Bé Gi¸o dôc vµ ®µo t¹o §¹i Häc HuÕ Tr-êng §¹i häc S- ph¹m<br />
<br />
Hä vµ tªn thÝ sinh:.............................. Sè b¸o danh:..............................<br />
<br />
kú thi tuyÓn sinh sau ®¹i häc §ît II - n¨m 2005 M«n thi: Gi¶i tÝch<br />
(Dµnh cho Cao häc)<br />
<br />
Thêi gian lµm bµi: 180 phót x2 C©u 1. XÐt chuçi hµm un víi un (x) = , 1 − x2n+1 n=1<br />
∞<br />
n<br />
<br />
|x| < 1.<br />
∞<br />
<br />
an a) Víi mçi a : 0 < a < 1, chøng minh |un (x)| ≤ 1−a ®Òu trªn [−a, a].<br />
∞<br />
<br />
∀x ∈ [−a, a]. Tõ ®ã suy ra<br />
n=1<br />
<br />
un héi tô<br />
<br />
b) TÝnh tæng S cña chuçi hµm<br />
n=1<br />
<br />
un trªn (−1, 1). −1 f (x, y) = 0 1<br />
<br />
C©u 2. Cho hµm hai biÕn:<br />
<br />
nÕu y < x2 nÕu y = x2 nÕu y > x2<br />
<br />
Chøng minh r»ng hµm f (x, y) kh¶ tÝch Riemann trªn h×nh ch÷ nhËt D = [−1, 2] × [0, 5] vµ tÝnh f (x, y)dxdy.<br />
D<br />
<br />
/ C©u 3. Cho (X, d) lµ kh«ng gian mªtric, A lµ tËp con kh¸c trèng cña X, x0 ∈ X vµ x0 ∈ A. §Æt d(x0 , A) = inf d(x0 , a).<br />
a∈A<br />
<br />
a) Gi¶ sö A ®ãng, chøng minh d(x0 , A) > 0. b) Gi¶ sö A compact, chøng minh tån t¹i y0 ∈ A sao cho d(x0 , A) = d(x0 , y0). c) Gi¶ sö X = Rn víi mªtric Euclide th«ng th-êng vµ A ⊂ Rn lµ tËp ®ãng. Chøng minh tån t¹i y0 ∈ A sao cho d(x0 , A) = d(x0 , y0). C©u 4. Trong kh«ng gian C[0, 1] víi chuÈn "max" cho d·y (xn ) ⊂ C[0, 1] víi xn (t) = t ∈ [0, 1] vµ to¸n tö A : C[0, 1] → C[0, 1] cho bëi:<br />
t<br />
<br />
n4<br />
<br />
2nt , + t2<br />
<br />
Ax(t) =<br />
0<br />
<br />
x(s)ds,<br />
<br />
víi x ∈ C[0, 1], t ∈ [0, 1].<br />
<br />
a) Chøng minh A lµ to¸n tö tuyÕn tÝnh liªn tôc. b) Chøng minh (Axn) héi tô vÒ 0 trong C[0, 1]. C©u 5. Gi¶ sö {en } lµ c¬ së trùc chuÈn trong kh«ng gian Hilbert H vµ X lµ kh«ng gian Banach. Gi¶<br />
∞<br />
<br />
sö A ∈ L(H, X) sao cho chuçi<br />
n=1<br />
<br />
Aen<br />
<br />
2<br />
<br />
héi tô. Chøng minh A lµ to¸n tö compact.<br />
<br />
Ghi chó: C¸n bé coi thi kh«ng gi¶i thÝch g× thªm<br />
<br />
BO GIAO DVCVA DAO TAO DAI H Q C HUE<br />
<br />
Ho vd,ten thi sinh: 56 b6o danh:<br />
<br />
KV<br />
<br />
THI TUYEN<br />
<br />
SrNH SAU DAr HOC NAM M6n thi: Giai tich (dd,nhcho Cao hpr) 180 phirt Thdi gi,anld,mbd,i,;<br />
<br />
Sv<br />
<br />
2AO7<br />
<br />
CAu I. 1. Chohdm hai bi6n f (r,a)<br />
<br />
-I , 2 + a ' '<br />
0,<br />
<br />
2ra<br />
<br />
n6u (*,y) + (0,0), n6u (*,a)- (0,0).<br />
<br />
KliAo s6t tinh liOn tuc cria hilm / t a i d i d m ( 0 , 0 ) Chirng minh rHng dao hA"mriOng<br />
1x<br />
<br />
lr6nhsp<br />
<br />
',<br />
<br />
A2f<br />
<br />
d;N(O,0)<br />
<br />
khongtbn tai (huu hat)<br />
<br />
hd,m f z. KhAos6,t hoi tu dbucriachu6i su<br />
fl':L<br />
<br />
," .i"<br />
<br />
,,fu<br />
<br />
tAp tr6n c6,c sau:<br />
<br />
,) A: lp,+-), p ) 0i<br />
<br />
i i ) B - ( 0 ,+ o o ) .<br />
<br />
v6i khoAng c6ch thong thulng, chitng minh rXng, Cdu II. Trong khong gian metric IR.<br />
<br />
1.E - {t,2, 1,1,. 1,<br />
<br />
!.u-L^'-,2,3)4)...1n'....).*^^^Y""7<br />
<br />
I P ^ 2 ' F_{iz ' J1I4 ) s ) " . , 1, . . . .) U.Ongphai th,mot t6,pcon compactc i a R . ) t ')<br />
Cdu III. Kj' liiOuX : co th, khong gian dinh chudn gbm c6c day s6 thuc hoi tu vb 0 v6i chudn Y l l r l l- s u pl r n l , , r - ( r . ) n e c o<br />
v b , Y - l R ' v 6 i chudn Euclide<br />
rL<br />
<br />
llsll WiZ,<br />
<br />
. va- (ar,..,un) eY.<br />
<br />
dinh bdi V6i m6i s6 tu nhien k ta x6t 5nh x? An : X * Y x6"c<br />
A n r - ( " n + r , f r 1 x a 2 t ' ' ) r k + n ) , Y r : ( r t ) z e N€ X . 1. Chirng minh Ap lit"c6,c6nh xa tuy6n tinh lien tuc tri X vh,oY.<br />
<br />
2. Chirng td rXng<br />
<br />
J*<br />
<br />
Ann - 0 € R.' v6i moi z e X.<br />
<br />
CAu IV. Tren khong gian Hilbert phitc 12 vsi tich vo hu6ng<br />
<br />
/ \ S @,il :2*^y,,<br />
' " _:<br />
<br />
*ong d6 ,:<br />
<br />
( r , - ) ne { 2 , U : ( U n ) - 1 2 . e<br />
t2 Ib"mot to5,n trl ducvc<br />
<br />
Cho o - (a), x6c dinh bdi<br />
<br />
ie mQt duy c5,cs6 phric bi ch5,nvA,,4.: 12 Ar - (onrn)n, Yr e !2.<br />
<br />
A. 1. Chirng minh rXng ,4 th mQt to6n trl tuy6n tinh lien tuc vd,tinh chudn c:d:a 2. Tim to6n trl liOn hiep A* cia A. Khi nb,othi A ld mQt to6n tr] tu lien hiep?<br />
<br />
thi,ch gi, th€m Ghi chri z Cd,n bo coi, thi, khong gi,d,i,<br />
<br />
no cteo DIJCvA DAO T4O DAI HQC HUE<br />
<br />
Ho ud, thi,sinh: t€n 55 b(t"o d"anh..<br />
<br />
,<br />
<br />
KV rHr ruyEN srNH sAU DAr Hec wAtra2008<br />
MOn thi: Giei tich (ddn,h Cao hqc) cho Thdi gian ld"m 180 phrlt bdz: CAu 1. (a dicm) a) Kh6o sat cuc tri dia phuongcriaham hai bi€n:z - (r + a)t - rn - yn. b) Kh6o s6t su hOitU d€u criachu6ihdrn<br />
@<br />
<br />
\- -L (r" +r-") 4 / ?rvfr*<br />
trOn ni€n -{" r D e R | 1 < lrl < 3} CAu 2. (2 dicm) Xet tOphop 11c6cday so thuc kh6 tdng tu_v*€t d6i:<br />
<br />
1 1- { , - ( r , ) n > r cR I i l r , | < + - } : ,a<br />
V6i m6i cflp r : (rn),, A -- (An),,€ /r ta dinh nghia<br />
<br />
dr(r,a) :-[<br />
<br />
:: fr, - y,]; dr(r.a) (p (r, - r,)')+<br />
<br />
a) Chrlngminh dr, dz.ldc6c metric tr€n 11. b ) B d n g c 6 c hk h S os 6 t d a y ( € o ) oC l i , v 6 i € o : ( 1 , + , minh khOnggian (lr,dr) khOngday dri.<br />
<br />
,f ,0,0,... ,0,...), chrrng<br />
<br />
.llz la hai chudntr€n cung mOt khOnggian X sao cho CAu 3. (2 di€m) Cho ll llr "u ll 'lir) .'d (X, (X, li ll llz) dcu la khong gian Banach.Chfing minh rang, hai chudnnd-l,tuong drrongkhi la chi khi diOu kiOn sau thoA m5n:<br />
<br />
V(",,)", X, llt,llr "--,Q a C<br />
<br />
l l " " l l ," - - , 0 .<br />
<br />
CAu 4. (2 diem) GiA sri {e,,},,ex ia rnQt irO tnlc chudn trong khong gian Hilbert 11. Chr'rng rninh rhng a) Da}' (#",),,ex hoi tu ycu nhung khong hoi tu ma'h trong 11.<br />
<br />
b) Day (ne,,),,e khOnghoi tu you trong H . x Ghi chfi: Can b0 coi thi klt,Ang gzdi thfclLgi tlt€m. 1<br />
<br />
BQcrAO DVCvA DAOT4O<br />
2<br />
<br />
Ho vd t6n thf sinh: 56 b5o danh:.<br />
! '<br />
<br />
DAI HOC }IUE<br />
<br />
KV rur ruy6N srNH sAU DAr HQC xAvr 200e(Dqt I)<br />
M6n thi: crAr rfCll<br />
(dd,nhcho Cao hqr) Thdi gian ld,mbd,i: 180 phrit<br />
oo<br />
<br />
C6-rr f. 1 . Cho chu6ihA,m D@'"<br />
n:1<br />
<br />
- *2n+2).<br />
<br />
a ) Tim miEn h6i tu cria chu5i fram d5, cho. b/ Khdo s5,tsu hoi tu dEu cria chu6i hbm dd cho tr6n doan l-1,1].<br />
trlrf<br />
<br />
2. Tinn tfch phAn | | | {r'<br />
<br />
JdJ<br />
<br />
* y2 * z2 drdydz,,<br />
<br />
t r o n gd 6 V - { ( * , a , 2 ) e R t l " ' + y 2 * z 2 < r } .<br />
<br />
C5.u II. X6t 5,nh d: [0,1] x [0,1] + R. x6c dinh boi xa<br />
<br />
d(r,a) :<br />
Ch'3ngminh rXng<br />
<br />
. 2 0 0 9 l r - al<br />
<br />
1+ir-al<br />
<br />
1], 1. d lb mgt m6tric tr6n t6,p 10, 2. (10, d) Ie mQt kh6ng gian m6tric dhy dri. 1], C,5'" III. Ch,1nsminh rXng n6u X ld khong gian dinh chudn vo han chibu thi moi tAp con cd-aX co phhn trong khd,cr5ng dbu khong phai lb tAp compact.<br />
<br />
v CAU trV. 1 . G i e s , 3M - { * t , n z , . . . , , r n } l a m 6 t h 0 c 6 c v e c t o t r u c g i a o k h d , c e c t o 0 cri.amQt khong gian Hilbert I/. Chung minh rXng vcvim5t vecto r e H tbn tai duy nhdt cilc sd e1,e2,... ,,en € K (trulng co s& criakhonggian H i l b e r t I / ) s a oc h o v 6 i b d t k j ' c 6 c s 6 h , 0 2 i . . . , 0 n € K t a c 6<br />
<br />
-L"*rll=Lt"-ll ll" ii"<br />
trong khonggianHilbert,H.Chirng 2. Cho {r,in e N} le mQthOtruc chuAln minh rXngd*y (q")Pr hQitu y6u vE 0 trong.I/.<br />
Ghi chri: C6n b6 coi thi kh6ng giAi thich gi thOm.<br />
<br />