Điều khiển số - Chương 4
lượt xem 18
download
Tham khảo tài liệu 'điều khiển số - chương 4', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Điều khiển số - Chương 4
- C.4: ĐẶC TÍNH THỜI C.4: GIAN GIAN CỦA HỆ THỐNG ĐIỀU KHIỂN SỐ
- 4.1 KHÁI NIỆM CHUNG X(z) Y(z) G(z) x(kT) y(kT) Cho x(kT) và G(z). Xác định y(kT) x(kT ) ⇒ X ( z ) = Z { x(kT )} Y ( z) G( z) = ⇒ Y ( z ) = X ( z ).G ( z ) X ( z) ⇒ y (kT ) = Z −1 {Y ( z )}
- Ví dụ 1 − e − aT • Cho: x(kT ) = 1(kT ) G( z) = z − e − aT z x(kT ) = 1(kT ) ⇒ X ( z ) = Z {1(kT )} = z −1 z 1 − e − aT Y ( z ) = X ( z ).G ( z ) = ⋅ z − 1 z − e − aT ⎧ z 1 − e − aT ⎫ • Tra bảng: y (kT ) = Z {Y ( z )} = Z ⎨ −1 −1 ⋅ − aT ⎬ ⎩ z −1 z − e ⎭ y (kT ) = 1 − e − akT
- x(kT) 1 0.8 0.6 y(kT) 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 time [s]
- 4.2. XÁC ĐỊNH ĐẶC TÍNH THỜI GIAN CỦA MỘT KHÂU BẰNG PHƯƠNG PHÁP ĐỆ QUY 2z −1 Y ( z) G( z) = =2 Cho hàm truyền đạt của khâu: X ( z) 2z − z − 1 và tín hiệu đầu vào x(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định y(kT) 1. Nhân chéo: 2 z 2Y ( z ) − zY ( z ) − Y ( z ) = 2 zX ( z ) − X ( z ) 2. Nhân hai vế cho z-n với n là bậc cao nhất của z: 2Y ( z ) − z −1Y ( z ) − z −2Y ( z ) = 2 z −1 X ( z ) − z −2 X ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ:
- f (kT ) ⇒ Z { f (kT )} = F ( z ) ⇒ Z −1{ F ( z )} = f (kT ) {z F ( z )} = f [ (k − 1)T ] ⇒ Z { f [ (k − 1)T ]} = z F ( z ) ⇒ Z −1 −1 −1
- 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {2Y ( z ) − z −1Y ( z ) − z −2Y ( z )} = Z −1 {2 z −1 X ( z ) − z −2 X ( z )} 2 y (kT ) − y[(k − 1)T ] − y[(k − 2)T ] = 2 x[(k − 1)T ] − x[(k − 2)T ] 4. Xác định y(kT). Đơn giản cách viết: y (kT ) = 0.5 y[(k − 1)T ] + 0.5 y[(k − 2)T ] + x[(k − 1)T ] − 0.5 x[(k − 2)T ] y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x( k − 2); k = 0,1, 2, ..., ∞ Biểu thức đệ quy đặc tính thời gian đầu ra của khâu đã cho y (0) = 0.5 y (−1) + 0.5 y (−2) + 2 x(−1) − 0.5 x(−2) 5. Xác định các giá trị ban đầu: y(-1) = 0; y(-2) = 0; x(-1) = 0; x(-2) = 0
- Các bước tính y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x(k − 2); k = 0,1, 2, ..., ∞ k = 0 … y(0) = 0.5y(-1) + 0.5y(-2) + x(-1) – 0.5x(-2) = 0 k = 1 … y(1) = 0.5y(0) + 0.5y(-1) + x(0) – 0.5x(-1) = x(0) k = 2 … y(2) = 0.5y(1) + 0.5y(0) + x(1) – 0.5x(0) = 0.5x(0) + x(1) – 0.5x(0) = x(1) k = 3 … y(3) = 0.5y(2) + 0.5y(1) + x(2) – 0.5x(1) = 0.5x(1) + 0.5x(0) + x(2) – 0.5x(1) = x(2) + 0.5 x(0) ....
- Lưu đồ thuật toán START 1 Nhập x(k), k=k+1 Kmax y(1) = 0; y(2) = 0 y(-2) = 0; y(-1) = 0 (-) x(1) = 0; x(2) = 0 x(-2) = 0; x(-1) = 0 k > Kmax + 3 k > Kmax (+) k=3 k=0 STOP y(k) = 0.5y(k-1) + 0.5y(k-2) + x(k-1) – 0.5x(k-2) 1
- Ví dụ 1: Y ( z) a2 H 0GP ( z ) = = Cho hàm truyền đạt của khâu: U ( z ) z − a1 và tín hiệu đầu vào u(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định y(kT): 1. Nhân chéo: zY ( z ) − a1Y ( z ) = a2U ( z ) 2. Nhân hai vế cho z-1: Y ( z ) − a1 z −1Y ( z ) = a2 z −1U ( z )
- Y ( z ) − a1 z −1Y ( z ) = a2 z −1U ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {Y ( z ) − a1 z −1Y ( z )} = Z −1 {a2 z −1U ( z )} y (kT ) − a1 y[(k − 1)T ] = a2u[(k − 1)T ] 4. Xác định u(kT). Đơn giản cách viết: y (kT ) = a1 y[(k − 1)T ] + a2u[(k − 1)T ] y (k ) = a1 y (k − 1) + a2u (k − 1) y (0) = a1 y (−1) + a2u (−1) 5. Xác định các giá trị ban đầu: y(-1) = 0; u(-1) = 0
- Các bước tính y (k ) = a1 y (k − 1) + a2u (k − 1) k = 0 … y(0) = a1y(-1) + a2u(-1) = 0 k = 1 … y(1) = a1y(0) + a2u(0) = u(0) k = 2 … y(2) = a1y(1) + a2u(1) = a1u(0) + a2u(1) k = 3 … y(3) = a1y(2) + a2u(2) = a1[a1u(0) + a2u(1)] + a2u(2) ....
- Lưu đồ thuật toán START 1 Nhập u(k), k=k+1 a1, a2, Kmax y(1) = 0; u(1) = 0 y(-1) = 0; u(-1) = 0 (-) k > Kmax + 2 k > Kmax k=0 k=2 (+) STOP y(k) = a1y(k-1) + a2u(k-1) 1
- Ví dụ 2: U ( z ) A0 z + A1 GC ( z ) = = Cho hàm truyền đạt của khâu: z −1 E ( z) và tín hiệu đầu vào e(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định u(kT): 1. Nhân chéo: zU ( z ) − U ( z ) = A0 zE ( z ) + A1E ( z ) 2. Nhân hai vế cho z-1: U ( z ) − z −1U ( z ) = A0 E ( z ) + A1 z −1E ( z )
- U ( z ) − z −1U ( z ) = A0 E ( z ) + A1 z −1E ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {U ( z ) − z −1U ( z )} = Z −1 { A0 E ( z ) + A1 z −1E ( z )} u (kT ) − u[(k − 1)T ] = A0e(kT ) + A1e[(k − 1)T ] 4. Xác định u(kT). Đơn giản cách viết: u (kT ) = u[(k − 1)T ] + A0e(kT ) + A1e[(k − 1)T ] u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) u (0) = u (−1) + A0e(0) + A1e(−1) 5. Xác định các giá trị ban đầu: u(-1) = 0; e(-1) = 0
- Các bước tính u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) k = 0 … u(0) = u(-1) + A0e(0) + A1e(-1) = A0e(0) k = 1 … u(1) = u(0) + A0e(1) + A1e(0) =(A0 + A1)e(0) + A0e(1) k = 2 … u(2) = u(1) + A0e(2) + A1e(1) = = (A0 + A1)e(0) + A0e(1) + A0e(2) + A1e(1) = = (A0 + A1)e(0) + (A0 + A1)e(1) + A0e(2) ....
- Lưu đồ thuật toán START 1 Nhập e(k), k=k+1 A0, A1, Kmax u(1) = 0; e(1) = 0 u(-1) = 0; e(-1) = 0 (-) k > Kmax + 2 k > Kmax k=0 k=2 (+) STOP u(k) = u(k-1) + A0e(k) + A1e(k-1) 1
- 4.3. MÔ PHỎNG HỆ THỐNG ĐIỀU KHIỂN SỐ 1. Xác định hàm truyền đạt G(z) của cả hệ thống. Xác định đặc tính đầu ra của hệ thống như của một khâu. Không có đặc tính thời gian của các tín hiệu khác trong hệ thống. 2. Xác định đặc tính thời gian của tất cả các khâu trong hệ thống.
- Ví dụ Mô phỏng hệ thống có một vòng kín X(z) E(z) U(z) Y(z) H0GP(z) GC(z) (-) Trong đó: A0 z + A1 a2 H 0GP ( z ) = GC ( z ) = z − a1 z −1
- X(z) E(z) U(z) Y(z) H0GP(z) GC(z) (-) U ( z ) A0 z + A1 GC ( z ) = = z −1 E( z) ⇒ u (k ) = u (k − 1) + A0e(k ) + A1e(k − 1) (1) Y ( z) a H 0GP ( z ) = =2 U ( z ) z − a1 ⇒ y (k ) = a1 y (k − 1) + a2u ( k − 1) (2) E(z) = X(z) – Y(z) e(k) = x(k) – y(k) (3)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Cơ sở lý thuyết điều khiển tự động part 4
22 p | 484 | 208
-
Hệ thống điều khiển số trong công nghiệp part 4
26 p | 254 | 70
-
Giáo trình Thí nghiệm điều khiển tự động: Phần 2
118 p | 153 | 51
-
Giáo trình môn điều khiển số 17
7 p | 314 | 46
-
Giáo trình môn điều khiển số 19
7 p | 167 | 44
-
Giáo trình môn điều khiển số 20
6 p | 239 | 34
-
Hệ thống điều khiển số - Giới thiệu hệ thống điều khiển RFOC
22 p | 162 | 30
-
Giáo trình môn điều khiển số 18
7 p | 126 | 18
-
Hệ thống điều khiển số -Ước lượng từ thông
27 p | 146 | 17
-
Nâng cao chất lượng điều khiển robot Scara 4 bậc tự do
6 p | 119 | 10
-
Thiết kế bộ điều khiển trượt thích nghi cho robot song song 4 DOF
5 p | 13 | 6
-
Nghiên cứu thiết kế, chế tạo mô đun dịch pha điều khiển số bốn kênh cho máy thu ra đa băng X
7 p | 56 | 2
-
Đề thi cuối học kỳ II năm học 2018-2019 môn Máy và hệ thống điều khiển số (Mã đề 01) - ĐH Sư phạm Kỹ thuật
5 p | 57 | 2
-
Đề thi cuối học kỳ II năm học 2017-2018 môn Máy và hệ thống điều khiển số (Mã đề 01) - ĐH Sư phạm Kỹ thuật
5 p | 48 | 2
-
Bộ điều khiển FLC-Sugeno tối ưu dựa trên PSO cho hệ thống giảm chấn tích cực
9 p | 3 | 2
-
Nghiên cứu lý thuyết điều khiển tự động - Tập 1 (In lần thứ 4): Phần 1
180 p | 4 | 2
-
Giáo trình Vi điều khiển - Trường CĐ nghề Số 20
130 p | 8 | 2
-
Nghiên cứu lý thuyết điều khiển tự động - Tập 1 (In lần thứ 4): Phần 2
228 p | 2 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn