intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

GIẢI TOÁN BẰNG CÁCH LẬP PHƠNG TRÌNH, HỆ PHƠNG TRÌNH

Chia sẻ: Paradise9 Paradise9 | Ngày: | Loại File: PDF | Số trang:12

212
lượt xem
19
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài 1: Hai tỉnh A và B cách nhau 180 km. Cùng một lúc, một ôtô đi từ A đến B và một xe máy đi từ B về A. Hai xe gặp nhau tại thị trấn C. Từ C đến B ôtô đi hết 2 giờ , còn từ C về A xe máy đi hết 4 giờ 30 phút. Tính vận tốc của mỗi xe biết rằng trên đờng AB hai xe đều chạy với vận tốc không đổi Bài 2: Một ca nô xuôi dòng từ bến A đến bến B rồi lại ngợc dòng từ bến...

Chủ đề:
Lưu

Nội dung Text: GIẢI TOÁN BẰNG CÁCH LẬP PHƠNG TRÌNH, HỆ PHƠNG TRÌNH

  1. GIẢI TOÁN BẰNG CÁCH LẬP PHƠNG TRÌNH, HỆ PHƠNG TRÌNH 1. Toán chuyển động Bài 1: Hai tỉnh A và B cách nhau 180 km. Cùng một lúc, một ôtô đi từ A đến B và một xe máy đi từ B về A. Hai xe gặp nhau tại thị trấn C. Từ C đến B ôtô đi hết 2 giờ , còn từ C về A xe máy đi hết 4 giờ 30 phút. Tính vận tốc của mỗi xe biết rằng trên đờng AB hai xe đều chạy với vận tốc không đổi Bài 2: Một ca nô xuôi dòng từ bến A đến bến B rồi lại ngợc dòng từ bến B về bến A mất tất cả 4 giờ. Tính vận tốc của ca nô khi n ớc yên lặng, biết rằng quãng sông AB dài 30 km và vận tốc dòng nớc là 4 km/h. Bài 3: Một ca nô xuôi từ bến A đến bến B với vận tốc 30 km/h, sau đó lại ngựơc từ B trở về A. Thời gian xuôi ít hơn thời gian đi ngợc 1 giờ 20 phút. Tính khoảng cách giữa hai bến A và B biết rằng vận tốc dòng nớc là 5 km/h Bài 4: Một ngời chuyển động đều trên một quãng đờng gồm một đoạn đờng bằng và một đoạn đờng dốc. Vận tốc trên đoạn đờng bằng và trên đoạn đờng dốc tơng ứng là 40 km/h và 20 km/h. Biết rằng đoạn đờng dốc ngắn hơn đoạn đờng bằng là 110km và thời gian để ngời đó đi cả quãng đờng là 3 giờ 30 phút. Tính chiều dài quãng đờng ngời đó đã đi. Bài 5: Một xe tải và một xe con cùng khởi hành từ A đến B. Xe tảI đi với 3 vận tốc 30 km/h, xe con đi với vận tốc 45 km/h. Sau khi đi đợc 4 quãng đ- ờng AB, xe con tăng vận tốc thêm 5 km/h trên quãng đờng còn lại. Tính quãng đờng AB biết rằng xe con đến B sớm hơn xe tải 2giờ 20 phút. Bài 6: Một ngời đi xe đạp từ A đến B cách nhau 33 km với một vận tốc xác định. Khi từ B về A ngời đó đi bằng con đờng khác dài hơn trớc 29 km nhng với vận tốc lớn hơn vận tốc lúc đi 3 km/h. Tính vận tốc lúc đi, biết rằng thời gian về nhiều hơn thời gian đi là 1 giờ 30 phút.
  2. Bài 7: Hai ca nô cùng khởi hành từ hai bến A, B cách nhau 85 Km đi ngợc chiều nhau. Sau 1h40’ thì gặp nhau. Tính vận tốc riêng của mỗi ca nô, biết rằng vận tốc ca nô đi xuôi lớn hơn vận tốc ca nô đi ngợc 9Km/h và vận tốc dòng nớc là 3 Km/h. Bài 8: Hai địa điểm A,B cách nhau 56 Km. Lúc 6h45phút một ngời đi xe đạp từ A với vận tốc 10 Km/h. Sau đó 2 giờ một ngời đi xe đạp từ B đến A với vận tốc 14 Km/h. Hỏi đến mấy giờ họ gặp nhau và chỗ gặp nhau cách A bao nhiêu Km ? Bài 9: Một ngời đi xe đạp từ A đến B với vận tốc 15 km/h. Sau đó một thời gian, một ngời đi xe máy cũng xuất phát từ A với vận tốc 30 km/h và nếu không có gì thay đổi thì sẽ đuổi kịp ngời đi xe máy tại B. Nhng sau khi đi đ- ợc nửa quãng đờng AB, ngời đi xe đạp giảm bớt vận tốc 3 km/h nên hai ngòi gặp nhau tại C cách B 10 km. Tính quãng đờng AB Bài 10: Một ngời đi xe máy từ A đến B với vận tốc trung bình là 30 km/h. Khi đến B ngời đó nghỉ 20 phút rồi quay trở về A với vận tốc trung b ình là 24 km/h. Tính quãng đờng AB biết rằng thời gian cả đi lẫn về là 5 giờ 50 phút. Bài 11: Một ca nô xuôi từ bến A đến bến B với vận tốc trung bình 30 Km/h, sau đó ngợc từ B về A. Thời gian đi xuôi ít hơn thời gian đi ngợc là 40 phút. Tính khoảng cách giữa hai bến A và B biết rằng vận tốc dòng nớc là 3 Km/h và vận tốc riêng của ca nô là không đổi . Bài 12: Một ô tô dự định đi từ tỉnh A đến tỉnh B với vvận tốc trung bình là 40 km/h . Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì đợc một nửa quãng đờng AB, ngời lái xe tăng vận tốc thêm 10 km/h trên quãng đờng còn lại. Do đó ô tô đến tỉnh B sớm hơn 1 giờ so với dự định. Tính quãng đờng AB.
  3. Bài 13: Hai ca nô khởi hành cùng một lúc và chạy từ bến A đến bến B. Ca nô I chạy với vận tốc 20 km/h, ca nô II chạy với vận tốc 24 km/h. Trên đ- ờng đi ca nô II dừng lại 40 phút, sau đó tiếp tục chạy. Tính chiều dài quãng đờng sông AB biết rằng hai ca nô đến B cùng một lúc . Bài 14: Một ngời đi xe đạp từ A đến B cách nhau 50 km. Sau đó 1 giờ 30 phút, một ngời đi xe máy cũng đi từ A và đến B sớm hơn 1 giờ. Tính vận tốc của mỗi xe, biết rằng vận tốc của xe máy gấp 2,5 lần vận tốc xe đạp. Bài 15: Một ca nô chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngợc dòng 63 km. Một lần khác, ca nô đó cũng chạy trong 7 giờ, xuôi dòng 81 km và ngợc dòng 84 km. Tính vận tốc dòng nớc chảy và vận tốc riêng (thực) của ca nô. Bài 16: Một tầu thuỷ chạy trên một khúc sông dài 80 km, cả đi và về mất 8 giờ 20 phút. Tính vận tốc của tầu khi nớc yên lặng, biết rằng vận tốc dòng n- ớc là 4 km/h. Bài 17: Một chiếc thuyền khởi hành từ bến sông A. Sau đó 5 giờ 20 phút một chiếc ca nô chạy từ bến sông A đuổi theo và gặp chiếc thuyền tại một điểm cách bến A 20 km. Hỏi vận tốc của thuyền, biết rằng ca nô chạy nhanh hơn thuyền 12 km/h. Bài 18: Một ôtô chuyển động đều với vận tốc đã định để đi hết quãng đờng dài 120 km trong một thời gian đã định. Đi đợc một nửa quãng đờng xe nghỉ 3 phút nên để đến nơi đúng giờ, xe phải tăng vận tốc thêm 2 km/h trên nửa quãng đờng còn lại. Tính thời gian xe lăn bánh trên đờng. Bài 19: Một ôtô dự định đi từ A đén B cách nhau 120 km trong một thời gian quy định. Sau khi đi đợc 1 giờ ôtô bị chắn đờng bởi xe hoả 10 phút. Do đó, để đến B đúng hạn, xe phải tăng vận tốc thêm 6 km/h. Tính vận tốc lúc đầu của ôtô.
  4. Bài 20: Một ngời đi xe đạp từ A đến B trong một thời gian đã định. Khi còn cách B 30 km, ngời đó nhận thấy rằng sẽ đến B chậm nửa giờ nếu giữ nguyên vận tốc đang đi, nhng nếu tăng vận tốc thêm 5 km/h thì sẽ tới đích sớm hơn nửa giờ.Tính vận tốc của xe đạp tren quãng đờng đã đi lúc đầu. Bài 21: Hai ô tô khởi hành cùng một lúc đi từ A đến B cách nhau 300 km. Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 10 km nên đến B sớm hơn ô tô thứ hai 1 giờ. Tính vận tốc mỗi xe ô tô . Bài 22: Một ô tô dự định đi từ A đến B với vận tốc 50 km/h. Sau khi đi đ ợc 2 3 quãng đờng với vận tốc đó, vì đờng khó đi nên ngời lái xe phải giảm vận tốc mỗi giờ 10 km trên quãng đờng còn lại. Do đó ô tô đến B chậm 30 phút so với dự định. Tính quãng đờng AB Bài 23: Một ô tô dự định đi từ A đền B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35 km/h thì đến chậm mất 2 giờ . Nếu xe chạy với vận tốc 50 km/h thì đến sớm hơn 1 giờ . Tính quãng đờng AB và thời gian dự định đi lúc đầu . Bài 24: Quãng đờng AB dài 180 km. Cùng một lúc hai ôtô khởi hành từ A để đến B. Do vận tốc của ôtô thứ nhất hơn vận tốc của ôtô thứ hai là 15 km/h nên ôtô thứ nhất đến sớm hơn ôtô thứ hai 2h. Tính vận tốc của mỗi ôtô? Bài 25: Khoảng cách giữa hai thành phố A và B là 180 km. Một ô tô đi từ A đến B, nghỉ 90 phút ở B rồi trở lại từ B về A. Thời gian từ lúc đi đến lúc trở về là 10 giờ. Biết vận tốc lúc về kém vận tốc lúc đi là 5 km/h. Tính vận tốc lúc đi của ô tô. Bài 25: Một ca nô xuôi dòng từ bến sông A đến bến sông B cách nhau 24 km, cùng lúc đó cũng từ A một bè nứa trôi với vận tốc dòng nớc 4 km/h. Khi đến B ca nô quay lại ngay và gặp bè nứa trôi tại một địa điểm C cách A là 8 km. Tính vận tốc thực của ca nô.
  5. Bài 26: Khoảng cách giữa hai tỉnh A và B là 108 km. Hai ô tô cùng khởi hành một lúc đi từ A đến B, mỗi giờ xe thứ nhất chạy nhanh hơn xe thứ hai 6 km nên đến B trớc xe thứ hai 12 phút. Tính vận tốc mỗi xe Bài 27: Hai địa điểm A, B cách nhau 56km. Lúc 6h45' một ngời đi từ A với vận tốc 10km/h. Sau 2h, một ngời đi xe đạp từ B tới A với vận tốc 14km/h . Hỏi đến mấy giờ thì họ gặp nhau, chỗ gặp nhau cách A bao nhiêu km Bài 28: Một ca nô xuôi từ A đến B với vận tốc 30km/h, sau đó ngợc từ B trở về A. Thời gian đi xuôi ít hơn thời gian đi ngợc là 40'. Tính khoảng cách giữa A và B. Biết vận tốc ca nô không đổi, vận tốc dòng nớc là 3km/h. Bài 29: Một ngời đi xe đạp từ A đến B cách nhau 50km. Sau 1h30' một ngời đi xe máy cũng từ A và đến B sớm hơn một giờ. Tính vận tốc của mỗi xe, biết rằng vận tốc xe máy gấp 2,5 lần xe đạp 2. Toán năng suất Bài 1: Hai đội công nhân cùng làm một công việc thì làm xong trong 4 giờ. Nếu mỗi đội làm một mình để làm xong công việc ấy, thì đội thứ nhất cần thời gian ít hơn so với đội thứ hai là 6 giờ. Hỏi mỗi đội làm một mình xong công việc ấy trong bao lâu? Bài 2: Một xí nghiệp đóng giầy dự định ho àn thành kế hoạch trong 26 ngày. Nhng do cải tiến kỹ thuật nên mỗi ngày đã vợt mức 6000 đôi giầy do đó chẳng những đã hoàn thành kế hoạch đã định trong 24 ngày mà còn vợt mức 104 000 đôi giầy. Tính số đôi giầy phải làm theo kế hoạch. Bài 3: Một cơ sở đánh cá dự định trung bình mỗi tuần đánh bắt đợc 20 tấn cá, nhng đã vợt mức đợc 6 tấn mỗi tuần nên chẳng những đã hoàn thành kế hoạch sớm 1 tuần mà còn vợt mức kế hoạch 10 tấn. Tính mức kế hoạch đã định
  6. Bài 4: Một đội xe cần chuyên chở 36 tấn hàng. Trớc khi làm việc đội xe đó đợc bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe ? Biết rằng số hàng chở trên tất cả các xe có khối lợng bằng nhau. Bài 5: Hai tổ sản xuất cùng nhận chung một mức khoán. Nếu làm chung 2 trong 4 giờ tổ 1 và 6 giờ của tổ 2 thì hoàn thành đợc 3 mức khoán. Nếu để mỗi tổ làm riêng thì tổ này sẽ làm xong mức khoán thì mỗi tổ phải làm trong bao lâu ? Bài 6: Hai tổ công nhân làm chung trong 12 giờ sẽ hoàn thành xong công việc đã định. Họ làm chung với nhau trong 4 giờ thì tổ thứ nhất đợc điều đi làm việc khác, tổ thứ hai làm nốt công việc còn lại trong 10 giờ. Hỏi tổ thứ hai làm một mình thì sau bao lâu sẽ hoàn thành công việc. Bài 7: Hai ngời thợ cùng làm một công việc trong 16 giờ thì xong . Nếu ng- ời thứ nhất làm 3 giờ và ngời thứ hai làm 6 giờ thì họ làm đợc 25% côngviệc . Hỏi mỗi ngời làm công việc đó trong mấy giờ thì xong . Bài 8: Theo kế hoạch, một tổ công nhân phải sản xuất 360 sản phẩm. Đến khi làm việc, do phải điều 3 công nhân đi làm việc khác nên mỗi công nhân còn lại phải làm nhiều hơn dự định 4 sản phẩm. Hỏi lúc đầu tổ có bao nhiêu công nhân ? Biết rằng năng suất lao động của mỗi công nhân là nh nhau. Bài 9: Hai ngời thợ cùng làm một công việc trong 16 giờ thì xong. Nếu ngời thứ nhất làm 3 giờ và ngời thứ 2 làm 6 giờ thì họ làm đợc 25% công việc. Hỏi mỗi ngời làm một mình công việc đó trong mấy giời thì xong ?. Bài 10: Tháng thứ nhất hai tổ sản xuất đợc 800 sản phẩm. Sang tháng thứ hai tổ 1 vợt 15%.tổ 2 vợt 20%. Do đó cuối tháng cả hai tổ xản xuất đựoc 945 sản phẩm. Tính xem trong tháng thứ nhất mỗi tổ sản xuất đợc bao nhiêu sản phẩm
  7. Bài 11: Trong tháng giêng hai tổ sản xuất đợc 720 chi tiết máy. Trong tháng hai, tổ I vợt mức 15%, tổ II vợt mức 12% nên sản xuất đợc 819 chi tiết máy. Tính xem trong tháng giêng mỗi tổ sản xuất đợc bao nhiêu chi tiết máy ? Bài 12: Năm ngoái tổng số dân của hai tỉnh A và B là 4 triệu ngời. Dân số tỉnh A năm nay tăng 1,2%, còn tỉnh B tăng 1,1%. Tổng số dân của cả hai tỉnh năm nay là 4 045 000 ngời. Tính số dân của mỗi tỉnh năm ngoái và năm nay ? 3. Toán thể tích Bài 1: Hai vòi nớc cùng chảy vào một cái bể không chứa nớc đã làm đầy bể trong 5 giờ 50 phút. Nếu chảy riêng thì vòi thứ hai chảy đầy bể nhanh hơn vòi thứ nhất là 4 giờ. Hỏi nếu chảy riêng thì mỗi vòi chảy trong bao lâu sẽ đầy bể ? Bài 2: Hai vòi nớc cùng chảy vào một cái bể không có nớc và chảy đầy bể mất 1 giờ 48 phút. Nếu chảy riêng, vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai trong 1 giờ 30 phút. Hỏi nếu chảy riêng thì mỗi vòi sẽ chảy đầy bể trong bao lâu ? Bài 3: Một máy bơm muốn bơm đầy nớc vào một bể chứa trong một thời 1 3 gian quy định thì mỗi giờ phải bơm đợc 10 m . Sau khi bơm đợc 3 thể tích bể chứa, máy bơm hoạt động với công suất lớn hơn, mỗi giờ bơm đợc 15 m3. Do vậy so với quy định, bể chứa đợc bơm đầy trớc 48 phút. Tính thể tích bể chứa. Bài 4: Nếu hai vòi nớc cùng chảy vào một cái bể chứa không có nớc thì sau 1 giờ 30 phút sẽ đầy bể. Nếu mở vòi thứ nhất trong 15 phút rồi khoá lại và
  8. 1 mở vòi thứ hai chảy tiếp trong 20 phút thì sẽ đợc 5 bể. Hỏi mỗi vòi chảy riêng thì sau bao lâu sẽ đầy bể ? Bài 5: Hai vòi nớc cùng chảy vào một cái bể chứa không có nớc thì sau 2 giờ 55 phút sẽ đầy bể. Nếu chảy riêng thì vòi thứ nhất chảy đầy bể nhanh hơn vòi thứ hai 2 giờ. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu ? Bài 6: Hai vòi nớc cùng chảy vào bể thì sau 4 giờ 48 phút thì đầy. Nðu chảy 2 cùng một thời gian nh nhau thì lợng nớc của vòi II bằng 3 lợng nớc của vòi I chảy đợc. Hỏi mỗi vòi chảy riêng thì sau bao lâu đầy bể Bài 7: Nếu mở cả hai vòi nớc chảy vào mệt bể cạn thì sau 2 giờ 55phút bể đầy bể. Nếu mở riêng từng vòi thì vòi thứ nhất làm đầy bể nhanh hơn vòi thứ hai là hai giờ. Hỏi nếu mở riêng từng vòi thì mỗi vòi chảy bao lâu đầy bể ? 4. Một số dạng khác Bài 1: Trong một buổi lao động trồng cây, một tổ gồm 13 học sinh (cả nam và nữ) đã trồng đợc tất cả 80 cây. Biết rằng số cây các bạn nam trồng đợc và số cây các bạn nữ trồng đợc là bằng nhau ; mỗi bạn nam trồng đợc nhiều hơn mỗi bạn nữ 3 cây. Tính số học sinh nam và số học sinh nữ của tổ. Bài 2: Một hình chữ nhật có diện tích 300m2. Nếu giảm chiều rộng 3m, tăng chiều dài thêm 5m thì ta đợc hình chữ nhật mới có diện tích bằng diện tích hình chữ nhật ban đầu. Tính chu vi của hình chữ nhật ban đầu. Bài 3: Ba chiếc bình có thể tích tổng cộng 120 lít. Nếu đổ đầy nớc vào bình thứ nhất rồi đem rót vào hai bình kia thì hoặc bình thứ 3 đầy nớc, bình thứ 2 1 1 chỉ đợc 2 thể tích của nó, hoặc bình thứ 2 đầy nớc thì bình thứ 3 chỉ đợc 3 thể tích của nó. Tìm thể tích của mỗi bình
  9. Bài 4: Một phòng họp có 360 ghế ngồi đợc xếp thành từng hàng và số ghế ở mỗi hàng bằng nhau. Nếu số hàng tăng thêm 1 và số ghế ở mỗi hàng tăng thêm 1 thì trong phòng có 400 ghế. Hỏi có bao nhiêu hàng, mỗi hàng có bao nhiêu ghế ? Bài 5: Hai vật chuyển động trên một đờng tròn có đờng kính 20m, xuất phát cùng một lúc từ cùng một điểm. Nếu chúng chuyển động ngợc chiều nhau thì cứ 2 giây lại gặp nhau. Nếu chúng chuyển động c ùng chiều nhau thì cứ sau 10 giây lại gặp nhau. Tính vận tốc của mỗi vật. Bài 6: Một khối lớp tổ chức đi tham quan bằng ô tô. Mỗi xe chở 22 học sinh thì còn thừa 1 học sinh. Nếu bớt đi 1 ôtô thì có thể xếp đều các học sinh trên các ôtô còn lại. Hỏi lúc đầu có bao nhiêu ôtô, bao nhiêu học sinh. Mỗi xe chở không quá 32 học sinh. Bài 7: Một nhà máy dự định sản xuất chi tiết máy trong thời gian đã định và dự định sẽ sản xuất 300 chi tiết máy trong một ngày. Nhng thực tế mỗi ngày đã làm thêm đợc 100 chi tiết, nên đã sản xuất thêm đợc tất cả là 600 chi tiết và hoàn thành kế hoạch trớc 1 ngày. Tính số chi tiết máy dự định sản xuất. Bài 8: Một đội xe cần chuyên chở 120 tấn hàng. Hôm làm việc có 2 xe phải điều đi nơi khác nên mỗi xe phải chở thêm 16 tấn. Hỏi đội có bao nhiêu xe ? Bài 9: Hai tổ học sinh trồng đợc một số cây trong sân trờng. Nếu lấy 5 cây của tổ 2 chuyển cho tổ một thì số cây trồng đợc của cả hai tổ sẽ bằng nhau. Nếu lấy 10 cây của tổ một chuyển cho tổ hai thì số cây trồng đợc của tổ hai sẽ gấp đôi số cây của tổ một. Hỏi mỗi tổ trồng đợc bao nhiêu cây ? Bài 10: Hai hợp tác xã đã bán cho nhà nớc 860 tấn thóc. Tính số thóc mà mỗi hợp tác xã đã bán cho nhà nớc. Biết rằng 3 lần số thóc hợp tác xã thứ nhất bán cho nhà nớc nhiều hơn hai lần số thóc hợp tác xã thứ hai bán là 280 tấn
  10. Bài 11: Để chở một số bao hàng bằng ôtô, ngời ta nhận thấy nếu mỗi xe chở 22 bao thì còn thừa một bao. Nếu bớt đi một ôtô thì có thể phân phối đều các bao hàng cho các ôtô còn lại. Hỏi lúc đầu có bao nhiêu ôtô và tất cả có bao nhiêu bao hàng. Biết rằng mỗi ôtô chỉ chở đợc không quá 32 bao hàng (giả thiết mỗi bao hàng có khối lợng nh nhau) Bài 12: Mỗi ngời dán tất cả tem của mình vào một quyển vở. Nếu dán 20 tem trên một tờ thì quyển vở không đủ để dán hết số tem. Còn nếu mỗi tờ dán 23 tem thì ít nhất một tờ trong quyển vở còn bị bỏ trống. Nếu giả sử cũng trên quyển vở đó mà trên một tờ dán 21 tem thì tổng số tem dán trên quyển vở đó với số tem thực có của ngời đó là 500 tem. Hỏi quyển vở đó có bao nhiêu tờ và số tem ngời đó có ? Bài 13: Tìm một số gồm ba chữ số sao cho khi ta lấy chữ số hàng đơn vị đặt về bên trái của một số gồm hai chữ số còn lại, ta đợc một có ba chữ số lớn hơn số ban đầu 765 đơn vị. Bài 14: Một trăm con trâu ăn một trăm bó cỏ. Trâu đứng mỗi con ăn năm bó, trâu nằm mỗi con ăn ba bó, trâu già 3 con ăn một bó. Tìm số trâu mỗi loại ? Bài 15: Tìm một số có 2 chữ số biết rằng nếu đem số đó chia cho tổng các chữ số của nó thì đợc thơng là 4 và d là 3. Còn nếu đem số đó chia cho tích các chữ số của nó thì đợc thơng là 3 và d là 5. Bài 16: Hai đội cờ thi đấu với nhau. Mỗi đấu thủ của đội này phải đấu một ván với mỗi đấu thủ của đội kia. Biết rằng tổng số ván cờ đã đấu bằng bình phơng số đấu thủ của đội thứ nhất cộng với số đấu thủ của đội thứ hai. Hỏi mỗi đội có bao nhiêu đấu thủ ? Bài 17: Hai đội bóng bàn của hai trờng A, B thi đấu giao hữu để chuẩn bị tranh giải toàn tỉnh. Biết rằng mỗi đấu thủ của đội trờng A phải lần lợt gặp các đối thủ của trờng B một lần và số trận đấu gấp 2 lần tổng số đấu thủ của 2 đội. Tìm số đấu thủ của mỗi trờng.
  11. Bài 18: Trong một cuộc gặp mặt học sinh giỏi có 35 bạn học sinh giỏi văn và toán tham dự. Các học sinh giỏi văn tính số ngời quen của mình là các bạn học sinh giỏi toán và nhận thấy rằng : bạn thứ nhất quen 6 bạn; Bạn thứ 2 quen 7 bạn; Bạn thứ 3 quen 8 bạn ; ... và cứ thế bạn cuối cùng quen tất cả các bạn học sinh giỏi toán. Tính số học sinh giỏi văn, giỏi toán. Biết rằng không có học sinh nào vừa giỏi văn vừa giỏi toán. Bài 19: Trong một buổi liên hoan, một lớp khách mời 15 khách đến dự. Vì lớp đã có 40 học sinh nên phải kê thêm một dãy ghế nữa và mỗi dãy ghế phải ngồi thêm một nữa thì mới đủ chỗ ngồi. Biết rằng mỗi dãy ghế đều có số ngời ngồi nh nhau và ngồi không quá năm ngời. Hỏi lớp học lúc đầu có bao nhiêu dãy ghế Bài 20: Một đoàn gồm 50 học sinh qua sông c ùng một lúc bằng 2 loại thuyền : Loại thứ nhất, mỗi thuyền chở đợc 5 em và loại thứ 2 chở đợc 7 em mỗi thuyền. Hỏi số thuyền mỗi loại ? Bài 21: Tìm một số N gồm 2 chữ số, biết rằng tổng các b ình phơng hai chữ số bằng số đó cộng thêm tích hai chữ số. Nếu thêm 36 vào số đó thì đợc một số có hai chữ số mà các chữ số viết thứ tự ngợc lại. Bài 22: Một khu vờn hình chữ nhật có chu vi là 280 m. Ngời ta làm lối đi xung quanh vờn (thuộc đất trong vờn) rộng 2 m. Tính kích thớc của vờn, biết rằng đất còn lại trong vờn để trồng trọt là 4256 m2. Bài 23: Cho một hình chữ nhật. Nếu tăng chiều dài lên 10 m, tăng chiều rộng lên 5 m thì diện tích tăng 500 m2. Nếu giảm chiều dài 15 m và giảm chiều rộng 9 m thì diện tích giảm 600 m2. Tính chiều dài, chiều rộng ban đầu. Bài 24: Cho một tam giác vuông. Nếu tăng các cạnh góc vuông lên 2 cm và 3 cm thì diện tích tam giác tăng 50 cm2. Nếu giảm cả hai cạnh đi 2 cm thì diện tích sẽ giảm đi 32 cm2. Tính hai cạnh góc vuông.
  12. Bài 25: Nếu tử số của một phân số đ ợc tăng gấp đôi và mẫu số thêm 8 thì 1 giá trị của phân số bằng 4 . Nếu tử số thêm 7 và mẫu số tăng gấp 3 thì giá trị 5 phân số bằng 24 . Tìm phân số đó.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2