intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đồ án: Nghiên cứu quá trình cracking xúc tác dầu thực vật thải trên xúc tác zeolit tạo nhiên liệu sinh học

Chia sẻ: Nguyen Lan | Ngày: | Loại File: PDF | Số trang:54

145
lượt xem
39
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhiên liệu sinh học tổng hợp từ nguồn dầu thực vật hiện đang là một trong những giải pháp thay thế nguồn nhiên liệu từ dầu mỏ đang ngày càng cạn kiệt. Công nghệ chế biến biodiezen từ dầu thực vật chủ yếu bằng phương pháp chuyển dịch este dùng xúc tác kiềm,...

Chủ đề:
Lưu

Nội dung Text: Đồ án: Nghiên cứu quá trình cracking xúc tác dầu thực vật thải trên xúc tác zeolit tạo nhiên liệu sinh học

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ………………………. Đồ án Một số biện pháp nâng cao hiệu quả sử dụng nguồn nhân lực tại công ty cổ phần đầu tư thương mại DG
  2. Đồ án tốt nghiệp HD1001 LỜI CẢM ƠN Trong quá trình thực tập và hoàn thành đồ án tại phòng Hoá lý bề mặt, Viện Hoá Học, Viện Khoa Học và công nghệ Việt Nam tôi đã nhận được sự giúp đỡ, chỉ bảo tận tình vê kiến thức và kĩ thuật thực nghiệm của các cán bộ nghiên cứu của viện. Đặc biệt tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Lê Thị Hoài Nam cùng các anh chị trong phòng hoá lí bề mặt, đã trực tiếp hướng dẫn thực nghiệm và tạo mọi điều kiện để tôi hoàn thành tốt đồ án này. Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới các thầy, cô trong Bộ môn Hoá Dầu trường Đại Học Dân Lập Hải Phòng đã dạy dỗ và chỉ bảo tận tình cho tôi trong suốt quá trình học tập tại trường. Tôi xin gửi lời cảm ơn sâu sắc tới gia đình tôi, những người đã giúp đỡ tôi về mọi mặt trong học tập cũng như trong cuộc sống. Cuối cùng tôi xin gửi lời cảm ơn tới tất cả bạn bè của tôi đã ủng hộ và giúp đỡ nhiệt tình để tôi hoàn thành tốt đồ án này. Xin chân thành cảm ơn! Sinh viên Nguyễn Văn Toán Sinh viên : Nguyễn Văn Toán 1
  3. Đồ án tốt nghiệp HD1001 MỤC LỤC MỞ ĐẦU ............................................................................................................... 1 CHƢƠNG I. TỔNG QUAN TÀI LIỆU…. ........................................................ 3 1.1. Tổng quan về vật liệu zeolit .......................................................................... 3 1.1.1. Giới thiệu về Zeolite .......................................................................... 3 1.1.2. Phân loại Zeolite ............................................................................................ 3 1.1.3. Sự hình thành cấu trúc Zeolit .......................................................... 4 1.1.4. Một số vật liệu Zeolit ......................................................................... 6 1.1.5. Một số tính chất hóa lý cơ bản của Zeolit ....................................... 8 1.2. Phản ứng Cracking ..................................................................................... 11 1.2.1. Giới thiệu về phản ứng cracking .................................................... 11 1.2.2. Cơ chế phản ứng cracking xúc tác ................................................. 12 1.2.3. Phản ứng cracking dầu mỏ ............................................................. 16 1.3. Giới thiệu về trấu và thành phần vỏ trấu ................................................. 17 CHƢƠNG 2. CÁC PHƢƠNG PHÁP THỰC NGHIỆM ............................... 18 2.1. Chiết tách oxit silic từ vỏ trấu .................................................................... 19 2.2. Tổng hợp vật liệu zeolit ZSM-5 và HY ..................................................... 19 2.2.1. Tổng hợp zeolit ZSM-5 ................................................................... 19 2.2.2. Tổng zeolit Y ................................................................................... 20 2.3. Các phƣơng pháp nghiên cứu cấu trúc vật liệu ....................................... 21 2.3.1. Phƣơng pháp phổ hấp thụ hồng ngoại (IR) .................................. 21 2.3.2. Phƣơng pháp nhiễu xạ Rơnghen (XRD) ....................................... 23 2.3.3. Phƣơng pháp đẳng nhiệt hấp phụ- khử hấp phụ Nitơ ................. 24 2.3.4. Phƣơng pháp hiển vi điện tử truyền qua (Transmission electron microscopy –TEM) .................................................................................... 26 2.3.5. Phƣơng pháp hiển vi điện tử quét SEM ....................................... 27 2.4. Phƣơng pháp biến tính vật liệu ( trao đổi ion ) ..................................................... 28 2.5. Xác định hoạt tính xúc tác của vật liệu Zeolite ..................................................... 28 2.5.1. Xác định hoạt tính xúc tác vật liệu HY và HZSM-5 trong phản ứng cracking dầu thực vật thải trên hệ MAT5000 (Microactivity Test)28 CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ................................................... 32 Sinh viên : Nguyễn Văn Toán 2
  4. Đồ án tốt nghiệp HD1001 3.1. Kết quả nghiên cứu quá trình tách silic từ vỏ trấu .................................. 32 3.2. Kết quả tổng hợp vật liệu ........................................................................... 33 3.2.1. Kết quả tổng hợp đặc trƣng vật liệu ZSM-5 ................................. 33 3.2.2. Kết quả tổng hợp và đặc trƣng vật liệu zeolit Y ........................... 38 3.3. Kết quả đánh giá hoạt tính xúc tác ............................................................ 43 KẾT LUẬN ......................................................................................................... 49 Tài liệu tham khảo ............................................................................................. 50 Sinh viên : Nguyễn Văn Toán 3
  5. Đồ án tốt nghiệp HD1001 MỞ ĐẦU Nhiên liệu sinh học tổng hợp từ nguồn dầu thực vật hiện đang là một trong những giải pháp thay thế nguồn nhiên liệu từ dầu mỏ đang ngày càng cạn kiệt. Công nghệ chế biến biodiezen từ dầu thực vật chủ yếu bằng phương pháp chuyển dịch este dùng xúc tác kiềm, phương pháp đòi hỏi phải xử dụng một lượng lớn methanol và công đoạn thu hồi sản phẩm phụ glyxerin rất phức tạp [1, 2]. Khó khăn lớn nhất khi mở rộng sản xuất biodiezen từ dầu thực vật là giá thành sản phẩm cao hơn nhiều so với DO (gấp 2 lần). Trong thời gian gần đây, sử dụng phương pháp cracking xúc tác để chuyển hoá dầu thực vật thành nhiên liệu sinh học bắt đầu được quan tâm vì ưu điểm công nghệ này là có thể sử dụng các thiết bị cracking xúc tác (FCC- Fix bed catalytic cracking), hệ thống làm việc liên tục, thời gian làm việc của xúc tác ổn định và không sử dụng các dung môi độc hại [3]. Quá trình cracking xúc tác đã được nghiên cứu từ cuối thế kỉ XIX, nhưng mãi đến năm 1923, một kĩ sư người Pháp tên là Houdry mới đề nghị đưa quá trình áp dụng vào công nghiệp. Năm 1936, nhà máy cracking xúc tác đầu tiên của công ty Houdry Process Corporation được xây dựng ở Mỹ. Cho đến nay, sau hơn 60 năm phát triển, quy trình công nghệ ngày càng được cải tiến và hoàn thiện nhằm mục đích nhận được nguyên liệu có chất lượng cao từ nguyên liệu có chất lượng kém, phục vụ cho công nghệ Hoá dầu và Hoá học. Việt nam có sản lượng lương thực khoảng 30 triệu tấn mỗi năm, vỏ trấu chiếm 15 – 20 % khối lượng thóc và là sản phẩm phế thải nông nghiệp [4, 5] Việc nghiên cứu sử dụng nguồn silic của vỏ trấu để tổng hợp vật liệu zeolit đã bước đầu được nghiên cứu nhằm sử dụng có hiệu quả nguồn trấu phế thải. Trên cơ sở đó chúng tôi tiến hành thực hiện đề tài: “Nghiên cứu quá trình cracking xúc tác dầu thực vật thải trên xúc tác zeolit tạo nhiên liệu sinh học” Trong phạm vi đồ án này, hai chất xúc tác mà chúng tôi tiến hành nghiên cứu là zeolit Y và zeolit ZSM-5 được tổng hợp sử dụng nguồn silic được chiết tách từ trấu. Vật liệu tổng hợp đã được tiến hành nghiên cứu các đặc trưng bằng các phương pháp Hóa lý bao gồm IR, XRD, SEM, TEM và BET. Hoạt tính xúc tác của các vật liệu được tiến hành khảo sát trong phản ứng cracking dầu thực vật Sinh viên : Nguyễn Văn Toán 4
  6. Đồ án tốt nghiệp HD1001 thải tạo nhiên liệu sinh học. Phản ứng được tiến hành trên hệ MAT5000. Chất lượng các sản phẩm khí, lỏng được phân tích sử dụng các phương pháp tương ứng là GC-TCD, GC-MS, và SIMDIST. Sinh viên : Nguyễn Văn Toán 5
  7. Đồ án tốt nghiệp HD1001 CHƢƠNG I TỔNG QUAN TÀI LIỆU 1.1. Tổng quan về vật liệu zeolit. 1.1.1. Giới thiệu về Zeolite. Zeolite là các aluminosilicat tinh thể có cấu trúc không gian ba chiều với hệ thống mao quản rất đồng đều. Thành phần hoá học của zeolit có thể được biểu diễn bằng công thức hoá học như sau [6]: Me2 / n O AlO2 x SiO2 y .zH 2 O Trong đó: Me là cation kim loại có hoá trị n y/x là tỷ số nguyên tử Si/Al, tỷ số này thay đổi tuỳ theo từng loại zeolit z là số phân tử H2O kết tinh trong zeolit, Kí hiệu trong [ ] là thành phần cơ bản của một ô mạng cơ sở tinh thể. Một số loại zeolite thường gặp - Zeolite giàu Al: zeolite LTA: zeolite A, Si/Al=1. - Zeolite silic trung bình: zeolite kiểu FAU (zeolite X, zeolte Y). 1 < Si/Al < 2 zeolit X 2 < Si/Al < 3 zeolit Y - MOR: zeolit mordenit, Si/Al 5. - Zeolite giàu silic: zeolite kiểu MFI(zeolite ZSM-5) Si/Al = 12 - 8000 1.1.2. Phân loại Zeolite. - Theo nguồn gốc: gồm zeolite tự nhiên và zeolite tổng hợp. - Theo chiều hướng không gian của các kênh hình thành cấu trúc mao quản: zeolite có hệ thông mao quản 1 chiều, 2 chiều, 3 chiều. - Theo tỉ lệ Si/Al: zeolite có hàm lượng Si thấp(Si/Al=1-1,5: A, X) hàm lượng trung bình (Si/Al=2-5: zeolite Y, chabazit…), hàm lượng Si cao ZSM-5. Theo phân loại của IUPAC zeolit thuộc vật liệu vi mao quản. Dựa vào kích thước mao quản vật liệu này để phân chia thành: - Zeolit có mao quản nhỏ: kích thước mao quản nhỏ hơn 5Ao. ví dụ như zeolit 3A0, 4A0, 5A0. Sinh viên : Nguyễn Văn Toán 6
  8. Đồ án tốt nghiệp HD1001 - Zeolit có mao quản trung bình: kích thước mao quản từ 5-6 Ao. ví dụ như zeolit ZSM-5 , ZSM-11, ZSM-35... - Zeolit có mao quản rộng: kích thước mao quản từ 7-15 Ao. Ví dụ như zeolit X,Y, mordenit, Bêta... 1.1.3. Sự hình thành cấu trúc Zeolit Các zeolite được hình thành từ các đơn vị sơ cấp (cấu trúc cơ bản) là các tứ diện TO4 (T=Si, Al), gồm một cation T được bao quanh bởi 4 ion O2-. Khác với tứ diện SiO4 trung hoà về điện, mỗi một nguyên tử Al phối trí tứ diện trong AlO4 còn thừa một điện tích âm do Al có hoá trị 3. Điện tích âm này được bù trừ bởi các cation kim loại Mn+(M thường là cation kim loại kiềm hoặc kiềm thổ). _ _ _ 2 2 O O _ _ _ _ 2 o 2 2 o 2 O O O O Al 3+ Si4+ _ _ 2 2 O O Hình 1.1. Cấu trúc cơ bản của zeolit. Sự liên kết các tứ diện TO4 theo một trật tự nhất định sẽ tạo ra các đơn vị cấu trúc thứ cấp SBU (Secondary Building Unit) khác nhau [6]. Các đơn vị cấu trúc thứ cấp có thể là các vòng Oxy, gồm các vòng đơn 4, 6, 8, 10 và 12 cạnh hoặc hình thành các vòng kép 4x2 và 6x2 tứ diện v.v Sinh viên : Nguyễn Văn Toán 7
  9. Đồ án tốt nghiệp HD1001 Hình1.2 . Các đơn vị cấu trúc thứ cấp (SBU) trong cấu trúc của zeolite Sau dó các SBU tiếp tục kết hợp với nhau tạo nên cấu trúc tinh thể của zeolit, tuỳ thuộc vào thành phần gel và điều kiện kết tinh mà hình thành các loại zeolit có cấu trúc khác nhau. Sự kết hợp giữa các tứ diện TO4 hoặc các SBU tuân theo quy tắc thực nghiệm Loewenstein: trong cấu trúc của zeolite không tồn tại các liên kết Al-O-Al, mà chỉ tồn tại các liên kết Si-O-Si và các Si-O-Al, do đó tỷ số SiO2/Al2O3 ≥ 2 [6]. Quá trình hình thành các liên kết SBU, cách ghép nối các SBU để tạo ra các bát diện cụt và sau đó giữa các bát diện cụt với nhau tạo thành các kiểu cấu trúc zeolit A hoặc Y được biểu diễn bởi hình sau: Sinh viên : Nguyễn Văn Toán 8
  10. Đồ án tốt nghiệp HD1001 Hình1.3. Sơ đồ minh họa quá trình hình thành Zeolit. Cho đến nay người ta đã tổng hợp được hơn 200 loại zeolit với 85 kiểu cấu trúc khác nhau [7]. 1.1.4. Một số vật liệu Zeolit. 1.1.4.1. Zeolit ZSM-5 Zeolit ZSM-5 được phát minh bởi hãng Mobil từ năm 1972. Đây là loại zeolit thuộc họ pentasil, có mã cấu trúc quốc tế là MFI. Loại zeolit này có cấu trúc vòng SBU 5-1, với kiểu đối xứng orthorhombic, nhóm không gian Pnma. Hệ thống mao quản trong zeolit ZSM -5 ba chiều với cửa sổ vòng 10 oxy, đường kính mao quản trung bình xấp xỉ 5,5 A0 thuộc zeolit có mao quản trung bình [8]. Công thức hoá học của zeolit Na -ZSM-5 có dạng: NanAlnSi96-nO192.16H2O (n
  11. Đồ án tốt nghiệp HD1001 Mạng tinh thể của zeolit ZSM -5 được tạo thành từ chuỗi 8 vòng 5 cạnh mà đỉnh mỗi vòng 5 cạnh là 1 tứ diện TO4. Cấu trúc ZSM - 5 bao gồm hai hệ thống kênh (mao quản) giao nhau. Các kênh ziczắc và các kênh song song, có kích thước 5,1Å 5, 5Å và 5,3Å 5, 6Å được hình thành bởi các vòng 10 nguyên tử oxy. Sự giao nhau các kênh này tạo nên các lỗ có kích thước khoảng 9Å và đây có thể là nơi hiện diện của những tâm axit mạnh trong ZSM -5 [6]. Hình 1.4. Cửa sổ mao quản phẳng Hình 1.5. Hệ thống các kênh mao song song dạng hình sin của vật liệu quản ZSM-5 ZSM-5 Zeolit ZSM-5 được ứng dụng rộng rãi trong công nghiệp hóa học. Trong những năm gần đây, người ta thường thêm vào xúc tác FCC zeolit ZSM-5 nhằm làm tăng trị số octan của xăng và tăng hàm lượng olefin. Lượng zeolit ZSM -5 trong xúc tác FCC thường chiếm 1-12% khối lượng hoặc có thể thay đổi trong khoảng rộng hơn. ZSM-5 có tỉ lệ Si /Al = 50 và có kích thước lỗ xốp tương đối nhỏ (5,5 A0). Đặc điểm nổi bật của ZSM -5 là có độ axit lớn, tính bền nhiệt và khả năng chọn lọc hình dạng cao. 1.1.4.2. Zeolite Y Zeolit X và Y có cấu trúc và tên gọi là Faujasit, code quốc tế FAU [6]. Sự khác biệt giữa zeolit X và Y là do tỉ số Si/Al trong khung mạng. Zeolit X có tỉ số Si/Al = 1.1 – 1.5 và zeolit Y có tỉ số Si/Al = 1.6 – 2.5. Sinh viên : Nguyễn Văn Toán 10
  12. Đồ án tốt nghiệp HD1001 Do có tỉ số Si/Al thấp (kém bền nhiệt nên zeolit X thường được sử dụng làm chất hấp phụ để làm khô khí, tách CO2, tách O2/N2. Zeolit Y có tỉ số Si/Al cao nên bền cơ, nhiệt, độ axít cao hơn được dùng làm chất xúc tác axit trong quá trình cracking xúc tác và hydrocracking. Tinh thể cơ bản của zeolit Y có cấu trúc lập phương, hệ thống mao quản 3 chiều, cửa sổ vòng 12 oxy, đường kinh mao quản 7.4 Ao. Đơn vị cấu trúc cơ bản của zeolit Y là các sodalit. Sodalit là một khối bát diện cụt gồm 8 mặt lục giác và 6 mặt vuông do 24 tứ diện TO4 gộp lại. Hình 1.6. Cấu trúc zeolit Y. Hình 1.7. Hệ thống mao quản vòng 12 oxy Các sodalit nối với nhau qua các lăng trụ lục giác tạo nên cấu trúc FAUJASIT. Do sự sắp xếp này nên trong cấu trúc của zeolite Y tạo ra hốc lớn với đường kính khoảng 13 Ao, cửa sổ vòng 12 oxy có đường kính 7.4 Ao mỗi hốc lớn được nối thông với 4 hốc lớn khác qua các vòng 12 oxy tạo nên 1 cấu trúc khung mạng có độ rỗng cao. Ngoài ra trong cấu trúc của FAUJASIT còn chứa một hệ thống mao quản thứ cấp gồm có các hốc sodalit với kích thước nhỏ hơn (đường kính 6.6 Ao) và các lăng trụ lục giác nối tiếp. 1.1.5. Một số tính chất hóa lý cơ bản của Zeolite 1.1.5.1. Tính xúc tác (tính axit) Tính chất này có được là do những tâm axit và bazo trên bề mặt của nó. Tính xúc tác là một trong những tính chất quan trọng của zeolite. Zeolit ở dạng trao đổi H + hoặc các cation kim loại đa hoá trị Men+ (RE3+, Cu2+, Mg2+, Ca2+,...) có chứa hai loại tâm axit: tâm Bronsted và tâm Lewis. Các tâm này có thể được hình thành theo các cách sau: Sinh viên : Nguyễn Văn Toán 11
  13. Đồ án tốt nghiệp HD1001 - Phân huỷ nhiệt zeolit đã trao đổi cation với NH4+: + + H Na NH4 O NH4 + O 300-500oC O Si Al Si Al _ NH Si Al _ + Na 3 - Tiếp tục nung sẽ xảy ra quá trình dehydroxyl hoá cấu trúc, tạo một tâm Lewis từ hai tâm Bronsted: H _ O > 400oC O + 2 Si Al Si Al + Si Al + H2O T©m Bronsted T©m Lewis - Xử lý zeolit trong môi trường axit (đối với các zeolit bền có tỷ số Si /Al cao): + + H Na H O HCl O O Si Al Si Al Si Al _ NaCl - Ngoài ra các tâm axit còn được tạo ra do sự thuỷ phân cation đa hoá trị ở nhiệt độ cao và sự khử ion kim loại chuyển tiếp. Độ axit của zeolit được biểu thị qua bản chất, lực và số lượng của tâm axit. Độ axit của zeolit bị ảnh hưởng bởi nhiều yếu tố, trong đó những yếu tố quyết định là: cấu trúc tinh thể của zeolit (sự thay đổi góc liên kết Si -OH-Al [9]); thành phần của zeolit (tỷ số Si /Al khung mạng, sự phân bố Al trong và ngoài mạng [10], sự thay thế đồng hình Si với các nguyên tố khác như Be, B, Ga, Fe, Ge, P, Ti,...); bản chất và hàm lượng của cation trao đổi; các điều kiện xử lý nhiệt [11]. 1.1.5.2. Tính chất chọn lọc hình dạng Chọn lọc hình dạng của zeolite là sự điều khiển theo kích cỡ và hình dạng của phân tử, khuếch tán vào và ra khỏi hệ thống mao quản, làm ảnh hưởng đến hoạt tính xúc tác và độ chọn lọc của xúc tác. Tính chất chọn lọc hình dạng của zeolite cũng là tính chất quyết định hiệu quả của phản ứng. Zeolite có ba hình thức chọn lọc hình dạng sau Sinh viên : Nguyễn Văn Toán 12
  14. Đồ án tốt nghiệp HD1001 Chọn lọc chất tham gia phản ứng Chỉ có những chất có kích thước phân tử đủ nhỏ mới có thể thâm nhập vào bên trong mao quản của zeolit và tham gia phản ứng. CH3 CH CH3 CH2 CH2 CH2 OH OH CH2 CH2 CH2 CH2 CH2 CH3 OH OH CH3 CH2 CH2 CH3 CH3 CH3 CH3 OH OH C CH CH3 CH2 CH3 OH OH Hình 1.8. Sự chọn lọc sản phẩm theo chất tham gia phản ứng Chọn lọc sản phẩm phản ứng Sau khi phản ứng Hình 2.2. thực Quytrong hiện trìnhmao tổngquản hợp của zeolitzeolite, Y những sản phẩm tạo ra phải có kích thước đủ nhỏ mới có thể khuếch tán ra ngoài. Các phân tử lớn hơn tạo ra ở trong mao quản sẽ tiếp tục bị chuyển hóa thành phân tử nhỏ hơn sau Hình 1.10. Sự chọn lọc hình dạng hợp chất trung gian đó mới khuếch tán được ra ngoài. Các sản phẩm này có tốc độ khuếch tán khỏi mao quản không giống nhau. Sản phẩm nào có tốc độ khuếch tán lớn nhất thì độ chọn lọc theoHình sản phẩm đóchọn 1.8. Sự là lớn lọcnhất. hình dạng chất tham gia phản ứng OH OH Hình 3.12. CH3 Đường phân bố kích thướcHmao 3C quản củaCH zeolit 2 CH Y3 tổng hợp sử dụng nguồn silic CH từ 3 OH trấu OH + CH3 CH2 CH2 OH OH CH2 CH3 CH2 CH3 OH OH p-etyltoluen Hình 1.9. Sự chọn lọc hình dạng sản phẩm phản ứng Chọn lọc hợp chất trung gian Phản ứng ưu tiên hình thành các hợp chất trung gian (hoặc trạng thái chuyển tiếp) có kích thước phù hợp với kích thước mao quản của zeolit. Ví dụ khi isome hoá m-xylen trong H-ZSM22 phản ứng chỉ có thể xảy ra trong mao Sinh viên : Nguyễn Văn Toán 13
  15. Đồ án tốt nghiệp HD1001 quản, cacbenium trung gian được hình thành theo cơ chế lưỡng phân tử chứ không theo cơ chế đơn phân tử. H CH3 H p-xylen O(-) CH 3 CH3 CH3 H CH 3 H CH3 OH CH3 CH3 OH CH3 OH CH3 m-xylen CH2 Không tạo thành toluen và OH CH3 O(-) trimetylbenzen Hình 1.10. Sự chọn lọc sản phẩm theo trạng thái tạo thành của hợp chất trung gian Ngoài ra, ảnh hưởng của các hiệu ứng trường tĩnh điện trong mao quản, khuếch tán cấu hình, khống chế vận chuyển trong zeolit có hệ thống kênh giao nhau nhưng kích thước khác nhau (như ZSM -5, mordenit,...) cũng được xem là các kiểu chọn lọc hình dạng trong xúc tác zeolit [12]. 1.2. Phản ứng Cracking 1.2.1. Giới thiệu về phản ứng cracking Cracking là quá trình phân cắt liên kết C-C của hydrocacbon có khối lượng phân tử (KLPT) lớn tạo ra các phân tử có KLPT thấp hơn với giá trị ứng dụng tốt hơn. Phản ứng cracking được chia thành hai loại: Cracking nhiệt xảy ra theo cơ chế gốc tự do dưới tác dụng của nhiệt và Cracking xúc tác xảy ra theo cơ chế cacbocation nhờ tác dụng của chất xúc tác. Phản ứng Cracking một số hydrocacbon thường gặp và các sản phẩm tương ứng có thể được viết ở dạng tổng quát như sau: Parafin olefin + parafin nhẹ hơn CnH2n+2 CmH2m + CpH2p + 2, n = m + p (1.1) Olefin các olefin nhẹ hơn CnH2n CmH2m + CpH2p, n = m + p (1.2) Cycloparafin (naphten): bị mở vòng tạo olefin, sau đó olefin có thể bị Cracking tiếp tạo các olefin nhỏ hơn Sinh viên : Nguyễn Văn Toán 14
  16. Đồ án tốt nghiệp HD1001 cycloparafin CnH2n olefin CnH2n CmH2m + CpH2p, n = m + p (1.3) Alkyl thơm: thường bị dealkyl hoá tạo hydrocacbon thơm không có nhóm thế và olefin ArCnH2n+1 ArH + CnH2n, Ar là gốc thơm (1.4) 1.2.2. Cơ chế phản ứng cracking xúc tác Cho đến nay, cơ chế phản ứng cracking xúc tác các hydrocacbon đã được thừa nhận rộng rãi bao gồm sự tạo thành cacbocation trung gian, xảy ra trên các tâm axit của xúc tác. Cacbocation bao gồm ion cacbeni (nguyên tử cacbon mang điện tích dương có số phối trí ba ở trạng thái lai hoá sp2, ví dụ: CH3+, C2H5+,…) và ion cacboni (nguyên tử cacbon mang điện tích dương có số phối trí năm, ví dụ: +CH5, CH5+, C6H7+,…). Tuỳ theo dạng tồn tại của ion trung gian là cacbeni hay cacboni mà người ta chia thành hai loại tương ứng là cơ chế ion cacbeni và cơ chế ion cacboni . 1.2.2.1. Cơ chế ion cacbeni. Cơ chế ion cacbeni được Greensfelder và cộng sự đề ra lần đầu tiên ngay từ năm 1949, dựa trên cơ sở hoá học ion cacbeni của Whitmore và Church [13, 14]. Cơ chế này đã được xác nhận và phát triển cho đến nay. Cơ chế ion cacbeni bao gồm ion trung gian là cacbeni, được xem như xảy ra theo kiểu dây chuyền bao gồm các giai đoạn sau: a) Giai đoạn khơi mào: Quá trình tạo thành ioncabeni Ioncacbeni tạo thành từ quá trình proton hóa một olefin trên tâm Bronsted (HZ) (phản ứng 1.5) hay trên tâm Lewwis, hoặc bằng sự tách H- ở các parafin (phản ứng 1.6; 1.7) + - (1.5) R1 CH CH R2 + HZ R1 CH2 C H R2 + Z + - (1.6) R1 CH2 CH2 R2 + HZ R1 CH2 C H R2 + H2 + Z + - R1 CH2 CH2 R2 + L R1 CH2 C H R2 + LH (1.7) Ion cacbeni được tạo ra có thể tham gia vào các quá trình chuyển dịch hydrua hoặc cracking trong giai đoạn phát triển mạch tiếp theo. Sinh viên : Nguyễn Văn Toán 15
  17. Đồ án tốt nghiệp HD1001 b) Giai đoạn phát triển mạch Ở giai đoạn này xảy ra hai quá trình - Chuyển dịch hydrua H -: tạo các ion cacbeni bền hơn so với ion cacbeni ban đầu, bao gồm sự chuyển dịch hydrua liên phân tử: + R1 CH2 C H R2 + R3 CH2 CH2 CH2 R4 + R1 CH2 CH2 R2 + R3 CH2 CH2 C H R4 (1.8) hoặc sự chuyển dịch hydrua nội phân tử qua sự tạo thành phức trung gian cyclopropan proton hoá, ví dụ: + + C C C C C C C C C C C C C C C C (1.9) + H C C Phức trung gian dạng cyclopropan proton hoá do Brouwer đề nghị năm 1980 và đã được xác nhận sau đó . - Cracking: ion cacbeni tạo ra từ giai đoạn khơi mào hoặc từ quá trình chuyển dịch hydrua bị phân cắt liên kết C -C theo quy tắc β (đứt liên kết C -C ở vị trí β so với nguyên tử cacbon mang điện tích dương) để tạo ra một olefin và một ion cacbeni mới: C H R4 c¾t + + (1.10) R3 CH2 CH2 R3 C H2 + CH2 CH R4 Ion bậc một R3-+CH2 kém bền, chúng có thể chuyển thành các ion cacbeni bậc hai hoặc bậc ba bền hơn, hoặc có thể nhận H - để tạo parafin. c) Giai đoạn tắt mạch: Ion cacbeni nhường proton lại cho tâm xúc tác để chuyển thành olefin + - R CH2 C H CH3 + Z R CH CH CH3 + HZ (1.11) hoặc nhận H - từ một chất cho (ví dụ cốc) để chuyển thành parafin: + - R CH2 C H CH3 + H R CH2 CH2 CH3 (1.12) Tốc độ của quá trình chuyển dịch hydrua và cracking phụ thuộc nhiều vào độ bền nhiệt động học của các ion cabeni ban đầu và sản phẩm. Độ bền của các ion cacbeni giảm theo thứ tự, bậc ba > bậc hai > bậc một > +CH3. Sinh viên : Nguyễn Văn Toán 16
  18. Đồ án tốt nghiệp HD1001 1.2.2.2. Cơ chế ion cacboni. Cơ chế ion cacboni do Haag và Dessau đề ra năm 1984 [36], dựa trên cơ sở hoá học cacbocation trong supeaxit của Olah [15, 16]. Cơ chế bao gồm ion trung gian là cacboni, được tạo ra từ phản ứng proton hoá một parafin: CnH2n+2 + HZ ↔ [CnH2n+3]+ + Z- (1.13) Ion cacboni ở trên, bị dehydro hoá tạo ion cacbeni: [CnH2n+3]+ [CnH2n+1]+ + H2 (1.14) hoặc bị cracking tạo các parafin và ion cacbeni mới: [CnH2n+3]+ [CmH2m+1]+ + CpH2p+2, n = m + p (1.15) Do parafin là hydrocacbon no, bền nên trong phản ứng (5.13) cần một chất cho proton có lực axit rất mạnh. Sự proton hoá một parafin xảy ra bởi sự tấn công của proton vào liên kết C -H hoặc C -C. Mức độ can thiệp của mỗi cơ chế kể trên phụ thuộc vào điều kiện phản ứng, bản chất của chất phản ứng và xúc tác. Người ta thường định lượng mức độ can thiệp của mỗi cơ chế trong quá trình cracking bằng cách dựa vào sự khác nhau về phân bố sản phẩm giữa hai cơ chế . Chẳng hạn, trong phản ứng cracking n -hexan trên xúc tác axit (HZ), hai cơ chế cacbocation với sự tạo thành các sản phẩm đặc trưng khác nhau có thể được viết như sau: (1) Cơ chế ion cacboni: nC6H14 + HZ + - nC6H15 Z (1.16) + - (1.17) H2 + C6H13 Z CH4 + C5H11 Z + - (1.18) + - (1.19) C2H6 + C4H9 Z + - nC6H15 Z + - (1.20) C3H8 + C3H7 Z C4H10 + + - C2H5 Z (1.21) + - (1.22) C5H12 + CH3 Z Cân bằng (1.16) là giai đoạn tạo ion cacboni hấp phụ trên bề mặt zeolit. Phản ứng (1.17) tạo ion cacbeni bậc hai C6H13+ qua sự dehydro hoá ion cacboni Sinh viên : Nguyễn Văn Toán 17
  19. Đồ án tốt nghiệp HD1001 nC6H15+. Các phản ứng (1.18) (1.22) là sự phân cắt liên kết C -C của ion cacboni tạo parafin và ion cacbeni thứ cấp bậc một hấp phụ trên zeolit. Độ bền của các ion cacbeni ở trên giảm theo chiều dài mạch cacbon, tức là theo thứ tự: C6H13+ > C5H11+ > C4H9+ > C3H7+ > C2H5+ > CH3+. Các ion CH3+ và C2H5+ có độ bền rất kém. Vì thế, ba phản ứng (1.17), (1.18) và (1.19) xảy ra dễ dàng hơn, tạo các sản phẩm tương ứng là H2, CH4 và C2H6. Do vậy đây là ba sản phẩm được dùng để đặc trưng sự hiện diện của cơ chế ion cacboni. (2) Cơ chế ion cacbeni. Đầu tiên, phân tử n -hexan bị tách H - trên tâm Bronsted (hoặc tâm Lewis) của xúc tác, tạo ion cacbeni bậc hai C6H13+ hấp phụ trên bề mặt zeolit: (1.23) Ion bậc hai C6H13+ (C-C+-C-C-C-C hoặc C -C-C+-C-C-C) bị phân cắt liên kết C -C theo quy tắc , tạo một olefin và một ion cacbeni thứ cấp hấp phụ trên zeolit theo các phản ứng sau: + - C3H6 + C3H7 Z(1.24) + - CH3 C H CH2 CH2 CH2 CH3 Z a + - (1.25) C 4H 8 + C 2H 5 Z + - C H3 C H2 C H C H2 C H2 C H3 Z b + - (1.26) b a C 5H 10 + C H 3 Z Độ bền của các ion cacbeni giảm theo thứ tự: C3H7+ > C2H5+ > CH3+. Giá trị H của các phản ứng (1.24), (1.25), và (1.26) lần lượt bằng 50; 53 và 86 kcal /mol [A2], tăng dần từ (1.24) đến (1.26). Vì thế sự phân cắt ở vị trí đối xứng là thuận lợi hơn cả về mặt nhiệt động học. Sơ đồ trên cho thấy các olefin C3= C5= là các sản phẩm chủ yếu đặc trưng của quá trình cracking theo cơ chế ion cacbeni. Các ion cacbeni thứ cấp ở cả hai cơ chế trên (C3H7+, C4H9+, C5H11+) lại tiếp tục tham gia vào các quá trình đồng phân hoá tạo ion bậc cao bền hơn, chuyển dịch hydrua tạo sản phẩm là các parafin, ví dụ: (1.27) Sinh viên : Nguyễn Văn Toán 18
  20. Đồ án tốt nghiệp HD1001 (1.28) Do đó, sự tạo thành sản phẩm C3 và các parafin có mạch cacbon cao hơn được xem là thông số đánh giá mức độ chuyển dịch hydrua của quá trình. Các sản phẩm phân nhánh (như isobutan) còn được đặc trưng cho mức độ đồng phân hoá trên xúc tác. Hiện nay, cơ chế phản ứng cracking xúc tác vẫn còn đang được nhiều nhà nghiên cứu quan tâm với mục đích làm rõ bản chất của các trạng thái chuyển tiếp, sự tương tác giữa chúng với các tâm hoạt động của xúc tác, đánh giá mức độ can thiệp của mỗi cơ chế vào quá trình cracking trên các xúc tác khác nhau. Các tính toán hoá học lượng tử cũng đã và đang được sử dụng để định lượng bản chất hoá học của cacbocation trung gian trong phản ứng cracking xúc tác. 1.2.3. Phản ứng cracking dầu mỏ. Nguyên liệu cơ bản cho phản ứng cracking xúc tác trong công nghiệp dầu mỏ thường là các phân đoạn kerosen (khoảng nhiệt độ sôi 1800-2700C), gas oil chưng cất khí quyển, (2700-3600C), gas oil chưng cất chân không (3500-5400) và các phân đoạn cặn. Các nhóm sản phẩm khí sau khi thực hiện phản ứng cracking bao gồm: khí (khí khô C1 – C2 và LPG C3 – C4); xăng (phần lỏng có nhiệt độ sôi cuối khoảng 2000C); các sản phẩm lỏng nặng hơn gồm: dầu nhẹ LCO (200 – 3500C) và dầu nặng HCO (> 3500C); sản phẩm rắn là cốc bám trên bề mặt xúc tác. Thành phần các sản phẩm thay đổi trong một khoảng rộng và phụ thuộc vào nhiều yếu tố như bản chất nguyên liệu, xúc tác; các điều kiện phản ứng (nhiệt độ, áp suất, tốc độ nạp nguyên liệu, tỷ lện nguyên liệu/xúc tác). Các sản phẩm mong muốn trong quá trình cracking dầu mỏ là: LCO, HCO chuyển hóa tiếp thành xăng, đồng thời hạn chế quá trình cracking sâu tạo ra nhiều khí. Trong cracking xúc tác, bên cạnh phản ứng chính của quá là sự phân cắt liên kết C-C, nhiều phản ứng thứ cấp cũng xảy ra, làm tăng tính phức tạp của thành phần sản phẩm. Đó là các phản ứng dịch chuyển hydrua, chuyển vị nhóm alkyl, đồng phân hóa, đóng vòng hóa, thơm hóa, ngưng tụ…Các phản ứng này cũng xảy ra theo cơ chế cacbocation trên các tâm axit có lực khác nhau của xúc tác. 1.3. Giới thiệu về trấu và thành phần vỏ trấu: Sinh viên : Nguyễn Văn Toán 19
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2