Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 1
lượt xem 8
download
Tham khảo đề thi - kiểm tra 'đề thi thử lớp 10 chuyên toán học 2013 - phần 2 - đề 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 1
- ĐỀ THI TUYỂN SINH VÀO LỚP 10 Ngày 28 tháng 4 Năm 2013 Câu 1. (2,0 điểm) x 2 x 2 Cho biểu thức Q x 2 x 1 x 1 x x , với x 0, x 1 a. Rút gọn biểu thức Q b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên. Câu 2. (1,5 điểm) Cho phương trình x 2 2(m 1)x m 2 0 , với x là ẩn số, m R a. Giải phương trình đã cho khi m – 2 b. Giả sử phương trình đã cho có hai nghiệm phân biệt x1 và x 2 . Tìm hệ thức liên hệ giữa x1 và x 2 mà không phụ thuộc vào m. Câu 3. (2,0 điểm) (m 1)x (m 1)y 4m Cho hệ phương trình , với m R x (m 2)y 2 a. Giải hệ đã cho khi m –3 b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó. Câu 4. (2,0 điểm) Cho hàm số y x 2 có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k. a. Viết phương trình của đường thẳng d b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt. Câu 5. (2,5 điểm) Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm của hai đường cao BD và CE của tam giác ABC (D AC, E AB) a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, I thẳng hàng 1 1 1 c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng 2 2 DK DA DM 2 HƯỚNG DẪN GIẢI Câu 1.
- x 2 x 2 x 2 x 2 a. Q x 2 x 1 x 1 x x x x 1 2 x 1 x 1 x 1 x 2 x 2 x 11 x 1 1 1 1 x 1 x x 1 x 1 1 x x 1 x 1 x 1 x 1 1 1 x 1 x 1 2 x 2x 2x x x 1 . x x 1 . x x 1 . Vậy Q x 1 x 1 x 1 2x 2x 2 2 2 2 b. Q nhận giá trị nguyên: Q 2 Q ¢ khi ¢ khi 2 chia hết cho x 1 x 1 x 1 x 1 x 1 x 0 x 2 x 1 1 x 2 đối chiếu điều kiện thì x 1 2 x 1 x 3 x 3 Câu 2. Cho pt x 2 2(m 1)x m 2 0 , với x là ẩn số, m R a. Giải phương trình đã cho khi m – 2 . Ta có phương trình x 2 2x 4 0 2 x 1 5 x 1 5 2 x 2 2x 4 0 x 2 2x 1 5 x 1 5 5 x 1 5 x 1 5 x 1 5 Vậy phương trinh có hai nghiệm x 1 5 và x 1 5 x x 2 2m 2 (1) x1 x 2 2m 2 x x 2 2 x1 x 2 2 2 b. Theo Vi-et, ta có 1 1 x 1x 2 m 2 (2) m x1 x 2 2 m x 1x 2 2 Suy ra x1 x 2 2 x1x 2 2 2 x1 x 2 2x1 x 2 6 0 (m 1)x (m 1)y 4m Câu 3. Cho hệ phương trình , với m R x (m 2)y 2 2x 2y 12 x y 6 x 7 a. Giải hệ đã cho khi m –3. Ta được hệ phương trình x 5y 2 x 5y 2 y 1 Vậy hệ phương trình có nghiệm x; y với 7;1 m 1 m 1 b. Điều kiện có nghiệm của phương trình: m 1 m 2 m 1 1 m2 m 1 0 m 1 m 1 m 2 m 1 0 m 1 m 1 0 m 1 0 m 1 Vậy phương trình có nghiệm khi m 1 và m 1 (m 1)x (m 1)y 4m m 1 Giải hệ phương trình khi x (m 2)y 2 m 1 4m 4m 2 4m x y m 1 x m 1 (m 1)x (m 1)y 4m x y m 1 . x (m 2)y 2 x (m 2)y 2 y 2 y 2 m 1 m 1 4m 2 2 Vậy hệ có nghiệm (x; y) với ; m 1 m 1 Câu 4. a. Viết phương trình của đường thẳng d: Đường thẳng d với hệ số góc k có dạng y kx b Đường thẳng d đi qua điểm M(0; 1) nên 1 k.0 b b 1 . Vậy d : y kx 1 b. Phương trình hoành độ giao điểm của (P) và d: x 2 kx 1 x 2 kx 1 0 , có k 2 4
- k 2 d cắt (P) tại hai điểm phân biệt khi 0 , k 2 4 0 k 2 4 k 2 22 k 2 k 2 Câu 5. a. · · BCDE nội tiếp BEC BDC 900 Suy ra BCDE nội tiếp đường tròn đường kính BC b. H, J, I thẳng hàng, IB AB; CE AB (CH AB) .Suy ra IB // CH IC AC; BD AC (BH AC). Suy ra BH // IC. Như vậy tứ giác BHCI là hình bình hành J trung điểm BC J trung điểm IH. Vậy H, J, I thẳng hàng · · 1» · · · c. ACB AIB AB , ACB DEA cùng bù với góc DEB của tứ giác nội tiếp BCDE 2 · · · · · BAI AIB 900 vì ABI vuông tại B. Suy ra BAI AED 900 , hay EAK AEK 900· Suy ra AEK vuông tại K. Xét ADM vuông tại M (suy từ giả thiết) 1 1 1 DK AM (suy từ chứng minh trên) Như vậy 2 2 DK DA DM 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi vào lớp 10 chuyên Tiếng Anh năm 2020-2021 có đáp án - Sở GD&ĐT Phú Yên
7 p | 400 | 26
-
Đề thi vào lớp 10 chuyên Lam Sơn năm học 2012-2013 môn Toán - Sở GDĐT Thanh Hóa
2 p | 262 | 14
-
Đề thi TS lớp 10 chuyên môn Lịch sử năm 2017-2018 - THPT Chuyên Nguyễn Huệ
1 p | 129 | 10
-
Đề thi vào lớp 10 chuyên môn Vật lý năm 2021-2022 có đáp án - Sở GD&ĐT Ninh Bình
6 p | 134 | 9
-
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 5
3 p | 50 | 7
-
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 2
4 p | 55 | 6
-
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 3
2 p | 62 | 5
-
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 4
3 p | 50 | 5
-
Đề thi vào lớp 10 chuyên Hóa học năm 2020-2021 - Trường THPT chuyên Hoàng Văn Thụ
2 p | 105 | 5
-
Đề thi vào lớp 10 chuyên Toán năm 2020-2021 - Sở GD&ĐT Hải Dương
1 p | 59 | 4
-
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 6
3 p | 67 | 4
-
Đề thi vào lớp 10 chuyên môn Lịch sử năm 2021-2022 - Sở GD&ĐT Thái Nguyên
1 p | 73 | 3
-
Đề thi vào lớp 10 môn Hóa học (chuyên) năm 2023-2024 - Sở GD&ĐT Hải Phòng
2 p | 11 | 3
-
Đề thi vào lớp 10 môn Lịch sử (chuyên) năm 2023-2024 - Sở GD&ĐT Hải Phòng
1 p | 18 | 3
-
Đề thi vào lớp 10 chuyên Toán năm 2020-2021 - Trường THPT chuyên Hoàng Văn Thụ
1 p | 59 | 2
-
Đề thi vào lớp 10 chuyên môn Ngữ văn năm 2021-2022 - Sở GD&ĐT Bình Thuận
1 p | 70 | 2
-
Đề thi vào lớp 10 THPT môn Vật lí năm 2021 - Sở GD&ĐT Hưng Yên (Khối chuyên)
3 p | 110 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn