Đề Thi Thử ĐH Môn TOÁN Khối B D - THPT Lê Văn Hưu - Thanh Hóa [2009 - 2010]
lượt xem 49
download
Tài liệu " Đề Thi Thử ĐH Môn TOÁN Khối B D - THPT Lê Văn Hưu - Thanh Hóa [2009 - 2010] " giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các đề thi một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc cácn em học tốt.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề Thi Thử ĐH Môn TOÁN Khối B D - THPT Lê Văn Hưu - Thanh Hóa [2009 - 2010]
- S GD & ðT Thanh Hoá KÌ THI KH O SÁT CH T LƯ NG L P 12 Trư ng THPT Lê Văn Hưu MÔN TOÁN KH I B và D Tháng 03/2010 ð CHÍNH TH C Th i gian:180 phút (Không k th i gian phát ñ ) PH N CHUNG CHO T T C CÁC THÍ SINH (7.0 ñi m) Câu I. (2.0 ñi m) x Cho hàm s y = (C) x-1 1. Kh o sát s bi n thiên và v ñ th hàm s (C) 2. Vi t phương trình ti p tuy n v i ñ th (C), bi t r ng kho ng cách t tâm ñ i x ng c a ñ th (C) ñ n ti p tuy n là l n nh t. Câu II. (2.0 ñi m) 1. Gi i phương trình 2cos6x+2cos4x- 3cos2x = sin2x+ 3 2 1 2 x + x − y = 2 2. Gi i h phương trình y − y 2 x − 2 y 2 = −2 Câu III. (1.0 ñi m) 1 x ∫ (x sin x + 2 3 Tính tích phân )dx 0 1+ x Câu IV. (1.0 ñi m) 1 1 1 Cho x, y, z là các s th c dương l n hơn 1 và tho mãn ñi u ki n + + ≥2 x y z Tìm giá tr l n nh t c a bi u th c A = (x - 1)(y - 1)(z - 1). Câu V. (1.0 ñi m) Cho hình chóp S.ABCD ñáy ABCD là hình thoi. SA = x (0 < x < 3 ) các c nh còn l i ñ u b ng 1. Tính th tích c a hình chóp S.ABCD theo x PH N RIÊNG ( 3.0 ñi m) Thí sinh ch ñư c làm m t trong hai ph n A ho c B (N u thí sinh làm c hai ph n s không dư c ch m ñi m). A. Theo chương trình nâng cao Câu VIa. (2.0 ñi m) 1. 1. Trong m t ph ng to ñ Oxy cho hai ñư ng th ng (d1) : 4x - 3y - 12 = 0 và (d2): 4x + 3y - 12 = 0. Tìm to ñ tâm và bán kính ñư ng tròn n i ti p tam giác có 3 c nh n m trên (d1), (d2), tr c Oy. 2. Cho hình l p phương ABCD.A’B’C’D’ có c nh b ng 2. G i M là trung ñi m c a ño n AD, N là tâm hình vuông CC’D’D. Tính bán kính m t c u ñi qua các ñi m B, C’, M, N. Câu VIIa. (1.0 ñi m) log 3 ( x + 1) 2 − log 4 ( x + 1)3 Gi i b t phương trình >0 x2 − 5x − 6 B. Theo chương trình chu n Câu VIb. (2.0 ñi m) 1. Cho ñi m A(-1 ;0), B(1 ;2) và ñư ng th ng (d): x - y - 1 = 0. L p phương trình ñư ng tròn ñi qua 2 ñi m A, B và ti p xúc v i ñư ng th ng (d). 2. Trong không gian v i h tr c to ñ Oxyz cho ñi m A(1 ;0 ; 1), B(2 ; 1 ; 2) và m t ph ng (Q): x + 2y + 3z + 3 = 0. L p phương trình m t ph ng (P) ñi qua A, B và vuông góc v i (Q). Câu VIIb. (1.0 ñi m) Gi i phương trình C xx + 2C xx −1 + Cxx − 2 = C x +x2 3 ( Cn là t h p ch p k c a n ph n t ) 2 − k .................H T.............. Thí sinh không ñư c s d ng tài li u. Cán b coi thi không gi i thích gì thêm H và tên thí sinh .......................................................... s báo danh.................................................. http://ebook.here.vn - Thư vi n sách tr c tuy n
- S GD & ðT Thanh Hoá ðÁP ÁN KÌ THI KH O SÁT CH T LƯ NG L P 12 Trư ng THPT Lê Văn Hưu MÔN TOÁN KH I B - D Tháng 03/2010 ð CHÍNH TH C Th i gian:180 phút (Không k th i gian phát ñ ) PH N CHUNG CHO T T C CÁC THÍ SINH (7.0 ñi m) CÂU N I DUNG THANG ðI M Câu I 0.25 (2.0ñ) TXð : D = R\{1} 1. Chi u bi n thiên 0.25 (1.0ñ) lim f ( x) = lim f ( x) = 1 nên y = 1 là ti m c n ngang c a ñ th hàm s x →+∞ x →−∞ lim f ( x) = +∞, lim = −∞ nên x = 1 là ti m c n ñ ng c a ñ th hàm s x →1+ − x →1 1 y’ = −
- f’(t) = 0 khi t = 1 0.25 B ng bi n thiên x 0 1 +∞ t b ng bi n thiên ta c d(I ;tt) l n nh t f'(t) + 0 - khi và ch khi t = 1 hay f(t) 2 x0 = 2 x0 − 1 = 1 ⇔ x0 = 0 + V i x0 = 0 ta có ti p tuy n là y = -x 0.25 + V i x0 = 2 ta có ti p tuy n là y = -x+4 Câu 4cos5xcosx = 2sinxcosx + 2 3 cos2x 0.25 II(2.0ñ) 0.25 cos x=0 1. ⇔ (1.0ñ) 2cos5x =sinx+ 3 cos x cos x = 0 0.25 ⇔ cos5x=cos(x- π ) 6 π 0.25 x = 2 + kπ π kπ ⇔ x = − + 24 2 x = π + k 2π 42 7 2.(1.0ñ) ðK : y ≠ 0 0.5 2 1 2 x + x − y − 2 = 0 2u 2 + u − v − 2 = 0 h ⇔ ñưa h v d ng 2 2 + 1 − x−2 = 0 2v + v − u − 2 = 0 y 2 y 0.5 u = v u = v = 1 ⇔ u = 1 − v ⇔ u = v = −1 T ñó ta có nghi m c a h 2 2v + v − u − 2 = 0 3− 7 3+ 7 u = 2 u = 2 , −1 + 7 v = −1 − 7 v = 2 2 3− 7 2 3+ 7 2 (-1 ;-1),(1 ;1), ( ; ), ( ; ) 2 7 −1 2 7 +1 Câu III. 1 1 x 0.25 (1.0ñ) I = ∫ x 2 sin x3 dx + ∫ dx 0 0 1+ x http://ebook.here.vn - Thư vi n sách tr c tuy n
- 1 0.25 ∫x sin x 3 dx ñ t t = x3 ta tính ñư c I1 = -1/3(cos1 - sin1) 2 Ta tính I1 = 0 1 x 1 1 π π 0.25 Ta tính I2 = ∫ 1 + x dx ñ t t = 0 x ta tính ñư c I2 = 2 ∫ (1 − 0 1+ t 2 )dt = 2(1 − ) = 2 − 4 2 π 0.25 T ñó ta có I = I1 + I2 = -1/3(cos1 - 1)+ 2 − 2 1 1 1 0.25 Câu IV. Ta có x + y + z ≥ 2 nên (1.0ñ) 0.25 1 1 1 y −1 z −1 ( y − 1)( z − 1) ≥ 1− +1− = + ≥2 (1) x y z y z yz 1 1 1 x −1 z −1 ( x − 1)( z − 1) Tương t ta có ≥ 1− +1− = + ≥2 (2) y x z x z xz 1 1 1 x −1 y −1 ( x − 1)( y − 1) ≥ 1− +1− = + ≥2 (3) y x y x y xy 1 0.25 Nhân v v i v c a (1), (2), (3) ta ñư c ( x − 1)( y − 1)( z − 1) ≤ 8 0.25 1 3 v y Amax = ⇔ x= y=z= 8 2 Câu V. 0.5 (1.0ñ) Ta có ∆SBD = ∆DCB (c.c.c) ⇒ SO = CO S Tương t ta có SO = OA v y tam giác SCA vuông t i S. ⇒ CA = 1 + x 2 M t khác ta có AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2 C D ⇒ BD = 3 − x 2 (do 0 < x < 3) H 1 ⇒ S ABCD = 1 + x2 3 − x2 O 4 B A G i H là hình chi u c a S xu ng (CAB) 0.25 Vì SB = SD nên HB = HD ⇒ H ∈ CO 1 1 1 x 0.25 Mà 2 = 2 + 2 ⇒ SH = SH SC SA 1 + x2 1 V y V = x 3 − x 2 (dvtt) 6 Câu 0.5 VIa. G i A là giao ñi m d1 và d2 ta có A(3 ;0) (2.0ñ) G i B là giao ñi m d1 v i tr c Oy ta có B(0 ; - 4) 1. G i C là giao ñi m d2 v i Oy ta có C(0 ;4) http://ebook.here.vn - Thư vi n sách tr c tuy n
- (1.0ñ) 0.5 G i BI là ñư ng phân giác trong góc B v i I thu c OA khi ñó ta có I(4/3 ; 0), R = 4/3 2. 1.0 Y (1.0ñ) Ch n h tr c to ñ như hình v Ta có M(1 ;0 ;0), N(0 ;1 ;1) D' A' B(2 ;0 ;2), C’(0 ;2 ;2) G i phương tình m t c u ñi qua 4 ñi m M,N,B,C’ có d ng C' x2 + y2 + z2 +2Ax + 2By+2Cz +D = 0 B' Vì m t c u ñi qua 4 ñi m nên ta có 5 N A = − 2 1 + 2 A + D = 0 2 + 2 B + 2C + D = 0 M 5 B = − D A X ⇔ 2 8 + 4 A + 4C + D = 0 1 8 + 4 B + 4C + D = 0 C = − 2 C B D = 4 Z V y bán kính R = A2 + B 2 + C 2 − D = 15 Câu ðk: x > - 1 0.25 VIIa (1.0ñ) 3log 3 ( x + 1) 0.25 2 log 3 ( x + 1) − log 3 4 b t phương trình ⇔ >0 ( x + 1)( x − 6) log 3 ( x + 1) ⇔
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử ĐH 2013 môn Sinh trường ĐH KHTN Huế
8 p | 1698 | 1233
-
Đề thi thử ĐH môn Toán khối D lần 3 năm 2013-2014 - Sở GD & ĐT Hải Phòng
5 p | 151 | 13
-
25 Đề thi thử ĐH môn Lịch Sử
16 p | 128 | 12
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2014 - Trường THPT Chuyên Nguyễn Quang Diêu
7 p | 239 | 12
-
Đề thi thử ĐH môn Toán khối A, A1,B, D lần 1 năm 2014 - Trường Hà Nội Amsterdam
5 p | 142 | 8
-
Đề thi thử ĐH môn Toán khối A,A1,B,D năm 2013-2014 - Trường THPT Quế Võ 1
5 p | 147 | 8
-
Đề thi thử ĐH môn Toán khối A lần 2 năm 2014
1 p | 134 | 8
-
Đề thi thử ĐH môn Toán khối D lần 2 năm 2013-2014 - Trường THPT Ngô Gia Tự
6 p | 186 | 7
-
Trường Đại học Kinh tế Tp.HCM Khoa Toán - Đề thi thử ĐH
3 p | 71 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Sở GD & ĐT Vĩnh Phúc
7 p | 151 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Trường THPT Tú Kỳ
6 p | 130 | 6
-
Đề thi thử ĐH môn Toán khối B & D năm 2013-2014 - Trường THPT Ngô Gia Tự
5 p | 114 | 6
-
Đáp án và thang điểm đề thi thử ĐH môn Toán khối A lần 2 năm 2014
6 p | 153 | 5
-
Đề thi thử ĐH môn Toán năm 2009 - 2010 - Trường THPT Chuyên Hạ Long
13 p | 93 | 5
-
Đề thi thử ĐH đợt 3 năm 2017 môn Anh văn - THPT Trần Hưng Đạo - Mã đề 132
5 p | 64 | 4
-
Đáp án đề thi thử ĐH Online 2014 - Lần 4 môn Vật lý - Nguyễn Bá Linh
15 p | 100 | 2
-
Đề thi thử ĐH đợt 3 năm 2017 môn Anh văn - THPT Trần Hưng Đạo - Mã đề 209
5 p | 63 | 2
-
Đề thi thử ĐH đợt 3 năm 2017 môn Toán - THPT Trần Hưng Đạo - Mã đề 135
6 p | 41 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn