT Hồng Quang
8 p | 111 | 3
-
Đề thi thử Đại học, lần III năm 2014 môn Vật lý (Mã đề 134) - Trường THPT chuyên Hà Tĩnh
6 p | 109 | 2
-
Đề thi thử Đại học lần I năm 2014 môn Vật lý (Mã đề thi 249) - Trường THPT Quỳnh Lưu 3
15 p | 97 | 2
-
Đề thi thử Đại học lần 1 năm học 2013-2014 môn Hóa học (Mã đề thi 001) - Trường THCS, THPT Nguyễn Khuyến
6 p | 117 | 2
-
Đề thi thử Đại học lần 3 năm 2010 môn Sinh học – khối B (Mã đề 157)
4 p | 80 | 2
-
Đề thi thử Đại học lần 1 năm học 2010 - 2011 môn Sinh học - Trường THPT Lê Hồng Phong
8 p | 113 | 2
-
Đề thi thử Đại học lần II môn Ngữ văn khối D - Trường THPT chuyên Lê Quý Đôn
1 p | 99 | 2
-
Đề thi thử Đại học lần II năm học 2013-2014 môn Vật lý (Mã đề thi 132) - Trường THPT chuyên Lê Quý Đôn
7 p | 134 | 2
-
Đề thi thử Đại học lần 2 năm học 2012-2013 môn Hóa học (Mã đề thi 002) - Trường THCS, THPT Nguyễn Khuyến
6 p | 114 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn