intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thử Sức Đại Học Môn Toán 2011 - Đề Tham Khảo Số 04

Chia sẻ: Thanh Cong | Ngày: | Loại File: PDF | Số trang:3

85
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thử sức đại học môn toán 2011 - đề tham khảo số 04', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thử Sức Đại Học Môn Toán 2011 - Đề Tham Khảo Số 04

  1. TRƯ NG THCS & THPT NGUY N KHUY N TH SC I H C 2010 http://www.VNMATH.com Môn thi: Toán L P 12D1 Th i gian làm bài: 180 phút (không k th i gian phát ) S 004 I. PHẦN CHUNG (7 điểm) 2x -1 Câu I (2 điểm): Cho hàm số y = . x +1 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi M là giao điểm của hai đường tiệm cận của (C). Tìm trên đồ thị (C) điểm I có hoành độ dương sao cho tiếp 2 2 tuyến tại I với đồ thị (C) cắt hai đường tiệm cận tại A và B thoả mãn: MA + MB = 40 . Câu II (2 điểm): x - 3 £ x + 12 - 2 x + 1 1) Giải bất phương trình: 2sin x + 3tan x - 2 cos x = 2 2) Giải phương trình: tan x - sin x 2 x2 dx ò Câu III (1 điểm): Tính tích phân: I= 2 1 x - 7 x + 12 Câu IV (1 điểm): Cho đường tròn (C) đường kính AB = 2R. Trên nửa đường thẳng Ax vuông góc với mặt phẳng chứa (C) lấy điểm S sao cho SA = h. Gọi M là điểm chính giữa cung AB. Mặt phẳng (P) đi qua A và vuông góc với SB, cắt SB, SM lần lượt tại H và K.. Tính thể tích của khối chóp S.AHK theo R và h. Câu V (1 điểm): Cho a, b, c là những số dương thoả mãn: a2 + b2 + c 2 = 3 . Chứng minh bất đẳng thức: 1 1 1 4 4 4 + + ³ + + a + b b + c c + a a2 + 7 b2 + 7 c 2 + 7 II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): æ 4 7ö 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh A ç ; ÷ và phương trình hai đường phân giác è 5 5ø trong BB¢: x - 2 y - 1 = 0 và CC¢: x + 3y - 1 = 0 . Chứng minh tam giác ABC vuông. ìx = t x + 8 y - 6 z - 10 ï 2) Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng (d1 ) : và (d2 ) : í y = 2 - t . = = 2 1 -1 ï z = -4 + 2 t î Viết phương trình đường thẳ ng (d) song song với trục Ox và cắt (d1) tại A, cắt (d2) tại B. Tính AB. Câu VII.a (1 điểm): Tìm phầ n thực và phần ảo của số phức z = (2 - 2i )(3 + 2i)(5 - 4i ) - (2 + 3i)3 . 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC vuông cân tại A, biết các đỉnh A, B, C lần lượt nằm trên các đường thẳ ng d: x + y - 5 = 0 , d1: x + 1 = 0 , d2: y + 2 = 0 . Tìm toạ độ các đỉnh A, B, C, biết BC = 5 2 . x -1 y + 1 z = = 2) Trong không gian với hệ toạ độ Oxyz, cho điểm M(2; 1; 0) và đường thẳ ng D: . Lập phương 2 1 -1 trình của đường thẳng d đi qua điểm M, cắt và vuông góc với D. ì9 x 2 - 4 y 2 = 5 í Câu VII.b (1 điểm): Giải hệ phương trình: . îlog5 (3 x + 2 y ) - log3 (3 x - 2 y ) = 1 ============================ http://www.VNMATH.com 4 http://www.VNMATH.com
  2. S 004 http://www.VNMATH.com Hướng dẫn: I. PHẦN CHUNG 2 x0 - 1 ö æ Câu I: 2) TCĐ: x = -1 ; TCX: y = 2 Þ M(–1; 2). Giả sử I ç x0 ; ÷ Î (C), (x0 > 0). x0 + 1 ø è 2 x0 - 1 2x - 4 ö æ 3 ÷ , B ( (2 x 0 + 1; 2 ) . Þ A ç -1; 0 ( x - x0 ) + · PTTT với (C) tại I: y = ( x0 + 1)2 x0 + 1 x0 + 1 ø è ì 36 + 4( x0 + 1)2 = 40 ï 2 2 2 · MA + MB = 40 Û í ( x + 1) Û x0 = 2 (y0 = 1) Þ I(2; 1). 0 ïx > 0 î0 Câu II: 1) BPT Û 3 £ x £ 4 . 1 2p ìcos x ¹ 0 . PT Û cos x = - Û x = ± + k 2p . 2) Điều kiện: í îsin x ¹ 0 2 3 2 16 9ö æ 2 ÷dx = ( x + 16 ln x - 4 - 9 ln x - 3 ) 1 = 1 + 25ln 2 - 16 ln 3 . Câu III: I = ò ç 1 + - x -4 x-3ø è 1 R 2 h5 Câu IV: VS. AHK = . 3(4 R2 + h2 )(2 R2 + h2 ) 11 4 +³ ( x > 0, y > 0) Câu V: Áp dụng bất đẳng thức x y x+ y 1 1 4 1 1 4 1 1 4 + ³ + ³ + ³ Ta có: ; ; a + b b + c a + 2b + c b + c c + a a + b + 2c c + a a + b 2a+b+c 1 2 2 ³ = Û 2a 2 + b 2 + c 2 + 4 - 4a - 2b - 2c ³ 0 Mặt khác: 2a + b + c 2a 2 + b2 + c 2 + 4 a 2 + 7 Û 2(a - 1) 2 + (b - 1) 2 + (c - 1) 2 ³ 0 1 2 1 2 ³2 ³2 Tương tự: ; 2b + c + a b + 7 2c + a + b c + 7 1 1 1 4 4 4 + + ³2 +2 +2 Từ đó suy ra: a+b b+c c+a a +7 b +7 c +7 Đẳng thức xảy ra khi và chỉ khi a = b = c = 1. II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn Câu VI.a: 1) Gọi A1, A2 lần lượt là điểm đối xứng của A qua BB¢, CC¢ Þ A1, A2 Î BC. uuu r uuu r Tìm được: A1(0; –1), A2(2; –1) Þ Pương trình BC: y = -1 Þ B(–1; –1), C(4; –1) Þ AB ^ AC Þ µ vuông. A 2) Giả sử: A(-8 + 2t1 ;6 + t1;10 - t1 ) Î d1, B(t2 ;2 - t2 ; -4 + 2t2 ) Î d2. uuu r Þ AB = (t2 - 2t1 + 8; -t2 - t1 - 4); 2t2 + t1 - 14) . uuu r r ì -t - t - 4 = 0 ìt = -22 AB, i = (1; 0; 0) cùng phương Û í 2 1 Û í1 Þ A(-52; -16;32), B(18; -16;32) . î2t2 + t1 - 14 = 0 ît2 = 18 ì x = -52 + t ï Þ Phương trình đường thẳ ng d: í y = -16 . ïz = 32 î Câu VII.a: Phần thực a = 88, phần ảo b = –59. 2. Theo chương trình nâng cao Câu VI.b: 1) Chú ý: d1 ^ d2 và DABC vuông cân tại A nên A cách đều d1, d2 Þ A là giao điểm của d và đường phân giác của góc tạo bởi d1, d2 Þ A(3; 2). uuur uuu r Giả sử B(–1; b) Î d1, C(c; –2) Î d2. AB = (-4; b - 2), AC = (c - 3; -4) . uuu uuu rr ì AB. AC = 0 é b = 5, c = 0 é A(3; 2), B(-1; 5), C (0; -2) ï Ûê Þê Ta có: í . ë b = -1, c = 6 ë A(3; 2), B(-1; -1), C (6; -2) 2 ïBC = 50 î Trần Sĩ Tùng http://www.VNMATH.com 37 http://www.VNMATH.com
  3. S 004 uuuu r http://www.VNMATH.com r 2) uD = (2;1; -1) . Gọi H = d Ç D. Giả sử H (1 + 2t; -1 + t; -t ) Þ MH = (2t - 1; t - 2; -t ) . ìx = 2 + t uuuu r r uuuu r r 2 ï MH ^ uD Û 2(2t - 1) + (t - 2) - (-t ) = 0 Û t = Þ ud = 3 MH = (1; -4; -2) Þ d: í y = 1 - 4t . 3 ï z = 2t î ìlog 5 (3 x + 2 y) + log5 (3 x - 2 y ) = 1 ìlog5 (3 x + 2 y ) = 1 ì3 x + 2 y = 5 ìx = 1 Câu VII.b: Hệ PT Û í Û ílog (3 - 2 ) = 0 Û í3 x - 2 y = 1 Û í y = 1 îlog 5 (3 x + 2 y) - log3 5.log5 (3 x - 2 y ) = 1 î 5x y î î ===================== Trần Sĩ Tùng http://www.VNMATH.com 38 http://www.VNMATH.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2