Bé Gi¸o dôc vµ ®µo t¹o §¹i Häc HuÕ Tr-êng §¹i häc S- ph¹m<br />
<br />
Hä vµ tªn thÝ sinh:............................................ Sè b¸o danh:...........................................<br />
<br />
kú thi tuyÓn sinh sau ®¹i häc §ît II - n¨m 2005 M«n thi: To¸n cao cÊp 3 (Dµnh cho Cao häc ngµnh §Þa lý) Thêi gian lµm bµi: 180 phót<br />
<br />
C©u 1. Gi¶i hÖ ph-¬ng tr×nh sau theo tham sè m: mx + y =1 x 2y + mz + 3z<br />
<br />
=m. =0<br />
<br />
C©u 2. Trong hÖ täa ®é §Ò-c¸c 0xyz, cho bèn ®iÓm A(1, 0, 0), B(0, 0, − 1 ), C(1, 1, 1 ) 2 2 vµ D(0, 0, 1). Gäi H lµ ch©n ®-êng cao cña tø diÖn ABCD h¹ tõ D. 1) ViÕt ph-¬ng tr×nh tæng qu¸t cña mÆt ph¼ng (ABC). 2) ViÕt ph-¬ng tr×nh tham sè cña ®-êng th¼ng DH vµ tÝnh gãc lËp bëi DH vµ DA. C©u 3. 1) TÝnh tÝch ph©n sau:<br />
π/2 π/3<br />
<br />
dx . sin3 x<br />
<br />
2) TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi ®-êng th¼ng y = x − 2 vµ ®-êng cong y 2 = x. C©u 4. T×m cùc trÞ cña hµm hai biÕn: z = 4(x − y) − x2 − y 2 . C©u 5. Gi¶i c¸c ph-¬ng tr×nh vi ph©n: 1) y + xy − xy 3 = 0. 2) y + 3y = (4x2 + 2x + 4)ex .<br />
Ghi chó: C¸n bé coi thi kh«ng gi¶i thÝch g× thªm<br />
<br />
Bé Gi¸o dôc vµ ®µo t¹o §¹i Häc HuÕ Tr-êng §¹i häc S- ph¹m<br />
<br />
Hä vµ tªn thÝ sinh:.............................. Sè b¸o danh:..............................<br />
<br />
kú thi tuyÓn sinh sau ®¹i häc §ît II - n¨m 2005 M«n thi: To¸n cao cÊp 3 (Dµnh cho Cao häc ngµnh §Þa lý) Thêi gian lµm bµi: 180 phót<br />
<br />
C©u 1. Gi¶i hÖ ph-¬ng tr×nh sau theo tham sè λ: λx1 + x2 + x3 + x4 = 1 x + λx + x + x = 1<br />
1 2 3 4<br />
<br />
x1 + x2 + λx3 + x4 = 1 x + x + x + λx = 1 1 2 3 4<br />
<br />
.<br />
<br />
C©u 2. Trong kh«ng gian víi hÖ täa ®é §Ò-c¸c vu«ng gãc 0xyz, cho hai ®-êng th¼ng (D) vµ (D ) cã ph-¬ng tr×nh lÇn l-ît lµ: 3x + y − 5z + 1 2x + 3y − 8z + 3 =0 =0 ,<br />
<br />
x y−1 z = = . 1 −2 3 1) Chøng minh hai ®-êng th¼ng ®ã vu«ng gãc víi nhau. 2) ViÕt ph-¬ng tr×nh mÆt ph¼ng qua ®iÓm A(1, 1, 1) vµ chøa ®-êng th¼ng (D ). C©u 3. 1) TÝnh giíi h¹n: lim (<br />
x→+∞<br />
3<br />
<br />
x3 + x − x).<br />
∞<br />
<br />
2) Kh¶o s¸t sù héi tô cña chuçi sè:<br />
n=1<br />
<br />
n5 . (n − 1)!<br />
<br />
C©u 4. T×m cùc trÞ cña hµm hai biÕn: z = x2 + xy + y 2 + x − y + 1. C©u 5. Gi¶i c¸c ph-¬ng tr×nh vi ph©n sau: y 1) y − = 2. x 2) y − y − 2y = e2x(18x2 + 6x + 1).<br />
Ghi chó: C¸n bé coi thi kh«ng gi¶i thÝch g× thªm<br />
<br />
B8 GIAO DUC VA DAO TAO DAI HQC I{UE<br />
t<br />
<br />
Hq vd tAnthf sinh:....... SAUaodanh:.--'<br />
<br />
Kt Tr{r TuyEN srNI{ SAUEAI HQCNAM 2006<br />
M6n thi: Tofn caoc6PIII cho:Caohqc) (ddnh Thdigian ldm bdi; 180 Phtit Ciu I: / \ i 1. Tfong khOnggian vdi h0 toa d0 OxYz haY viOt phucrng 2,-r) vuongg6c v6i ducrngthing (l) : r : 4 - t ; A : di qua didmP(1, khoing cdchtU P ddn (l)' trinh: 2. Giei h0 Phuong<br />
\. r-t3Y*22 r*2E*z r*Y-z :5 :4 :4'<br />
<br />
fiinh mAt Phing (") !;z - t vd tinh<br />
<br />
2: Ct.:u 4 1. Tfnhgi6i han:<br />
r-0<br />
<br />
\/I-r-!r-tr" Lun-<br />
<br />
,T-:l<br />
<br />
S?'n fi<br />
<br />
2. Tinh cdc tich Ph0n:<br />
f dr<br />
<br />
t^1 -<br />
<br />
/l<br />
A<br />
<br />
(,,<br />
<br />
J ,o*GTu<br />
1_<br />
<br />
4o J'r"<br />
<br />
!*12<br />
<br />
Ciu 3: * s d : ' : t r 2 r a + a 2- 2 r - 4 v ' A , , ( 1 . T i m c * c f f i c f i ah h m 2. Chtrngminh bat dangthrlc sau: '^ \<br />
I n -^^L^q 1<br />
<br />
;<br />
<br />
Cau 4:<br />
<br />
I<br />
i\<br />
<br />
t.<br />
<br />
\rim midn hQi tq cfia chu6i h a m s a u : L<br />
<br />
OOh<br />
<br />
n:I<br />
<br />
r'" ffi<br />
<br />
2' Giei phucrngtrinh vi Ph6,n:<br />
<br />
a" -2a'-3a:e2'<br />
<br />
Ghichil:Cdnb6coithikh6nggidithichgith€m<br />
<br />
I<br />
<br />
l t<br />
<br />
,<br />
<br />
crAo DVCVA DAOTAO<br />
<br />
DAr Hecuuf<br />
<br />
Hg ud,t4n tht s,inh: Sd bdo danh:<br />
<br />
KY THI TUYEN SINH SAU DAI HQC XANN 2OO7 M6n thi: To6n cao cdp III -itt t [... ;. (dd,nh Caohpr) cho<br />
Thdi g,ian ld,mbd,i,: 180 phrit ' C6.u I. t_ \t-'.' TbOn trubng s6 ihuc, giAi vi, bi6n-luq,n phuong ho trinh sau theo tham sd ): ( )r+ y* z _1<br />
<br />
1 "*Ay* z -) ll. r* A*Az<br />
<br />
:)2<br />
<br />
CAu II. ,ll"rTitry kh6nggian v6i hQtop d6 trrJcchudnorgz, xd"cdinh hinh chi6uvu6ngg6ccriadu&ng t,{ i€nm{tphxng C6u III.<br />
a. Tim gi6i han:<br />
r.l T l - e'2 - cos2r ll r--+0 r sin r<br />
/+oo Jl^ O<br />
<br />
s*z_ b _0 l3t-29-z*75:o<br />
<br />
,-<br />
<br />
(p): _2t,_Bg+"_4:0.<br />
<br />
b. Tfnh tich phA,nsau:<br />
<br />
e-o' cosbrdr, (o > 0).<br />
<br />
Cdu fV. a. Chung minh rH,ng tbn t+i gi6i h+n 15p JgJgf@,il , lim f (*,y) ci,ahbm hai bi6n<br />
(o,y)-,(0,0)'<br />
<br />
nhungkh6ngtbn t+i gi6i han<br />
<br />
I\r,A):<br />
b. Khd,o s6t cuc tri ctia hbm<br />
<br />
-E -. |<br />
<br />
',<br />
<br />
frU2<br />
<br />
,+F<br />
<br />
z-4(r-A)-n2-y2.<br />
<br />
CAu V. a. Khd,o su h6i tu hay ph6nkj.cria chu6i sri,t<br />
a. GiAi phuong trinh vi phd,n<br />
<br />
'=t \n")<br />
<br />
Fr4)<br />
<br />
a"+a'-2y:er.<br />
Ghi chri: C6,nb6 coi,thi, kh.6ng gi,d,i, thtch gi th€m.<br />
<br />
e0 cilo DUC DAo rAo vA<br />
<br />
D4r Hecuuf<br />
KV rHr ruyfN<br />
<br />
Ho ud" tht s'inh: t€n danh: Sd bd,o<br />
<br />
srNH sAU DAr Hoc NAvt 2oor<br />
<br />
M6n thi: TOAN CAO CAp rrr<br />
(dd,nhch,oCao hq") 180 phrit Thdi g'ian ld,m bd,i,:<br />
<br />
Cdu I. X6c dinh ) dd hQphu(yng trinh sau v6 nghi6m: (2^ * I ) r |<br />
-Ay -A -()*I)z -2),2 -2), -2.<br />
<br />
t()<br />
ai<br />
<br />
3.\r- (2^-L)a- (3)- 1)z - l+1<br />
<br />
*2)r<br />
<br />
Cdu II. trinh thn luot ld,: Cho hai dulng th8ng a vh,b co phucrng f ,*A+z<br />
\r-,<br />
<br />
-1<br />
-3<br />
<br />
va<br />
<br />
\<br />
<br />
( rb: { l2r<br />
<br />
A*22 *32<br />
<br />
-1 _J e - .<br />
<br />
Hdy chirng minh hai dulng thH,ng a vh, b ch6o nhau vh,tfnh khoAng cdch giua chfing. CAu fff. X6t hh,m s6:<br />
/<br />
<br />
r@-<br />
<br />
Io<br />
<br />
lrksin<br />
<br />
1<br />
.lJ<br />
<br />
n6ur+0, ndur-0.<br />
<br />
(k lb s6 tu nhiOn)<br />
<br />
1 . V6i dibu kiOn nho crla k thi hd,m s6 lien tuc tai r - 0? 2. Vdi dibu ki6n nh,o cria k thi hi,m s6 c6 dao hh,m tai r - 0 ?<br />
1 3. Tfnh vi phA,ncdp hai d' f (") t,aL : -. ' 7 rr<br />
<br />
CAU IV. 1 . Cho p(t) lh hd,m s6 m6t bi6n c6 dao h},m li6n tuc. Chirng minh rXng hh,m sd<br />
<br />
f ( * , a ): p ( r ' + a 2 )<br />
thod, m5,n phucrng trinh<br />
<br />
aar-raa-o'<br />
2. Tim cqc tri dia phucrng cria hb,m s6<br />
<br />
af<br />
<br />
af<br />
<br />
f @,a)r A + - + ra<br />
CAu V. 1. KhAos5t su h6i tu crla chu6i sd<br />
oo<br />
<br />
42<br />
<br />
oo 2n,-I \- -'" L,n<br />
,rTL<br />
<br />
z. I rm mlen<br />
<br />
n<br />
<br />
m\<br />
<br />
.\^<br />
<br />
hoi tu cria chu5i<br />
<br />
\-* #tn2'<br />
<br />
Ghi chri: Cd,nb6 coi,thi kh6ng gidi thfuh gi th€,m.<br />
Typeset by "414S-Tgf,<br />
<br />