intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi tuyển sinh lớp 10 trường THPT Lê Quý Đôn môn Toán năm 2013 - 2014 - Sở GD&ĐT Bình Định

Chia sẻ: Thu Maile | Ngày: | Loại File: PDF | Số trang:3

61
lượt xem
0
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi HSG cấp tỉnh môn Toán lớp 9 năm 2012-2013 - Sở GD&ĐT Bắc Ninh sau đây sẽ giúp các em học sinh có thêm tài liệu ôn tập, củng cố nâng cao kiến thức trước khi bước vào kì thi học sinh giỏi sắp tới. Mời các bạn tham khảo chi tiết tài liệu.

Chủ đề:
Lưu

Nội dung Text: Đề thi tuyển sinh lớp 10 trường THPT Lê Quý Đôn môn Toán năm 2013 - 2014 - Sở GD&ĐT Bình Định

SỞ GIÁO DỤC – ĐÀO TẠO<br /> BÌNH ĐỊNH<br /> Đề chính thức<br /> <br /> KỲ THI TUYỂN SINH VÀO LỚP 10 THPT<br /> NĂM HỌC 2013-2014<br /> TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN<br /> <br /> Ngày thi: 15/6/2013<br /> Thời gian làm bài: 150’<br /> <br /> <br /> x 2<br /> x 2<br /> Bài 1: ( 2,5 đ) Cho biểu thức: Q  <br /> <br />  x  x ( Với x ≥ 0 ; x ≠ 1)<br />  x  2 x 1 x 1 <br /> <br /> <br /> 1. Rút gọn Q<br /> 2.Tìm các giá trị nguyên của x để Q nhận giá trị nguyên<br /> x  2<br /> 3<br /> 13<br />  x  3  y  1  10<br /> <br /> Bài 2: (2 đ) Giải hệ phương trình: <br />  3  2y  4   11<br />  x  3 y  1<br /> 6<br /> <br /> <br /> <br /> <br /> <br /> bc ca ab<br />  <br />  a  b  c.<br /> a<br /> b<br /> c<br /> Bài 4: (3 đ) Cho đường tròn (O,R) và đường thẳng (d) không đi qua O cắt đường tròn tại hai<br /> điểm A,B. Lấy một điểm M trên tia đối của tia BA kẻ hai tiếp tuyến MC, MD với đường tròn<br /> ( C,D là các tiếp điểm). Gọi H là trung điểm của AB.<br /> 1. CMR các điểm M,D,O,H cùng nằm trên một đường tròn.<br /> 2. Đoạn OM cắt đường tròn tại điểm I. CMR I là tâm đường tròn nội tiếp ∆MCD.<br /> 3. Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD theo thứ tự tại P và Q.<br /> Tìm vị trí điểm M trên (d) sao cho diện tích ∆ MPQ bé nhất.<br /> Bài 3: (1,5 đ) Cho a,b,c là các số thực dương. CMR :<br /> <br /> Bài 5: (1 đ) : Không dùng máy tính, hãy rút gọn biểu thức: A  7  13  7  13  2<br /> ---*---<br /> <br /> HƯỚNG DẪN GIẢI<br /> <br /> x 2<br /> x 2<br /> Bài 1: ( 2,5 đ) Cho biểu thức: Q  <br /> <br />  x  x ( Với x ≥ 0 ; x ≠ 1)<br />  x  2 x 1 x 1 <br /> <br /> <br /> 1.Rút gọn Q<br /> <br /> <br /> <br />  x 2<br /> <br /> x 2<br /> x 2<br /> x 2<br /> Q<br /> <br /> <br />  x x <br />  x x 1<br /> 2<br />  x  2 x 1 x 1 <br /> x 1 x 1 <br />  x 1<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> x 2<br /> <br />  x  1   x  2 <br />  x  1 x  1<br /> 2<br /> <br /> <br /> <br /> .<br /> <br /> x 1<br /> <br /> <br /> <br />  <br /> <br /> <br /> <br /> x<br /> <br /> <br /> <br /> <br /> <br /> x 1 <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> x x 2x x 2<br /> <br /> <br /> <br /> <br /> <br /> x 1<br /> <br /> <br /> <br /> x 1<br /> <br /> <br /> <br /> . x<br /> <br /> 2x<br /> x 1<br /> <br /> 2.Tìm các giá trị nguyên của x để Q nhận giá trị nguyên:<br /> 2x<br /> 2<br /> Q=<br />  2<br />  Q   x  1 U(2)= 2; 1;1;2  x  1;0;2;3 Kết hợp với<br /> x 1<br /> x 1<br /> điều kiện => x  0;2;3<br /> Vậy với x  0;2;3 thì Q nhận giá trị nguyên.<br /> Bài 2: (2 đ) Giải hệ phương trình:<br /> x  2<br /> <br />  1<br /> 3<br /> 13<br /> 1<br /> 3<br /> 13<br /> 3<br /> 3<br />  x  3  y  1  10<br /> 1  x  3  y  1  10<br />  x  3  y  1  10<br /> <br /> <br /> <br /> ( ĐK x ≠ 3; y ≠ -1)<br /> <br /> <br /> <br /> 3<br /> 2y<br /> <br /> 4<br /> 11<br /> 3<br /> 2<br /> 11<br /> 3<br /> 2<br /> 1<br /> <br /> <br /> <br /> <br /> <br /> 2<br /> <br /> <br /> <br />  x  3 y  1<br />  x  3<br />  x  3 y  1 6<br /> 6<br /> y 1<br /> 6<br /> 1<br /> 1<br /> Đặt a =<br /> ; b=<br /> ta được hệ<br /> x 3<br /> y 1<br /> 1<br />  1<br /> 3<br /> 1<br /> <br /> <br /> <br /> a<br /> <br /> 3b<br /> <br /> a<br /> <br /> <br />  10<br />  x  3 10  x  13<br /> 10<br /> :<br />  ...  <br /> <br /> <br /> (TMDK)<br /> 1<br /> 1<br /> 1<br /> 1<br /> y<br /> <br /> 14<br /> <br /> 3a  2b <br /> b <br /> <br /> <br /> <br /> <br /> 6<br /> 15  y  1 15<br /> Vậy hệ pt có nghiệm duy nhất (x;y) = (13;14)<br /> bc ca ab<br />  <br />  a  b  c.<br /> Bài 3: (1,5 đ) Cho a,b,c là các số thực dương. CMR :<br /> a<br /> b<br /> c<br /> a,b,c là các số thực dương => Theo BĐT Cô-Si ta được:<br /> <br /> bc ca<br /> bc ca<br />  2<br /> .  2c <br /> a<br /> b<br /> a b<br /> <br /> <br />  bc ca ab <br /> ca ab<br /> ab ca<br /> bc ca ab<br /> <br /> 2<br /> .  2a   2      2.  a  b  c  <br />  <br />  a bc<br /> b<br /> c<br /> c b<br /> b<br /> c <br /> a<br /> b<br /> c<br />  a<br /> <br /> <br /> bc ab<br /> bc ab<br /> <br /> 2<br /> .<br />  2b <br /> a<br /> c<br /> a c<br /> <br /> Bài 4: (3 đ)<br /> 1. CMR các điểm M,D,O,H cùng nằm trên một đường tròn.<br /> HA=HB => OH  AB ( đường kính đi qua trung điểm một dây không đi qua tâm)<br /> => OHM = 900<br /> <br /> Lại có ODM = 900 ( Tính chất tiếp tuyến)<br /> Suy ra OHM = ODM = 900 => H,D cùng nhìn đoạn OM dưới 1 góc vuông => H,D cùng<br /> nằm trên đường tròn đường kính OM => các điểm M,D,O,H cùng nằm trên đường tròn đường<br /> kính OM<br /> 2. Đoạn OM cắt đường tròn tại điểm I. CMR I là tâm đường tròn nội tiếp ∆MCD.<br /> Ta có: COI  DOI ( Tính chất hai tiếp tuyến cắt nhau)=> CI  DI => CDI  DIM => DI là<br /> phân giác trong của ∆ MCD (1)<br /> Lại có MI là đường phân giác trong của ∆ MCD ( Tính chất hai tiếp tuyến cắt nhau) (2)<br /> Từ (1) và (2) suy ra I là tâm đường tròn nội tiếp ∆ MCD<br /> 3. Đường thẳng qua O, vuông góc với OM cắt các tia MC, MD theo thứ tự tại P và Q.<br /> Tìm vị trí điểm M trên (d) sao cho diện tích ∆ MPQ bé nhất.<br /> Ta có ∆MOD = ∆MOP (g-c-g) => S∆ MPQ= 2 S∆ MOQ =OD.MQ = R.MQ<br /> Q<br /> => S∆ MPQ nhỏ nhất  MQ nhỏ nhất (3)<br /> D<br /> Theo BĐT Cô – si cho hai số không âm ,<br /> ta có: MQ = MD+DQ ≥ 2 MD.DQ  2 OD2  2OD  2R<br /> O<br /> ( Vì ∆ MOD vuông tại O có đường cao OD nên OD2=MD.DQ )<br /> I<br /> (d)<br /> Dấu “=” xảy ra  MD= DQ  ∆OMQ vuông cân tại O<br /> A<br /> B<br /> H<br /> OD<br /> R<br /> 0<br /> <br />  2.R<br />  OMD  45  OM <br /> sin OMD sin 450<br /> C<br /> P<br /> (Vì ∆ ODM vuông nên OD= OM.sinOMD )<br /> Vậy MQmin = 2R  OM = 2 R (2)<br /> Từ (3) và (4) suy ra khi M nằm trên (d) cách O một khoảng 2 R thì S∆ MPQ nhỏ nhất là<br /> R.2R=2R2 ( d.v.d.t)<br /> Bài 5: (1 đ) : A  7  13  7  13  2 .Ta có:<br /> <br /> 2.A  14  2 13  14  2 13  2 <br /> <br /> <br /> <br /> <br /> <br /> 2<br /> <br /> 13  1 <br /> <br /> <br /> <br />  13  1  13  1  2  13  1  13  1  2  0<br />  A  0<br /> <br /> <br /> <br /> 2<br /> <br /> 13  1  2<br /> <br /> M<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2