intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử ĐH Môn TOÁN - Chuyên ĐH Vinh [2009 - 2010]

Chia sẻ: Trần Bá Phúc | Ngày: | Loại File: PDF | Số trang:6

197
lượt xem
56
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu " Đề Thi Thử ĐH Môn TOÁN - Chuyên ĐH Vinh [2009 - 2010] " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các đề thi một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc cácn em học tốt.

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử ĐH Môn TOÁN - Chuyên ĐH Vinh [2009 - 2010]

  1. TRƯ NG ðAI H C VINH ®Ò thi thö ®¹i häc n¨m häc 2009-2010 Kh i THPT Chuyên MÔN: TOÁN; Th i gian làm bài: 180 phút ------------------------- ----------------------------------------------- A. PH N CHUNG CHO T T C THÍ SINH (7,0 ñi m) Câu I. (2,0 ñi m) Cho hàm s y = x 3 − 3(m + 1) x 2 + 9 x − m , v i m là tham s th c. 1. Kh o sát s bi n thiên và v ñ th c a hàm s ñã cho ng v i m = 1 . 2. Xác ñ nh m ñ hàm s ñã cho ñ t c c tr t i x1 , x 2 sao cho x1 − x 2 ≤ 2 . Câu II. (2,0 ñi m) 1 sin 2 x π 1. Gi i phương trình: cot x + = 2 sin( x + ) . 2 sin x + cos x 2 2. Gi i phương trình: 2 log 5 (3 x − 1) + 1 = log 3 5 (2 x + 1) . 5 x2 +1 Câu III. (1,0 ñi m) Tính tích phân I = ∫ dx . 1 x 3x + 1 Câu IV. (1,0 ñi m) Cho hình lăng tr tam giác ñ u ABC. A' B ' C ' có AB = 1, CC ' = m ( m > 0). Tìm m bi t r ng góc gi a hai ñư ng th ng AB' và BC ' b ng 60 0 . Câu V. (1,0 ñi m) Cho các s th c không âm x, y, z tho mãn x 2 + y 2 + z 2 = 3 . Tìm giá tr l n nh t c a bi u th c 5 A = xy + yz + zx + . x+ y+z B. PH N RIÊNG (3,0 ñi m) Thí sinh ch ñư c làm m t trong hai ph n (ph n a, ho c b). a. Theo chương trình Chu n: Câu VIa. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , cho tam giác ABC có A( 4; 6) , phương trình các ñư ng th ng ch a ñư ng cao và trung tuy n k t ñ nh C l n lư t là 2 x − y + 13 = 0 và 6 x − 13 y + 29 = 0 . Vi t phương trình ñư ng tròn ngo i ti p tam giác ABC . 2. Trong không gian v i h to ñ Oxyz , cho hình vuông MNPQ có M (5; 3; − 1), P ( 2; 3; − 4) . Tìm to ñ ñ nh Q bi t r ng ñ nh N n m trong m t ph ng (γ ) : x + y − z − 6 = 0. Câu VIIa. (1,0 ñi m) Cho t p E = {0,1, 2, 3, 4, 5, 6}. T các ch s c a t p E l p ñư c bao nhiêu s t nhiên ch n g m 4 ch s ñôi m t khác nhau? b. Theo chương trình Nâng cao: Câu VIb. (2,0 ñi m) 1. Trong m t ph ng v i h to ñ Oxy , xét elíp ( E ) ñi qua ñi m M ( −2; − 3) và có phương trình m t ñư ng chu n là x + 8 = 0. Vi t phương trình chính t c c a ( E ). 2. Trong không gian v i h to ñ Oxyz , cho các ñi m A(1; 0; 0), B (0;1; 0), C (0; 3; 2) và m t ph ng (α ) : x + 2 y + 2 = 0. Tìm to ñ c a ñi m M bi t r ng M cách ñ u các ñi m A, B, C và m t ph ng (α ). Câu VIIb. (1,0 ñi m) Khai tri n và rút g n bi u th c 1 − x + 2(1 − x) 2 + ... + n(1 − x) n thu ñư c ña th c P ( x) = a 0 + a1 x + ... + a n x n . Tính h s a8 bi t r ng n là s nguyên dương tho mãn 1 7 1 2 + 3 = . Cn Cn n ------------------------------------ H t ------------------------------------- http://ebook.here.vn - Thư vi n sách tr c tuy n
  2. Tr−êng ð¹i häc vinh . ®¸p ¸n ®Ò kh¶o s¸t chÊt l−îng líp 12 LÇn 1 - 2009 Khèi THPT chuyªn M«n To¸n, khèi A ðÁP ÁN ð THI TH L N 1 – NĂM 2009 Câu ðáp án ði m I 1. (1,25 ñi m) (2,0 Víi m = 1 ta cã y = x 3 − 6 x 2 + 9 x − 1 . ñi m) * TËp x¸c ®Þnh: D = R * Sù biÕn thiªn • ChiÒu biÕn thiªn: y ' = 3 x 2 − 12 x + 9 = 3( x 2 − 4 x + 3) x > 3 0,5 Ta cã y ' > 0 ⇔  , y' < 0 ⇔ 1 < x < 3 . x < 1 Do ®ã: + H m sè ®ång biÕn trªn mçi kho¶ng (−∞,1) v (3, + ∞) . + Hàm sè nghÞch biÕn trªn kho¶ng (1, 3). • Cùc trÞ: H m sè ®¹t cùc ®¹i t¹i x = 1 v yCD = y (1) = 3 ; ®¹t cùc tiÓu t¹i x = 3 v yCT = y (3) = −1 . 0,25 • Giíi h¹n: lim y = −∞; lim y = +∞ . x → −∞ x → +∞ • B¶ng biÕn thiªn: x −∞ 1 3 +∞ y’ + 0 − 0 + +∞ 3 0,25 y −∞ -1 * §å thÞ: y §å thÞ c¾t trôc tung t¹i ®iÓm (0, − 1) . 3 2 0,25 1 x O 1 2 3 4 -1 2. (0,75 ®iÓm) Ta cã y ' = 3 x 2 − 6(m + 1) x + 9. +) H m sè ®¹t cùc ®¹i, cùc tiÓu t¹i x1 , x 2 ⇔ ph−¬ng tr×nh y '= 0 cã hai nghiÖm pb l x1 , x 2 0,25 2 ⇔ Pt x − 2(m + 1) x + 3 = 0 cã hai nghiÖm ph©n biÖt l x1 , x 2 . m > −1 + 3 ⇔ ∆' = (m + 1) 2 − 3 > 0 ⇔  (1)  m < −1 − 3  +) Theo ®Þnh lý Viet ta cã x1 + x 2 = 2(m + 1); x1 x 2 = 3. Khi ®ã x1 − x 2 ≤ 2 ⇔ ( x1 + x 2 ) − 4 x1 x 2 ≤ 4 ⇔ 4(m + 1) − 12 ≤ 4 2 2 http://ebook.here.vn - Thư vi n sách tr c tuy n
  3. ⇔ (m + 1) 2 ≤ 4 ⇔ −3 ≤ m ≤ 1 ( 2) 0,5 Tõ (1) v (2) suy ra gi¸ trÞ cña m l − 3 ≤ m < −1 − 3 v − 1 + 3 < m ≤ 1. II 1. (1,0 ®iÓm) (2,0 §iÒu kiÖn: sin x ≠ 0, sin x + cos x ≠ 0. ñi m) cos x 2 sin x cos x Pt ® cho trë th nh + − 2 cos x = 0 2 sin x sin x + cos x cos x 2 cos 2 x ⇔ − =0 2 sin x sin x + cos x 0,5  π  ⇔ cos x sin( x + ) − sin 2 x  = 0  4  π +) cos x = 0 ⇔ x = + kπ , k ∈ Ζ . 2  π  π π 2 x = x + 4 + m2π  x = 4 + m 2π +) sin 2 x = sin( x + ) ⇔  ⇔ m, n ∈ Ζ 4 2 x = π − x − π + n 2π  x = π + n 2π   4   4 3 π t 2π 0,5 ⇔x= + , t ∈ Ζ. 4 3 §èi chiÕu ®iÒu kiÖn ta cã nghiÖm cña pt l π π t 2π x = + kπ ; x = + , k , t ∈ Ζ. 2 4 3 2. (1,0 ®iÓm) 1 §iÒu kiÖn x > . (*) 3 Víi ®k trªn, pt ® cho ⇔ log 5 (3 x − 1) 2 + 1 = 3 log 5 (2 x + 1) 0,5 ⇔ log 5 5(3 x − 1) 2 = log 5 (2 x + 1) 3 ⇔ 5(3 x − 1) 2 = (2 x + 1) 3 ⇔ 8 x 3 − 33 x 2 + 36 x − 4 = 0 ⇔ ( x − 2) 2 (8 x − 1) = 0 x = 2 0,5 ⇔ x = 1  8 §èi chiÕu ®iÒu kiÖn (*), ta cã nghiÖm cña pt l x = 2. III 3dx 2tdt §Æt t = 3 x + 1 ⇒ dt = ⇒ dx = . (1,0 2 3x + 1 3 ñi m) Khi x = 1 th× t = 2, v khi x = 5 th× t = 4. 2 0,5  t 2 −1  4   +1  4 4 Suy ra I = ∫  3  2tdt 2 dt = ∫ (t − 1)dt + 2∫ t 2 − 1 2 . t −1 2 3 92 2 .t 2 3 4 4 21 3  t −1 100 9 0,5 =  t − t  + ln = + ln . 93  t +1 27 5 2 2 http://ebook.here.vn - Thư vi n sách tr c tuy n
  4. - KÎ BD // AB' ( D ∈ A' B' ) ⇒ ( AB' , BC ' ) = ( BD, BC ' ) = 60 0 IV 0,5 ⇒ ∠DBC '= 60 0 hoÆc ∠DBC ' = 120 0. (1,0 ®iÓm) - NÕu ∠DBC '= 600 V× l¨ng trô ®Òu nªn BB' ⊥ ( A' B ' C ' ). ¸p dông ®Þnh lý Pitago v ®Þnh lý cosin ta cã A 0,5 B C BD = BC ' = m 2 + 1 v DC ' = 3. KÕt hîp ∠DBC '= 600 ta suy ra ∆BDC ' 1+ m2 ®Òu. Do ®ã m 2 + 1 = 3 ⇔ m = 2. m A’ - NÕu ∠DBC ' = 1200 ¸p dông ®Þnh lý cosin cho ∆BDC ' suy 1 B’120 C’ ra m = 0 (lo¹i). 1 0 VËy m = 2. 3 D * Chó ý: - NÕu HS chØ xÐt tr−êng hîp gãc 600 th× chØ cho 0,5® khi gi¶i ®óng. - HS cã thÓ gi¶i b»ng ph−¬ng ph¸p vect¬ hoÆc to¹ ®é víi nhËn xÐt: AB'.BC ' cos( AB ' , BC ' ) = cos( AB ', BC ') = . AB'.BC ' V t2 − 3 (1,0 §Æt t = x + y + z ⇒ t 2 = 3 + 2( xy + yz + zx ) ⇒ xy + yz + zx = . 2 ®iÓm) Ta cã 0 ≤ xy + yz + zx ≤ x 2 + y 2 + z 2 = 3 nªn 3 ≤ t 2 ≤ 9 ⇒ 3 ≤ t ≤ 3 v× t > 0. 0,5 t2 − 3 5 Khi ®ã A = + . 2 t t2 5 3 XÐt h m sè f (t ) = + − , 3 ≤ t ≤ 3. 2 t 2 5 t3 − 5 Ta cã f ' (t ) = t − 2 = 2 > 0 v× t ≥ 3. t t 14 0,5 Suy ra f (t ) ®ång biÕn trªn [ 3 , 3] . Do ®ã f (t ) ≤ f (3) = . 3 DÊu ®¼ng thøc x¶y ra khi t = 3 ⇔ x = y = z = 1. 14 VËy GTLN cña A l , ®¹t ®−îc khi x = y = z = 1. 3 1. (1 ®iÓm) VIa. - Gäi ®−êng cao v trung tuyÕn kÎ tõ C l CH (2,0 v CM. Khi ®ã C(-7; -1) ®iÓm) CH cã ph−¬ng tr×nh 2 x − y + 13 = 0 , CM cã ph−¬ng tr×nh 6 x − 13 y + 29 = 0. 2 x − y + 13 = 0 - Tõ hÖ  ⇒ C (−7; − 1). 0,5 6 x − 13 y + 29 = 0 - AB ⊥ CH ⇒ n AB = u CH = (1, 2) M(6; 5) B(8; 4) A(4; H ⇒ pt AB : x + 2 y − 16 = 0 . 6)  x + 2 y − 16 = 0 - Tõ hÖ  ⇒ M (6; 5) 6 x − 13 y + 29 = 0 http://ebook.here.vn - Thư vi n sách tr c tuy n
  5. ⇒ B (8; 4). - Gi¶ sö ph−¬ng tr×nh ®−êng trßn ngo¹i tiÕp ∆ABC : x 2 + y 2 + mx + ny + p = 0. 52 + 4m + 6n + p = 0 m = −4 0,5   V× A, B, C thuéc ®−êng trßn nªn 80 + 8m + 4n + p = 0 ⇔ n = 6 . 50 − 7 m − n + p = 0  p = −72   Suy ra pt ®−êng trßn: x 2 + y 2 − 4 x + 6 y − 72 = 0 hay ( x − 2) 2 + ( y + 3) 2 = 85. 2. (1 ®iÓm) - Gi¶ sö N ( x0 ; y0 ; z0 ) . V× N ∈ (γ ) ⇒ x0 + y0 − z0 − 6 = 0 (1) MN = PN  - MNPQ l h×nh vu«ng ⇒ ∆MNP vu«ng c©n t¹i N ⇔  MN .PN = 0  0,5  ( x0 − 5) + ( y0 − 3) + ( z0 + 1) = ( x0 − 2) + ( y0 − 3) + ( z0 + 4) 2 2 2 2 2 2 ⇔ ( x0 − 5)( x0 − 2) + ( y0 − 3) 2 + ( z0 + 1)( z0 + 4) = 0   x0 + z0 − 1 = 0 ( 2) ⇔ ( x0 − 5)( x0 − 2) + ( y0 − 3) + ( z0 + 1)( z0 + 4) = 0 2 (3)  y0 = −2 x0 + 7 2 0,5 - Tõ (1) v (2) suy ra  . Thay v o (3) ta ®−îc x0 − 5 x0 + 6 = 0  z 0 = − x0 + 1  x0 = 2, y 0 = 3, z 0 = −1  N (2; 3; − 1) ⇒ hay  .  x0 = 3, y0 = 1, z 0 = −2  N (3; 1; − 2) 7 5 - Gäi I l t©m h×nh vu«ng ⇒ I l trung ®iÓm MP v NQ ⇒ I ( ; 3; − ) . 2 2 NÕu N (2; 3 − 1) th× Q(5; 3; − 4). NÕu N (3;1; − 2) th× Q(4; 5; − 3). VIIa. Gi¶ sö abcd l sè tho¶ m n ycbt. Suy ra d ∈ {0, 2, 4, 6}. (1,0 3 0,5 ®iÓm) +) d = 0. Sè c¸ch s¾p xÕp abc l A6 . 3 2 +) d = 2. Sè c¸ch s¾p xÕp abc l A6 − A5 . +) Víi d = 4 hoÆc d = 6 kÕt qu¶ gièng nh− tr−êng hîp d = 2. 3 3 (2 Do ®ã ta cã sè c¸c sè lËp ®−îc l A6 + 3 A6 − A5 = 420. ) 0,5 1. (1 ®iÓm) VIb. (2,0 x2 y2 ®iÓm) - Gäi ph−¬ng tr×nh ( E ) : + =1 ( a > b > 0) . a2 b2 4 9  a 2 + b2 = 1  (1) 0,5 - Gi¶ thiÕt ⇔  2 a = 8 ( 2) c  Ta cã (2) ⇔ a 2 = 8c ⇒ b 2 = a 2 − c 2 = 8c − c 2 = c(8 − c). 4 9 Thay v o (1) ta ®−îc + =1. 8c c(8 − c) c = 2 ⇔ 2c − 17c + 26 = 0 ⇔  13 2 c =  2 http://ebook.here.vn - Thư vi n sách tr c tuy n
  6. x2 y2 * NÕu c = 2 th× a = 16, b = 12 ⇒ ( E ) : 2 2 + = 1. 0,5 16 12 13 39 x2 y2 * NÕu c = th× a 2 = 52, b 2 = ⇒ (E) : + = 1. 2 4 52 39 / 4 2. (1 ®iÓm) Gi¶ sö M ( x0 ; y0 ; z0 ) . Khi ®ã tõ gi¶ thiÕt suy ra x0 + 2 y0 + 2 ( x0 − 1) 2 + y0 + z0 = x0 + ( y0 − 1) 2 + z0 = x0 + ( y0 − 3) 2 + ( z0 − 2) 2 = 2 2 2 2 2 5  0,5 ( x0 − 1) 2 + y0 + z0 = x0 + ( y0 − 1) 2 + z0 2 2 2 2 (1)   2 ⇔  x0 + ( y0 − 1) 2 + z0 = x0 + ( y0 − 3) 2 + ( z0 − 2) 2 2 2 ( 2)  ( x0 − 1) 2 + y0 + z0 = ( x0 + 2 y0 + 2) 2 2 2 (3)   5  y0 = x0 Tõ (1) v (2) suy ra  .  z0 = 3 − x0 Thay v o (3) ta ®−îc 5(3 x0 − 8 x0 + 10) = (3 x0 + 2) 2 2 0,5  x0 = 1  M (1; 1; 2) ⇔  ⇒  23 23 14  x0 = 23  M ( ; ; − ).  3  3 3 3 VIIb. n ≥ 3 (1,0 1 7 1  Ta cã 2 + 3 = ⇔  2 7.3! 1 ®iÓm) Cn Cn n  n(n − 1) + n(n − 1)(n − 2) = n 0,5  n ≥ 3 ⇔ 2 ⇔ n = 9. n − 5n − 36 = 0 Suy ra a8 l hÖ sè cña x8 trong biÓu thøc 8(1 − x)8 + 9(1 − x)9 . 8 8 0,5 §ã l 8.C8 + 9.C9 = 89. http://ebook.here.vn - Thư vi n sách tr c tuy n
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2