intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử toán - số 38 năm 2011

Chia sẻ: HUI.VN | Ngày: | Loại File: DOC | Số trang:4

46
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử toán - số 38 năm 2011', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử toán - số 38 năm 2011

  1. Đề số 38 I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số y = x 4 + mx 2 − m − 1 (Cm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = –2. 2) Chứng minh rằng khi m thay đổi thì (Cm) luôn luôn đi qua hai điểm cố định A, B. Tìm m để các tiếp tuyến tại A và B vuông góc với nhau. Câu II (2 điểm): x 2 + 5x + y = 9 1) Giải hệ phương trình: 3x 3 + x 2y + 2xy + 6x 2 = 18 1 sin x + sin2x = 1+ cos x + cos2 x 2) Giải phương trình: 2 8 x −1 dx Câu III (1 điểm): Tính tích phân: I= 2 x +1 3 Câu IV (1 điểm): Cho hình lập phương ABCD.A ′ B′ C′ D′ cạnh a. Gọi K là trung điểm của cạnh BC và I là tâm của mặt bên CC′ D′ D. Tính thể tích của các hình đa diện do mặt phẳng (AKI) chia hình l ập phương. Câu V (1 điểm): Cho x, y là hai số thực thoả mãn x 2 − xy + y 2 = 2. Tìm giá trị nhỏ nhất và giá trị lớn M = x 2 + 2xy − 3y 2 . nhất của biểu thức: II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có điểm M(–1; 1) là trung điểm của cạnh BC, hai cạnh AB, AC lần lượt nằm trên hai đường thẳng d1: x + y − 2 = 0 và d2: 2x + 6y + 3 = 0 . Tìm toạ độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z2 − 2x − 2y − 4z + 2 = 0 và x −3 y −3 z = = . Lập phương trình mặt phẳng (P) song song với d và trục Ox, đường thẳng d: 2 2 1 đồng thời tiếp xúc với mặt cầu (S). (z2 + 9)(z 4 + 2z2 − 4) = 0 Câu VII.a (1 điểm): Giải phương trình sau trên tập số phức: 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; –3), B(3; –2), diện tích tam giác bằng 1,5 và trọng tâm I nằm trên đường thẳng d: 3x − y − 8 = 0 . Tìm toạ độ điểm C. x −1 y +1 z = = 2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d1: và d2: 2 1 2 x − 2 y z −1 == . Lập phương trình đường thẳng d cắt d1 và d2 và vuông góc với mặt phẳng (P): 1 −2 1 2x + y + 5z + 3 = 0 . x 2 + mx + m − 1 (m là tham số). Tìm m để hàm số luôn đồng biến Câu VII.b (1 điểm): Cho hàm số y = mx + 1 trên từng khoảng xác định của nó.
  2. Hướng dẫn Đề số 38: Câu I: 2) Hai điểm cố định A(1; 0), B(–1; 0). Ta có: y = 4x 3 + 2mx . • Các tiếp tuyến tại A và B vuông góc với nhau ⇔ y (1 y (−1) = −1 ⇔ (4 + 2m)2 = 1 ). 3 m=− 2. ⇔ 5 m=− 2 y = 9− x 2 − 5x y = 9− x 2 − 5x x =1 Câu II: 1) Hệ PT ⇔ 4 ⇔ x = −3 3 2 x + 4x − 5x − 18x+18 = 0 x = −1 7 x =1 y = 3 ; x = −3 y = 15 ; ⇔ x = −1− 7; y = 6 + 3 7 x = −1+ 7; y = 6 − 3 7 π 2) PT ⇔ (sin x − 1)(sin x + cos x + 2) = 0 ⇔ sin x = 1 ⇔ x = + k 2π . 2 8 �x 1� 8 ( ) − � = � x 2 + 1− ln x + x 2 + 1 � dx Câu III: I= �2 � � � �3 x2 + 1� 3� x + 1 ( ) ( ) = 1+ ln 3 + 2 − ln 8 + 3 . Câu IV: Gọi E = AK ∩ DC, M = IE ∩ CC′ , N = IE ∩ DD′ . Mặt phẳng (AKI) chia hình lập phương thành hai đa diện: KMCAND và KBB′ C′ MAA′ D′ N. Đặt V1 = VKMCAND, V2 = VKBB′ C′ MAA′ D′ N. 1 2 .ED.S∆ ADN = a3 . • Vhlp = a3 , VEAND = 3 9 VEKMC EK EM EC 1 7 72 7 = ⇒ V1 = VKMCAND = VEAND = . a3 = a3 , = . . • EA EN ED 8 VEAND 8 89 36 V1 7 29 3 = ⇒ a V2 = Vhlp – V1 = . V2 29 36 Câu V: • Nếu y = 0 thì M = x 2 = 2. x 2 + 2xy − 3y 2 t 2 + 2t − 3 x • Nếu y ≠ 0 thì đặt t = , ta được: M = 2. 2 =2 . x − xy + y 2 y t2 − t + 1 t 2 + 2t − 3 = m ⇔ (m − 1)t 2 − (m + 2)t + m + 3 = 0 Xét phương trình: (1) 2 t − t +1 (1) có nghiệm ⇔ m = 1 hoặc ∆ = (m + 2)2 − 4(m − 1 m + 3) )( 0 2( 13 + 1) 2( 13 − 1) ⇔− . m 3 3 4( 13 + 1) 4( 13 − 1 . ) Kết luận: − M 3 3 x + y − 2= 0 � 15 7 � ⇒ A � ;− � Câu VI.a: 1) Toạ độ điểm A là nghiệm của hệ: . 2x + 6y + 3 = 0 �4 4� � −3− 2c � Giả sử: B(b;2 − b) ∈ d1, C �; c ∈ � d2. � 6�
  3. b+c = −1 1 b= 2 4 −3− 2c M(–1; 1) là trung điểm của BC ⇔ ⇔ 2− b + 9 c=− 6 =1 4 2 � 7� � 9 1� 1 − ⇒ B � ; �C � ; � , . � 4� � 4 4� 4 r 2) (S) có tâm I(1; 1; 2), bán kính R = 2. d có VTCP u = (2;2;1) . r rr (P) // d, Ox ⇒ (P) có VTPT n = [ u , i ] = (0;1 −2) ; ⇒ Phương trình của (P) có dạng: y − 2z + D = 0 . 1− 4 + D = 2 ⇔ D − 3 = 2 5 ⇔ D = 3+ 2 5 (P) tiếp xúc với (S) ⇔ d (I ,(P )) = R ⇔ D = 3− 2 5 2 2 1 +2 ⇒ (P): y − 2z + 3+ 2 5 = 0 (P): y − 2z + 3− 2 5 = 0. hoặc z = 3i z2 = −9 z = 3i ⇔ z= 5−1 . Câu VII.a: PT ⇔ ⇔2 (z2 + 1 2 = 5 z = 5−1 ) z = i 5+1 2S∆ ABC 1 1 3 CH = = Câu VI.b: 1) Vẽ CH ⊥ AB, IK ⊥ AB. AB = 2 ⇒ CH = ⇒IK = . 3 AB 2 2 Giả sử I(a; 3a – 8) ∈ d. a=2 Phương trình AB: x − y − 5 = 0. d (I , AB ) = IK ⇔ 3− 2a = 1 ⇔ a =1 ⇒ I(2; –2) hoặc I(1; –5). • Với I(2; –2) ⇒ C(1; –1) • Với I(1; –5) ⇒ C(–2; –10). x = 1+ 2t1 x = 2 + t2 r . (P) có VTPT n = (2;1 . Gọi A = d ∩ d1, B = d ∩ d2. 2) d1 : y = −1+ t1 , d2 : y = t2 ;5) z = 2t1 z = 1− 2t2 Giả sử: A(1+ 2t1; −1+ t1;2t1) , B((2 + 2t2; t2;1− 2t2) uuu r ⇒ AB = (t2 − 2t1 + 1 t2 − t1 + 1 −2t2 − 2t1 + 1 . ; ; ) t = −1 uuu r r t − 2t1 + 1 t2 − t1 + 1 −2t2 − 2t1 + 1 ⇔1 • d ⊥ (P) ⇔ AB, n cùng phương ⇔ 2 = = t2 = −1 2 1 5 ⇒ A(–1; –2; –2). x +1 y + 2 z + 2 = = ⇒ Phương trình đường thẳng d: . 2 1 5 mx 2 + 2x + 2m − m 2 Câu VII.b: y = . (mx + 1 2 ) m>0 Để hàm số luôn đồng biến trên từng khoảng xác định thì ∆ = m3 − 2m 2 + 1< 0 1+ 5 ⇔ 1< m < . 2
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2