intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình lý thuyết cán

Chia sẻ: Nguyen Lan | Ngày: | Loại File: PDF | Số trang:107

342
lượt xem
100
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đây là giáo trình môn lý thuyết cán của trường Đh Bách Khoa Chương 1. Điều kiện để trục ăn được kim loại khi cán Chương 2. Vùng biến dạng Chương 3. Biến dạng ngang và lượng dãn rộng khi cán Chương 4. Cán dọc trong lỗ hình Chương 5. Lực cán và mômen cán Chương 6. Cán ngang Chương 7. Cán nghiêng Chương 8. Cán và biện pháp điều chỉnh kích thước thép tấm và băng

Chủ đề:
Lưu

Nội dung Text: Giáo trình lý thuyết cán

  1. Gi¸o tr×nh: Lý thuyÕt c¸n PhÇn I: c¬ së lý thuyÕt c¸n ******* Ch−¬ng 1 ®iÒu kiÖn ®Ó trôc ¨n ®−îc kim lo¹i khi c¸n 1.1- Kh¸i niÖm vÒ gãc ma s¸t, hÖ sè ma s¸t vµ lùc ma s¸t H·y quan s¸t mét vËt thÓ Q cã träng l−îng G n»m trªn mét mÆt ph¼ng F: Khi ta n©ng dÇn mÆt ph¼ng n»m T’ A ngang F lªn theo mòi tªn A qua b¶n lÒ B, T ®Õn khi mÆt F lµm víi ph−¬ng n»m ngang P mét gãc β nµo ®ã th× vËt thÓ Q b¾t ®Çu B β Q chuyÓn ®éng trªn mÆt nghiªng F víi mét F G lùc lµ T vµ lËp tøc xuÊt hiÖn mét lùc c¶n lµ T’, cã trÞ sè tuyÖt ®èi b»ng lùc T nh−ng H×nh 1.1- S¬ ®å gi¶i thÝch gãc ma s¸t vµ lùc ma s¸t chiÒu th× ng−îc l¹i víi lùc T: T = T’ (1.1) Lùc T’ ta gäi lµ lùc ma s¸t cña Q trªn mÆt ph¼ng F. VËt thÓ Q tr−ît trªn mÆt ph¼ng F hoµn toµn do b¶n th©n träng l−îng G cña nã. T¹i thêi ®iÓm G b¾t ®Çu tr−ît th× träng l−îng G ®−îc chia lµm 2 thµnh phÇn (nh− h×nh): lùc P vu«ng gãc víi mÆt ph¼ng F (®Ó ¸p s¸t Q vµo F) vµ lùc T t¹o cho Q sù chuyÓn ®éng tr−ît, chÝnh lùc nµy t¹o ra lùc ma s¸t T’. T Tõ h×nh vÏ, ta cã: tgβ = (1.2) P ®Æt tgβ = f, ta cã: T = f.P (1.3) trong ®ã, β: gãc ma s¸t f: hÖ sè ma s¸t T: lùc ma s¸t BiÓu thøc (1.2) cho ta thÊy r»ng trÞ sè lùc ma s¸t T phô thuéc vµo hÖ sè ma s¸t f vµ lùc ph¸p tuyÕn P. 1.2- §iÒu kiÖn ®Ó trôc ¨n vËt c¸n Tr−íc hÕt chóng ta cÇn ph©n biÖt qu¸ tr×nh c¸n ®èi xøng vµ kh«ng ®èi xøng. NÕu nh− c¸c thèng sè c«ng nghÖ vÝ dô nh− ®−êng kÝnh trôc c¸n, ma s¸t trªn bÒ mÆt, bÒ mÆt trôc c¸n, nhiÖt ®é cña trôc c¸n... cña trôc c¸n trªn vµ trôc c¸n d−íi ®Òu gièng nhau, hoÆc cã thÓ coi lµ gièng nhau th× qu¸ tr×nh c¸n Êy ®−îc gäi lµ qu¸ tr×nh c¸n ®èi xøng. Ng−îc l¹i, khi c¸c th«ng sè c«ng nghÖ nh− ®· nãi ë trªn cña hai trôc c¸n kh¸c nhau th× qu¸ tr×nh c¸n Êy ®−îc gäi lµ qu¸ tr×nh c¸n kh«ng ®èi xøng. §Ó ®¬n gi¶n cho viÖc nghiªn cøu ®iÒu kiÖn trôc ¨n vËt c¸n, chóng ta gi¶ thiÕt r»ng qu¸ tr×nh c¸n lµ ®èi xøng (trong thùc tÕ Ýt gÆp), gi¶ thiÕt trªn mét gi¸ c¸n cã Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 1
  2. Gi¸o tr×nh: Lý thuyÕt c¸n hai trôc víi t©m lµ O1 vµ O2 ®èi xøng qua mÆt ph¼ng, x-x t¹i mét thêi ®iÓm t nµo ®ã ph«i c¸n tÞnh tiÕn ®Õn tiÕp gi¸p víi hai bÒ mÆt trôc t¹i A vµ B (lùc chuyÓn ®éng lµ v« cïng bÐ). V1 V1 a) O1 b) O1 Px1 A α1 T R1 A α x1 Tx P1 Px x T1 x T P2 T2 P α2 Tx2 B Px2 R2 O2 O2 V2 V2 H×nh 1.2- S¬ ®å ®iÒu kiÖn trôc ¨n vËt c¸n. Trong khi hai trôc ®ang quay víi c¸c tèc ®é lµ V1, V2 (®· gi¶ thiÕt V1 = V2), b¸n kÝnh cña hai trôc lµ R1 vµ R2 (R1 = R2). T¹i hai ®iÓm A vµ B qua hai ®−êng th¼ng h−íng t©m O1 vµ O2 (ta cã AO1 = BO2) hai ®−êng nµy lµm víi ®−êng th¼ng O1O2 nh÷ng gãc α1 vµ α2 (α1 = α2) ta gäi lµ gãc ¨n. T¹i thêi ®iÓm mµ vËt c¸n tiÕp xóc víi hai trôc c¸n, trôc c¸n sÏ t¸c dông lªn vËt c¸n c¸c lùc P1 vµ P2 (P1 = P2), ®ång thêi víi chuyÓn ®éng tiÕp xóc trªn bÒ mÆt vËt c¸n xuÊt hiÖn hai lùc ma s¸t tiÕp xóc T1 vµ T2 cã chiÒu theo chiÒu chuyÓn ®éng ®i vµo cña vËt c¸n (T1 = T2). Ta ®· gi¶ thiÕt qu¸ tr×nh c¸n lµ ®èi xøng cho nªn c¸c ngo¹i lùc t¸c ®éng lªn vËt c¸n vÝ dô nh− lùc ®Èy, lùc kÐo c¨ng... lµ kh«ng cã, ®ång thêi lùc qu¸n tÝnh do b¶n th©n träng l−îng cña vËt c¸n t¹o ra ta bá qua. Víi c¸c lùc P1, P2, T1 vµ T2 khi chiÕu lªn ph−¬ng x-x lµ ph−¬ng chuyÓn ®éng cña vËt c¸n, chóng ta dÔ dµng nhËn thÊy r»ng: nÕu nh− T1 + T2 ≥ Px1 + Px2 hoÆc lµ Tx1 + Tx2 ≥ Px1 + Px2 th× vËt c¸n ®i tù nhiªn vµo khe hë gi÷a hai trôc c¸n, nghÜa lµ chóng ta cã ®iÒu kiÖn trôc c¸n ¨n kim lo¹i tù nhiªn. Tx1 = T1.cosα1 ; Tx2 = T2.cosα2 Px1 = P1.cosα1 ; Px2 = P2.cosα2 (1.4) Theo biÓu thøc (1.3) th×: T1 = f.P1 ; T2 = f.P2 (f: hÖ sè bÒ mÆt tiÕp xóc) Theo gi¶ thiÕt, qu¸ tr×nh c¸n lµ ®èi xøng nªn ta cã: f.P1.cosα1 ≥ P1.sinα1 (1.5) Suy ra, f ≥ tgα1 hoÆc tgβ ≥ tgα1 (1.6) V× vËy, β ≥ α1 (1.7) Tõ (1.7) ta kÕt luËn: Víi qu¸ tr×nh c¸n ®èi xøng, ®Ó trôc c¸n ¨n ®−îc kim lo¹i mét c¸ch tù nhiªn, t¹i thêi ®iÓm tiÕp xóc ®Çu tiªn th× gãc ma s¸t β > gãc ¨n α. Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 2
  3. Gi¸o tr×nh: Lý thuyÕt c¸n Sau thêi ®iÓm trôc ¨n vËt c¸n, qu¸ tr×nh c¸n ®−îc tiÕp tôc cho ®Õn khi c¸n hÕt chiÒu dµi cña vËt c¸n. Trong thêi gian ®ã, ta coi qu¸ tr×nh c¸n lµ æn ®Þnh. Nh− vËy th× khi qu¸ tr×nh lµ æn ®Þnh th× ®iÒu kiÖn ban ®Çu theo biÓu thøc (1.7) cã cÇn ph¶i tho¶ m·n n÷a kh«ng? Ta biÕt r»ng, sau thêi ®iÓm ¨n ban ®Çu th× vËt c¸n vµ trôc c¸n h×nh thµnh mét bÒ mÆt tiÕp xóc, do sù h×nh thµnh bÒ mÆt tiÕp xóc mµ ®iÓm ®Æt lùc ®−îc di chuyÓn vµ thay ®æi (h×nh 1.2b). Gi¶ thiÕt lùc ®¬n vÞ ph©n bè ®Òu trªn bÒ mÆt tiÕp xóc (lµ cung ch¾n gãc ë t©m α1 (α2)). Trong tr−êng hîp nµy, nÕu nh− ta vÉn kh¶o s¸t nh− t¹i thêi ®iÓm b¾t ®Çu ¨n th× tõ biÓu thøc (1.5) ta thay gãc ¨n α1 b»ng gãc α1/2: α α f .P1 cos 1 ≥ P1 sin 1 (1.8) 2 2 α α Suy ra, f ≥ tg 1 hoÆc tgβ ≥ tg 1 2 2 α Do ®ã, β ≥ 1 hay 2β ≥ α1 (1.9) 2 Tõ biÓu thøc (1.9) ta rót ra kÕt luËn: Khi qu¸ tr×nh c¸n ®· æn ®Þnh th× ta cã thÓ gi¶m ®−îc ma s¸t trªn bÒ mÆt tiÕp xóc, hoÆc t¨ng ®−îc gãc ¨n ban ®Çu tøc lµ t¨ng ®−îc l−îng Ðp. Trong thùc tÕ, nÕu c¸c ®iÒu kiÖn vÒ c«ng suÊt ®éng c¬, ®é bÒn cña trôc c¸n vµ c¸c ®iÒu kiÖn c«ng nghÖ kh¸c cho phÐp th× ng−êi ta t¨ng ma s¸t b»ng c¸ch hµn vÕt hoÆc ®ôc r·nh trªn bÒ mÆt trôc c¸n ®Ó t¨ng ®−îc l−îng Ðp cho mét lÇn c¸n. 1.3- §iÒu kiÖn ®Ó trôc ¨n vËt c¸n khi hai ®−êng kÝnh trôc c¸n kh¸c nhau Trong thùc tÕ, hÇu hÕt ë c¸c m¸y c¸n th−êng cã ®−êng kÝnh trôc c¸n kh«ng b»ng nhau víi lý do ph−¬ng chuyÓn ®éng cña ph«i c¸n lóc ra khái khe hë cña trôc c¸n phô thuéc vµo nhiÒu yÕu tè c«ng nghÖ do ®ã kh«ng æn ®Þnh. Nh»m môc ®Ých khèng chÕ vµ æn ®Þnh ®−îc ph−¬ng chuyÓn ®éng cña vËt c¸n lóc ra khái khe hë cña trôc c¸n, ng−êi ta cè ý lµm hai trôc c¸n cã ®−êng kÝnh kh¸c nhau, sù chªnh lÖch vÒ ®−êng kÝnh trôc c¸n trong tr−êng hîp nµy ®−îc gäi lµ “c¸n cã ¸p lùc”. NÕu nh− ®−êng kÝnh trôc trªn lín h¬n trôc d−íi, ta cã ¸p lùc trªn, ng−îc l¹i lµ cã ¸p lùc d−íi. ë c¸c m¸y c¸n h×nh bÐ th× trÞ sè ¸p lùc nµy lµ 2 ÷ 3mm; ë c¸c m¸y c¸n h×nh lín lµ 10mm; ë c¸c m¸y c¸n ph¸, ng−êi ta dïng ¸p lùc d−íi cã trÞ sè ®¹t ®Õn 20mm. V× ®−êng kÝnh hai trôc c¸n kh¸c nhau nªn l−îng Ðp ë hai trôc còng kh¸c nhau vµ cã gi¸ trÞ nh− sau: - L−îng Ðp ë trªn trôc cã ®−êng kÝnh bÐ: ∆h r ∆h = (1.10) 2 r 1+ R Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 3
  4. Gi¸o tr×nh: Lý thuyÕt c¸n - L−îng Ðp trªn trôc cã ®−êng kÝnh lín: ∆h r ∆h R = R (1.11) 2 r 1+ R trong ®ã, ∆h: tæng l−îng Ðp ë c¶ hai trôc (∆h = H - h) ∆hr: l−îng Ðp ®−îc thùc hiÖn trªn trôc cã ®−êng kÝnh bÐ (b¸n kÝnh r) ∆hR: l−îng Ðp ®−îc thùc hiÖn trªn trôc cã ®−êng kÝnh lín (b¸n kÝnh R) §iÒu kiÖn trôc ¨n vËt c¸n khi hai trôc c¸n cã ®−êng kÝnh kh¸c nhau ®−îc xem xÐt khi chiÕu tÊt c¶ c¸c lùc lªn ph−¬ng n»m ngang lµ ph−¬ng chuyÓn ®éng cña ph«i c¸n (h×nh 1.3). ΣX = f.Pr.cosαr + f.PR.cosαR - Pr.sinαr - PR.sinαR = 0 r.sinαr a) b) ∆hr/2 PR αr r αr r PR Tr Tr Pr TR TR αR αR R Pr R ∆hR/2 R.sinαR H×nh 1.3- S¬ ®å trôc c¸n ¨n kim lo¹i khi ®−êng kÝnh trôc kh¸c nhau Trong tr−êng hîp nµy ta gi¶ thiÕt r»ng: Pr ≈ PR; r.sinαr = R.sinαR ; cosαr = cosαR ⎛ r⎞ Nh− vËy: 2f cos α r = ⎜1 + ⎟ sin α r ⎝ R⎠ ⎛ r⎞ Hay: 2 tgβ = ⎜1 + ⎟tgα r (1.12) ⎝ R⎠ V× gãc ¨n α trªn c¶ hai trôc lµ rÊt bÐ ®ång thêi gãc ma s¸t β còng bÐ cho nªn ta cã thÓ t×m ®−îc ®iÒu kiÖn ¨n ë hai trôc cã ®−êng kÝnh kh¸c nhau nh− sau: - Víi trôc cã ®−êng kÝnh bÐ: 2 αr ≤ β (1.13) r 1+ R - Víi trôc cã ®−êng kÝnh lín: 2 αR ≤ β (1.14) R 1+ r Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 4
  5. Gi¸o tr×nh: Lý thuyÕt c¸n Tõ hai biÓu thøc (1.13) vµ (1.14) ta x¸c ®Þnh ®−îc ®iÒu kiÖn ¨n ë c¶ hai trôc: αr + αR ≤ 2β (1.15) Khi qu¸ tr×nh c¸n ®· æn ®Þnh víi gi¶ thiÕt lµ lùc ®¬n vÞ ph©n bè ®Òu trªn bÒ mÆt tiÕp xóc. Tõ (1.12) ta thay αr b»ng αr/2 vµ αR b»ng αR/2. B»ng c¸c phÐp biÕn ®æi t−¬ng tù nh− trªn, ta cã thÓ t×m ®−îc ®iÒu kiÖn ¨n ë trªn c¶ hai trôc nh− sau: αr + αR ≤ 4β (1.16) 1.4- §iÒu kiÖn ®Ó trôc ¨n vËt c¸n khi chØ cã mét trôc c¸n ®−îc dÉn ®éng ë mét sè tr−êng hîp, qu¸ tr×nh c¸n ®−îc thùc hiÖn trªn m¸y chØ cã mét trôc ®−îc dÉn ®éng. ¦u ®iÓm chñ yÕu ë lo¹i m¸y nµy lµ kh«ng cÇn cã hép truyÒn lùc, lo¹i m¸y c¸n nµy th−êng dïng c¸n tÊm máng xÕp chång, c¸n thÐp d©y (sö dông ë gi¸ c¸n tinh), ®iÒu kiÖn ¨n ë ®©y kh«ng cã sù tham gia cña m«men trªn trôc kh«ng dÉn ®éng mµ thay vµo ®ã b»ng mét m«men kh¸ng quay trong c¸c æ tùa cña nã. M«men kh¸ng quay chÝnh b»ng m«men cña lùc ma s¸t trªn cæ trôc c¸n vµ cã thÓ biÓu thÞ nh− sau: Mms = T1.rc = P.fc.rc (1.17) Trong ®ã, P: ¸p lùc cña kim lo¹i lªn trôc c¸n fc: hÖ sè ma s¸t ë æ trôc c¸n rc: b¸n kÝnh cæ trôc c¸n kh«ng dÉn ®éng α a) rc T1 = f.P b) T1 R T1 ϕx α P1 P2 P2 T2 P1 T2 α ϕn R α H×nh 1.4- S¬ ®å ®iÒu kiÖn trôc ¨n vËt c¸n khi cã mét trôc dÉn ®éng. T¹i thêi ®iÓm kim lo¹i tiÕp xóc víi trôc c¸n th× xuÊt hiÖn c¸c lùc P1, P2 vµ c¸c lùc ma s¸t T1, T2 (h×nh). Lùc T1 ë trôc kh«ng cã dÉn ®éng cã chiÒu ng−îc h−íng c¸n. Ta lËp ph−¬ng tr×nh c©n b»ng lùc t¸c dông lªn c¶ hai trôc khi ¨n kim lo¹i nh− sau: f r ΣX = P1 sin α + P2 sin α + P1 c c cos α − P2 f cos α = 0 (1.18) R Khi P1 = P2, ta cã: f r 2 tgα + c c − tgβ = 0 R Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 5
  6. Gi¸o tr×nh: Lý thuyÕt c¸n fc rc tgβ − Do ®ã, tgα = R 2 Víi ®iÒu kiÖn lµ α, β bÐ, ta cã: β f r α= − c c (1.19) 2 2R Tõ (1.19) ta thÊy,khi c¸n trªn m¸y cã mét trôc kh«ng dÉn ®éng th× gãc ¨n nhá h¬n 2 lÇn so víi c¸n trªn m¸y cã hai trôc ®−îc dÉn ®éng. Quan s¸t h×nh 1.4 khi qu¸ tr×nh c¸n ®· æn ®Þnh (trôc trªn kh«ng ®−îc dÉn ®éng), ta lËp ph−¬ng tr×nh c©n b»ng lùc ë tr−êng hîp tíi h¹n: ΣX = T2.cosϕn - P2.sinϕn - T1.cosϕx - P1.sinϕx = 0 f r Gi¶ thiÕt r»ng, ϕx = ϕn = ϕ; thay T1 = P1 c c , T2 = f.P2, f = tgβ, ta cã: R P P f r tgβ − tgϕ − 1 tgϕ − 1 c c = 0 P2 P2 R P1 fc rc tgβ − P2 R Suy ra, tgϕ = (1.20) P 1+ 1 P2 Tõ (1.20) ta thÊy r»ng, ®iÒu kiÖn æn ®Þnh cña qu¸ tr×nh c¸n khi chØ cã mét trôc ®−îc dÉn ®éng ®−îc x¸c ®Þnh bëi hÖ sè ma s¸t trªn bÒ mÆttiÕp xóc gi÷a trôc c¸n víi ph«i vµ bëi tû sè ¸p lùc kim lo¹i lªn hai trôc vµ trë lùc ma s¸t trong cæ trôc. NÕu ta cho r»ng, ϕ = α/2, P1 = P2 th× tõ (1.20) ta cã: f r α =β− c c (1.21) R Cã nghÜa lµ so víi tr−êng hîp c¸n cã hai trôc dÉn ®éng th× gãc ¨n vÉn nhá h¬n trªn 2lÇn. Trong tr−êng hîp qu¸ tr×nh c¸n thùc hiÖn ë trôc cã lç h×nh vµ chiÒu réng ®¸y lç h×nh nhá h¬n chiÒu réng cña ph«i c¸n trong lç h×nh ®ã th× ®iÒu kiÖn trôc ¨n kim lo¹i còng chÞu ¶nh h−ëng cña c¸c lùc ë thµnh bªn cña lç h×nh. V× vËy, gãc ¨n cùc ®¹i kh«ng nh÷ng chØ ®−îc x¸c ®Þnh bëi gãc ma s¸t mµ cßn ®−îc x¸c ®Þnh bëi gãc nghiªng cña thµnh bªn lç h×nh (gãc kÑp chÆt ph«i). VÝ dô: gãc ¨n khi c¸n mét ph«i tiÕt diÖn vu«ng trong lç h×nh thoi cã gi¸ trÞ: b α= (1.21) cos ϕ t (ϕt: gãc nghiªng cña thµnh bªn lç h×nh thoi) Nh− vËy, ®iÒu kiÖn ¨n sÏ ®−îc c¶i thiÖn khi gi¶m gãc ë ®Ønh cña lç h×nh thoi. Khi c¸n ph«i tiÕt diÖn vu«ng trong lç h×nh «van th× gãc ¨n còng ®−îc x¸c Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 6
  7. Gi¸o tr×nh: Lý thuyÕt c¸n ®Þnh theo (1.21) nh−ng gãc ϕt lÊy theo gi¸ trÞ: B ϕ t ≈ arcsin (1.22) 2 rov trong ®ã, B: chiÒu réng cña ph«i rov: b¸n kÝnh cña «van 1.5- ChÕ ®é tèc ®é khi trôc c¸n ¨n vËt c¸n ë trªn chóng ta nghiªn cøu qu¸ tr×nh trôc ¨n ph«i lµ ë trong ®iÒu kiÖn tÜnh (kh«ng xÐt ®Õn tèc ®é ban ®Çu cña vËt c¸n vµ trÞ sè tèc ®é quay cña trôc V1 vµ V2). Trong thùc tÕ, khi c¸n bao giê còng cã tèc ®é ®−a ph«i (tèc ®é nµy ®−îc t¹o ra chñ yÕu lµ do tèc ®é quay cña con l¨n ®em l¹i vµ mét phÇn lµ do sù thao t¸c cña c«ng nh©n vËn hµnh m¸y khi c¸n thñ c«ng). Quan hÖ gi÷a tèc ®é ®−a ph«i vµ tèc ®é quay cña trôc c¸n sÏ ¶nh h−ëng lÉn nhau theo quy tr×nh c«ng nghÖ. 1.5.1- Gi¶ thiÕt tèc ®é ®−a ph«i lµ C0 vµ h×nh chiÕu tèc ®é quay cña trôc lªn ph−¬ng n»m ngang lµ CTX víi ®iÒu kiÖn C0 ≤ CTX B»ng thùc tÕ ®o ®¹c vµ nghiªn cøu nhËn thÊy, trong mét kho¶nh kh¾c ∆t lóc ¨n vµo th× ®Çu cïng cña ph«i ®−îc chuyÓn ®éng víi mét tèc ®é lµ C0 = const, trong khi ®ã th× tèc ®é quay cña trôc CTX bÞ gi¶m ®i. TiÕp theo víi mét thêi gian ∆t1 c¶ hai tèc ®é C0 vµ CTX ®Òu t¨ng, nh−ng C0 t¨ng nhanh h¬n vµ sau thêi gian (∆t + ∆t1) th× ®å thÞ t¨ng cña C0 giao nhau víi ®å thÞ t¨ng cña CTX (h×nh 1.5a). Sau mét thêi gian t nhÊt ®Þnh ph«i cã tèc ®é lµ C1 lóc ra khái khe hë gi÷a hai trôc c¸n lín h¬n tèc ®é CTX, ®iÒu nµy ®−îc gi¶i thÝch b»ng hiÖn t−îng v−ît tr−íc khi c¸n. 1.5.2- Gi¶ thiÕt tèc ®é ®−a ph«i lµ C0 ≤ CTX nh−ng chØ cã mét trôc c¸n ®−îc dÉn ®éng Tr−êng hîp nµy, sù chªnh lÖch tèc ®é quay gi÷a hai trôc lµ rÊt lín khi trôc ¨n kim lo¹i, do ®ã ta thÊy c¶ hai tèc ®é ®Òu gi¶m trong thêi gian ton. Sau ®ã c¶ hai tèc ®é l¹i tiÕp tôc t¨ng nh−ng tèc ®é cña ph«i vÉn t¨ng nhanh h¬n (h×nh 1.5b). 1.5.3- Gi¶ thiÕt tèc ®é ®−a ph«i lµ C0 ≥ CTX vµ thiÕt bÞ c¸n cã ®é cøng v÷ng tuyÖt ®èi gi÷a c¸c chi tiÕt nèi, dÉn ®éng Tr−êng hîp nµy, tèc ®é cña ph«i bÞ gi¶m m¹nh sau thêi gian ∆t råi ngõng h¼n, tèc ®é cña trôc c¸n CTX còng gi¶m nh−ng c−êng ®é gi¶m Ýt h¬n vµ sau mét thêi gian ∆t th× còng ngõng h¼n trong mét thêi gian lµ t0. Sau ®ã c¶ hai tèc ®é l¹i tiÕp tôc t¨ng nh−ng nhÞp ®é t¨ng cña ph«i còng t¨ng nhanh h¬n (h×nh 1.5c). 1.5.4- Gi¶ thiÕt tèc ®é ®−a ph«i lµ C0 ≥ CTX nh−ng thiÕt bÞ c¸n kh«ng cã ®é cøng v÷ng tuyÖt ®èi gi÷a c¸c chi tiÕt nèi, dÉn ®éng Sù biÕn ®æi tèc ®é trong tr−êng hîp nµy còng t−¬ng tù nh− trªn nh−ng thêi Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 7
  8. Gi¸o tr×nh: Lý thuyÕt c¸n gian ngõng cña trôc ng¾n h¬n thêi gian ngõng cña ph«i. C¸c kÕt qu¶ quan s¸t vµ nghiªn cøu trªn gióp cho sù h×nh thµnh c¸c ph−¬ng tr×nh ®éng häc cña m¸y c¸n. a) b) CTX C0 CTX C0 C0 CTX ∆t ∆t1 ton t t c) d) ∆t’ t C0 C0 CTX CTX ∆t ∆t ∆t2 ∆t2 t0 t0 ∆t1 ∆t1 H×nh 1.5- Sù thay ®æi tèc ®é cña trôc c¸n vµ tèc ®é ph«i trªn ®é dµi cung tiÕp xóc 1.6- Ph−¬ng cña lùc qu¸n tÝnh vµ lùc ma s¸t khi chuyÓn tõ qu¸ tr×nh c¸n kh«ng æn ®Þnh sang æn ®Þnh Ta gi¶ thiÕt r»ng C0 > CTX, khi ph«i tiÕp xóc víi trôc c¸n cã hai lùc ph¸t sinh ®ã lµ lùc ®Èy vµo Q vµ lùc qu¸n tÝnh I, ®ång thêi ®Çu ph«i bÞ tãp vµo. Gi¶ thiÕt r»ng ®Çu tãp vµo cña ph«i cã diÖn tÝch lµ S, lùc cña trôc c¸n t¸c dông lªn ®Çu ph«i cã diÖn tÝch S lµ P. Nh− ta ®· gi¶ thiÕt ban ®Çu, t¹i thêi ®iÓm nµy tèc ®é C0 sÏ gi¶m ®i ®Õn gi¸ trÞ lµ CTX, thiÕt bÞ c¸n cã ®é cøng v÷ng tuyÖt ®èi gi÷a c¸c chi tiÕt nèi, dÉn ®éng. Víi C0 = 0, nÕu nh− thiÕt bÞ c¸n kh«ng cã ®é cøng v÷ng tèt th× sau mét ∆t v« cïng bÐ (1% hoÆc 0,1% gi©y) tèc ®é cña ph«i C0 l¹i t¨ng b»ng trÞ sè CTX. T¹i thêi ®iÓm nµy lùc qu¸n tÝnh ng−îc víi h−íng chuyÓn ®éng cña ph«i, nghÜa lµ nã c¶n trë qu¸ tr×nh ¨n Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 8
  9. Gi¸o tr×nh: Lý thuyÕt c¸n ph«i nh−ng v× lùc qu¸n tÝnh rÊt bÐ ®ång thêi còng x¶y ra trong mét kho¶nh kh¾c rÊt ng¾n nªn cã thÓ bá qua ¶nh h−ëng cña nã. Víi mét kho¶ng thêi gian ∆t2, Co t¨ng nhanh h¬n CTX, lùc qu¸n tÝnh còng ng−îc víi h−íng c¸n, v× ∆t2 lín h¬n nhiÒu so víi ∆t vµ ∆t’ (∆t’ = ∆t + ton) song lùc qu¸n tÝnh còng cã thÓ bá qua. Nãi chung, lùc qu¸n tÝnh ¶nh h−ëng lín ®Õn quan hÖ tèc ®é C0 vµ CTX trong tr−êng hîp thiÕt bÞ c¸n kh«ng cã ®é cøng v÷ng tèt gi÷a c¸c chi tiÕt nèi, dÉn ®éng. TrÞ sè cña lùc qu¸n tÝnh phô thuéc vµo träng l−îng c¸c chi tiÕt quay cña gi¸ c¸n. NÕu quan hÖ tèc ®é C0 vµ CTX kh«ng phï hîp, ®ång thêi gi¸ c¸n kh«ng cã ®é cøng v÷ng tèt (vÝ dô nh− ë c¸c gi¸ c¸n h×nh lín (trôc nèi, æ nèi hoa mai) th× trÞ sè lùc qu¸n tÝnh sÏ rÊt lín, hµng vµi tr¨m tÊn). Nh− chóng ta ®· biÕt, t¹i thêi ®iÓm trôc ¨n ph«i, ta cã ¸p lùc cña kim lo¹i lªn trôc c¸n P vµ lùc ma s¸t T. TrÞ sè vµ ph−¬ng cña chóng phô thuéc vµo quan hÖ tèc ®é C0 vµ CTX. NÕu ta xÐt trong mét hÖ c©n b»ng α tÜnh khi trôc ¨n ph«i: T Q ± I ± 2Tcosϕ - 2Psinϕ = 0 (1.23) P ϕ víi: T = P.fa = P.tgβa Q T fa: hÖ sè ma s¸t lóc trôc ¨n kim lo¹i I βa: gãc ma s¸t lóc trôc ¨n kim lo¹i VËy, x l’ Q ± I ± 2Pcosϕtgβa - 2Psinϕ = 0 (1.24) l Q±I = 2P (sin ϕ cos βa m sin βa cos ϕ) cos β a H×nh 1.6- S¬ ®å c©n b»ng lùc khi sin (ϕ m β a ) (1.25) 2P trôc ¨n kim lo¹i hoÆc: Q ± I = cos β a Tõ (1.25) ta thÊy: NÕu Q = I = 0 vµ ϕ = α th× sin(α ± βa) = 0, do ®ã: α = βa. Cã nghÜa lµ fa l¹i cã ®iÒu kiÖn ¨n tù nhiªn. Chóng ta quan s¸t kü h¬n 3 tr−êng hîp sau: 1.6.1- Tr−êng hîp C0 ≤ CTX, lùc ma s¸t theo ph−¬ng c¸n Lùc qu¸n tÝnh I ng−îc ph−¬ng c¸n (trªn thùc tÕ cã thÓ bá qua v× rÊt bÐ). Trªn c¬ së cña biÓu thøc (1.25), ta cã: sin(ϕ − β a ) 2P Q= (1.26) cos β a NÕu sinϕ = α, cã thÓ x¶y ra 3 kh¶ n¨ng: 1) ϕ = α = βa, suy ra: Q = 0. VËy cã qu¸ tr×nh ¨n tù nhiªn kh«ng cÇn cã lùc ®Èy vµo. 2) ϕ = α > βa, suy ra: Q > 0. Cã nghÜa lµ cÇn cã lùc ®Èy t¸c ®éng vµo Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 9
  10. Gi¸o tr×nh: Lý thuyÕt c¸n ph«i ®Ó lµm cho ®Çu ph«i bÞ bãp nhá vµ lóc ®ã míi cã ®−îc α = βa. ë thêi ®iÓm ®ã míi cã ®iÒu kiÖn ¨n. 3) ϕ = α < βa, suy ra: Q < 0. Cã nghÜa lµ tån t¹i lùc ma s¸t thõa, ®iÒu kiÖn ¨n dÔ dµng. 1.6.2- Tr−êng hîp C0 = CTX Gi÷a bÒ mÆt ph«i c¸n vµ trôc c¸n kh«ng cã hiÖn t−îng tr−ît t−¬ng hç víi nhau. Trong tr−êng hîp nµy T = 0. NÕu víi lùc qu¸n tÝnh I = 0 th× tõ (1.23) ta cã: Q = 2Psinϕ (1.27) §iÒu nµy cã nghÜa lµ ph¶i tån t¹i mét lùc ®Èy Q ®Ó th¾ng ®−îc lùc cña trôc c¸n t¸c dông lªn kim lo¹i ®−îc chiÕu lªn ph−¬ng n»m ngang (ph−¬ng c¸n). 1.6.3- Tr−êng hîp C0 > CTX Tr−êng hîp nµy lùc ma s¸t cã chiÒu ng−îc h−íng c¸n, lùc qu¸n tÝnh I tån t¹i vµ theo (1.25) th×: sin (ϕ ± β a ) − I 2P Q= cos β a sin (ϕ ± β a ) − I ≥ 0 , cã nghÜa lµ lóc b¾t ®Çu trôc ¨n kim 2P - NÕu nh−: cos β a lo¹i ®ßi hái mét lùc ®Èy Q vµ sau ®ã khi ph−¬ng cña lùc ma s¸t thay ®æi ®−îc chuyÓn dÇn sang tr−êng hîp 2 råi chuyÓn sang tr−êng hîp 1. sin (ϕ ± β a ) − I < 0 , cã nghÜa lµ kh«ng cÇn lùc ®Èy v× 2P - NÕu nh−: cos β a lùc qu¸n tÝnh I ®· th¾ng ®−îc sù c¶n trë cña lùc ma s¸t. 1.7- Qu¸ tr×nh lµm dËp ph«i vµ gãc ¨n tíi h¹n Nh− trªn h×nh vÏ 1.6 th× x lµ h×nh chiÕu cña bÒ mÆt lªn ph−¬ng c¸n. x = l - l’ ®ång thêi, x = Rsinα - Rsinϕ V×, α vµ ϕ rÊt bÐ nªn: x = R(α - ϕ) hoÆc: x = Rψ (1.28) Gi¶ thiÕt, tèc ®é trung b×nh cña ph«i trªn ®o¹n ®−êng ®i lµ x cã gi¸ trÞ lµ C0/2 th×: x = ∆t. C0/2 (1.29) Tõ hai biÓu thøc (1.28) vµ (1.29) ta suy ra: C ∆t ψ= 0 (D:®−êng kÝnh trôc c¸n) (1.30) D Tõ (1.30) ta thÊy gãc ψ (gãc dËp ph«i) tû lÖ thuËn víi tèc ®é ®−a ph«i C0 vµ thêi gian ∆t nh−ng tû lÖ nghÞch víi ®−êng kÝnh trôc c¸n D. Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 10
  11. Gi¸o tr×nh: Lý thuyÕt c¸n VËy, tèc ®é ®−a ph«i cµng lín, cµng cã kh¶ n¨ng t¨ng ®−îc gãc ¨n, do ®ã, t¨ng ∆h (l−îng Ðp). KÕt qu¶ t¨ng ®−îc n¨ng suÊt. §−¬ng nhiªn, ngoµi viÖc chän tèc ®é ®−a ph«i phï hîp th× ®iÒu kiÖn ¨n cßn phô thuéc vµo mét sè yÕu tè kh¸c n÷a nh− nhiÖt ®é ph«i, hÖ sè ma s¸t, chÊt l−îng vµ tr¹ng th¸i bÒ mÆt trôc c¸n, bÒ mÆt ph«i, thµnh phÇn ho¸ häc ph«i... 1.8- HÖ sè ma s¸t khi c¸n vµ c¸c yÕu tè ¶nh h−ëng ®Õn nã Nh− ë trªn (môc 1.1) chóng ta ®· nghiªn cøu kh¸i niÖm vÒ hÖ sè ma s¸t vµ lùc ma s¸t. ë ®©y ta sÏ nghiªn cøu kü h¬n vÒ hÖ sè ma s¸t vµ c¸c yÕu tè c«ng nghÖ ¶nh h−ëng ®Õn nã. Kh¸c víi c¸c qu¸ tr×nh gia c«ng kh¸c, víi c¸n nÕu kh«ng cã ma s¸t th× qu¸ tr×nh c¸n sÏ kh«ng tån t¹i. Tuy nhiªn, ta cÇn ph¶i nghiªn cøu c¸c nh©n tè ¶nh h−ëng ®Õn ma s¸t ®Ó tËn dông nã mét c¸ch hîp lý trong qu¸ tr×nh thùc hiÖn c«ng nghÖ. 1.8.1- Mét sè ph−¬ng ph¸p x¸c ®Þnh hÖ sè ma s¸t f a) Ph−¬ng ph¸p gãc ¨n cùc ®¹i Dïng mét m¸y c¸n thÝ nghiÖm, chØnh cho khe hë gi÷a hai trôc b»ng 0 (h×nh 1.7a) ®Ó cho ®Çu cïng ph«i tiÕp xóc víi bÒ mÆt trôc, sau ®ã t¨ng dÇn khe hë gi÷a hai trôc cho ®Õn lóc ph«i cã thÓ tù ®i vµo khe hë (h×nh 1.7b, c). Chó ý hai trôc c¸n vÉn quay víi c¸c tèc ®é V1 vµ V2. D Q=0 D D H H H h I=0 a) b) c) H×nh 1.7- S¬ ®å c¸n khi x¸c ®Þnh hÖ sè ma s¸t f b»ng gãc ¨n cùc ®¹i T¹i thêi ®iÓm trôc c¸n ¨n ph«i, ta x¸c ®Þnh ®iÒu kiÖn ¨n vµ tÝnh gãc α theo biÓu thøc: ∆ = D(1 - cosα) ⎛ ∆h ⎞ HoÆc: cos α = ⎜1 − ⎟ ⎝ D⎠ ∆h = H - h tgα = tgβ = f (1.31) b) X¸c ®Þnh hÖ sè ma s¸t khi qu¸ tr×nh c¸n æn ®Þnh Dïng mét k×m kÑp chÆt ph«i vµ g¾n víi mét ®ång hå ®o lùc. Cho ph«i c¸n Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 11
  12. Gi¸o tr×nh: Lý thuyÕt c¸n b×nh th−êng khi ma s¸t trªn bÒ mÆt tiÕp xóc kh«ng th¾ng ®−îc lùc kÐo cña lùc kÕ N th× ph«i dõng l¹i vµ cã hiÖn t−îng va ®Ëp cña trôc c¸n lªn ph«i (h×nh 1.8). Ta viÕt ph−¬ng t×nh cña tÊt c¶ c¸c lùc t¸c dông lªn ph«i c¸n ë tr¹ng th¸i N α/2 D c©n b»ng tÜnh. Ta x¸c ®Þnh H P.f ®−îc hÖ sè ma s¸t f: h P α α 2 P sin + N = 2fP cos α (H-h)/2 2 2 Suy ra, N α f= + tg (1.32) α 2 2 P cos H×nh 1.8- S¬ ®å x¸c ®Þnh hÖ sè ma s¸t khi 2 qu¸ tr×nh c¸n æn ®Þnh Víi gi¸ trÞ cña N ®äc ⎛ ∆h ⎞ ®−îc trªn lùc kÕ vµ cos α = ⎜1 − ⎟ , lùc P (tÝnh theo c¸c biÓu thøc riªng) chóng ta ⎝ D⎠ cã thÓ x¸c ®Þnh ®−îc hÖ sè ma s¸t f theo (1.32). Nh−îc ®iÓm cña ph−¬ng ph¸p nµy lµ chØ ph¶n ¸nh hÖ sè ma s¸t tr−ît khi qu¸ tr×nh c¸n ®· æn ®Þnh. 1.8.2- X¸c ®Þnh hÖ sè ma s¸t f b»ng biÓu thøc NhiÒu nghiªn cøu cña mét sè t¸c gi¶ ®· ®−a ra biÓu thøc ®Ó tÝnh hÖ sè ma s¸t f = n(1,05 - 0,0005t) (1.33) trong ®ã, n: hÖ sè phô thuéc vµo vËt liÖu lµm trôc c¸n n = 1, vËt liÖu trôc lµ thÐp n = 0,8, vËt liÖu trôc lµ gang t: nhiÖt ®é c¸n (0C) f = n.K1.K2(1,05 - 0,0005t) (1.34) trong ®ã, K1: hÖ sè ¶nh h−ëng cña tèc ®é quay trôc c¸n. K2: hÖ sè ¶nh h−ëng cña thµnh phÇn ho¸ häc ph«i c¸n. Hai hÖ sè K1 vµ K2 cã thÓ tham kh¶o ë h×nh 1.9 vµ b¶ng 1. K1 B¶ng 1 M¸c CT3 CT20 CT40 Y10 A12 A20 0,8 K2 1,0 0,95 0,88 0,82 0,85 0,8 0,6 M¸c A40 30XCA X18h9 94 IIIX15 0,4 K2 0,7 0,8 1,05 0,85 1,1 0 4 8 12 V(m/s) H×nh 1.9- X¸c ®Þnh hÖ sè K1 Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 12
  13. Gi¸o tr×nh: Lý thuyÕt c¸n f = f0.B (1.35) trong ®ã, f0: hÖ sè ma s¸t quy −íc, f0 = (0,33 - 0,1C)(1 - 0,016.vc) T −t lg B = ch .10 − 5 (1.36) C .v c víi: Tch: nhiÖt ®é ch¶y cña kim lo¹i (1800 - 22500C) t: nhiÖt ®é cña ph«i c¸n (0C) C: thµnh phÇn Cacbon trong thÐp (%) vc: tèc ®é tr−ît gi÷a kim lo¹i víi bÒ mÆt trôc c¸n V .∆h v c = tr (1.37) 3h Vtr: tèc ®é quay cña trôc c¸n (m/s) Khi c¸n nguéi cã thÓ dïng biÓu thøc d−íi ®©y (1.38) ®Ó tÝnh hÖ sè ma s¸t (biÓu thøc xÐt ®Õn ¶nh h−ëng cña chÊt b«i tr¬n vµ tèc ®é quay cña trôc c¸n ®Õn hÖ sè ma s¸t). ⎡ 0,1Vtr 2 ⎤ f = K c ⎢0,07 − ⎥ (1.38) ⎢ ⎣ 2(1 + Vtr ) + 3Vtr ⎥ 2 ⎦ trong ®ã, Kc: hÖ sè ¶nh h−ëng cña chÊt b«i tr¬n (b¶ng 2). B¶ng 2 ChÊt b«i tr¬n f0: hÖ sè ma s¸t quy −íc Kc Trôc kh« (kh«ng b«i tr¬n) 0,086 1,55 DÇu m¸y 0,078 1,35 N−íc 0,056 1,0 DÇu ho¶ 0,053 1,0 DÇu bãng 0,051 0,9 DÇu thùc vËt 0,05 0,9 DÇu dõa 0,048 0,9 1.8.3- C¸c yÕu tè ¶nh h−ëng ®Õn hÖ sè ma s¸t f a) Thµnh phÇn ho¸ häc cña ph«i c¸n Ng−êi ta cÇn c¸c vËt liÖu kh¸c nhau víi cïng mét l−îng Ðp ε ≈ 40% sau khi tÝnh to¸n nh©n ®−îc c¸c kÕt qu¶ cña hÖ sè ma s¸t nh− sau: - Nh«m (Al): f = 0,188 §ång (Cu): f = 0,155 ThÐp: f = 0,140 - Víi thÐp C khi t¨ng hµm l−îng C th× hÖ sè ma s¸t gi¶m (khi c¸n nãng). - Víi thÐp Cr khi hµm l−îng Cr t¨ng (40Cr) ta nhËn thÊy hÖ sè ma s¸t f gi¶m kÓ c¶ khi ë nhiÖt ®é cao vµ thÊp. - Víi thÐp Mn khi t¨ng hµm l−îng Mn th× hÖ sè ma s¸t f t¨ng theo. - Víi mét sè thÐp hîp kim kh¸c th× khi thay ®æi thµnh phÇn ho¸ häc th× hÖ sè ma s¸t f biÕn ®æi tuú theo nhiÖt ®é gia c«ng. Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 13
  14. Gi¸o tr×nh: Lý thuyÕt c¸n b) Tr¹ng th¸i bÒ mÆt cña dông cô gia c«ng BÒ mÆt trôc c¸n cã thÓ lµm thay ®æi hÖ sè ma s¸t f trong ph¹m vi tõ 0,7 ®Õn 0,05. V× trôc c¸n ®−îc gia c«ng c¬ nªn trªn bÒ mÆt trôc c¸n ma s¸t cã tÝnh dÞ h−íng vµ tÝnh dÞ h−íng sÏ gi¶m ®i khi dïng trôc ®−îc gia c«ng b»ng mµi bãng hoÆc trong qu¸ tr×nh c¸n cã b«i tr¬n. c) Tr¹ng th¸i bÒ mÆt cña ph«i c¸n Trªn thùc tÕ th× tr¹ng th¸i bÒ mÆt cña vËt liÖu c¸n chØ ¶nh h−ëng ®Õn hÖ sè ma s¸t f ë giai ®o¹n trôc ¨n kim lo¹i. Khi qu¸ tr×nh c¸n ®· æn ®Þnh th× bÒ mÆt ph«i c¸n cã cïng mét tr¹ng th¸i víi bÒ mÆt trôc c¸n. Trong qu¸ tr×nh c¸n th× trªn bÒ mÆt ph«i c¸n tån t¹i líp v¶y rÌn, ë nhiÖt ®é cao líp v¶y rÌn n»m trong tr¹ng th¸i mÒm vµ ®ãng vai trß nh− mét chÊt b«i tr¬n. Song nÕu c¸c m¶nh vôn cña v¶y rÌn l¹i kh«ng ®−îc khö bá ®i th× chóng sÏ lµm gi¶m chÊt l−îng bÒ mÆt cña thÐp c¸n. d) NhiÖt ®é biÕn d¹ng HÖ sè ma s¸t f phô thuéc vµo nhiÖt ®é c¸n chñ yÕu lµ gi¸n tiÕp qua c¬ lý tÝnh cña thµnh phÇn líp v¶y rÌn theo ®å th× h×nh 1.10. f Qua ®å thÞ ta thÊy, ë nh÷ng nhiÖt ®é kh¸c nhau 0,4 th× hÖ sè ma s¸t f còng kh¸c nhau: cã 3 cùc tiÓu vµ 2 cùc 0,3 ®¹i. §iÒu nµy cã thÓ gi¶i 0,2 thÝch bëi sù biÕn ®æi thµnh phÇn cña líp v¶y rÌn tõ FeO. 0,1 100 300 500 700 900 1100 t(0C) Ta cã ®iÓm cùc ®¹i 1 H×nh 1.10- Sù thay ®æi cña hÖ sè ma s¸t f (450 ÷ 5000C), khi líp v¶y theo nhiÖt ®é c¸n ®èi víi thÐp 20X vµ 40X rÌn cµng dµy thªm lµm t¨ng hÖ sè ma s¸t f vµ ta cã ®iÓm cùc ®¹i thø 2 (900 ÷ 10000C). e) Tèc ®é c¸n (tèc ®é biÕn d¹ng) NÕu nh− t¨ng tèc ®é c¸n th× hÖ sè ma s¸t f sÏ gi¶m tõ 1,7 ®Õn 2,5 lÇn. Víi ch× (Pb) khi l−îng Ðp ε ≈ 50% th× khi t¨ng tèc ®é c¸n, hÖ sè ma s¸t f l¹i t¨ng lªn 1,8 lÇn. NhiÒu c«ng tr×nh nghiªn cøu ®Òu cho thÊy r»ng khi t¨ng tèc ®é c¸n th× hÖ sè ma s¸t f gi¶m ®i nh−ng nÕu nh− khi tèc ®é c¸n v−ît qu¸ 17 m/s th× viÖc t¨ng tèc ®é c¸n kh«ng ¶nh h−ëng nhiÒu ®Õn hÖ sè ma s¸t. f) ¸p lùc ®¬n vÞ trªn bÒ mÆt tiÕp xóc NÕu nh− ¸p lùc ®¬n vÞ t¨ng th× hÖ sè ma s¸t f còng t¨ng, cã thÓ gi¶i thÝch ®iÒu nµy theo quan ®iÓm: do sù liªn kÕt gi÷a hai bÒ mÆt t¨ng lªn nh−ng nÕu theo Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 14
  15. Gi¸o tr×nh: Lý thuyÕt c¸n biÓu thøc τ = f.σ th× l¹i thÊy nÕu nh− τ lµ kh«ng ®æi th× khi σ t¨ng hÖ sè ma s¸t f sÏ gi¶m ®i. VÒ mÆt vËt lý, ta cã thÓ hiÓu: nÕu khi σ t¨ng th× bÒ mÆt tiÕp xóc ®−îc c¶i thiÖn do ®ã f sÏ gi¶m ®i. g) ChÊt b«i tr¬n Khi dïng chÊt b«i tr¬n th× bao giê ta còng nhËn thÊy hÖ sè ma s¸t f gi¶m. Song chÊt b«i tr¬n ph¶i b¶o ®¶m ®−îc yªu cÇu c«ng nghÖ: cã tÝnh ®Þnh h−íng tèt, tiÕp xóc tèt, gi¸ thµnh rÎ, dÔ t×m kiÕm vµ dÔ khö ®i sau khi c¸n. h) Dao ®éng cña sãng siªu ©m Thùc tÕ khi ¸p dông dao ®éng cña sãng siªu ©m th× ®ång thêi ph¶i dïng chÊt b«i tr¬n v× sãng siªu ©m chØ cã t¸c dông lµm t¨ng hiÖu qu¶ cña chÊt b«i tr¬n. V× vËy, sãng siªu ©m còng ®−îc coi lµ mét yÕu tè ¶nh h−ëng ®Õn hÖ sè ma s¸t f. i) Nh÷ng yÕu tè vÒ h×nh d¸ng vïng biÕn d¹ng H×nh d¸ng cña vïng biÕn d¹ng thÓ hiÖn qua tû sè gi÷a chiÒu dµi cung tiÕp xóc lx víi chiÒu cao trung b×nh hTB cña vËt c¸n khi c¸c yÕu tè coi nh− ®· x¸c ®Þnh. a) f b) 0,15 α = 0,3 0,18 α = 0,1 0,13 α = 0,16 0,10 0,11 0 2 4 6 L/hTB 0 2 4 6 L/hTB H×nh 1.11- ¶nh h−ëng cña h×nh d¸ng vïng biÕn d¹ng ®Õn hÖ sè ma s¸t f a) Khi c¸n thÐp CT3 ë t = 12000C b) Khi c¸n ch× i) Nh÷ng yÕu tè vÒ h×nh d¸ng vïng biÕn d¹ng So s¸nh gãc ¨n α khi c¸n trong lç h×nh lín h¬n khi c¸n trªn trôc ph¼ng, ®iÒu ®ã cã nghÜa lµ h×nh d¸ng cña lç h×nh ®· t¹o ra mét lùc ma s¸t d−, cho nªn ®iÒu kiÖn ¨n tèt h¬n. Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 15
  16. Gi¸o tr×nh: Lý thuyÕt c¸n Ch−¬ng 2 Vïng biÕn d¹ng 2.1- C¸c th«ng sè h×nh häc Quan s¸t m« h×nh c¸n víi hai trôc c¸n cã t©m O1 vµ O2 quay ng−îc chiÒu nhau víi c¸c tèc ®é V1 vµ V2. B¸n kÝnh trôc c¸n lµ R1 vµ R2, c¸c ®iÓm tiÕp xóc gi÷a ph«i c¸n víi trôc lµ A1B1B2A2, gãc ë t©m ch¾n c¸c cung A1B1 vµ B2A2 lµ α1 vµ α2. E Víi c¸c ký hiÖu nh− trªn, ta cã c¸c V1 kh¸i niÖm vÒ th«ng sè h×nh häc cña O1 vïng biÕn d¹ng khi c¸n nh− sau: A1 α1 K R1 - A1B1B2A2: vïng biÕn d¹ng h×nh häc ∆h1 H B1 - A1B1nB2A2m: vïng biÕn d¹ng h thùc tÕ. m n ∆h2 α B2 - m, n: biÕn d¹ng ngoµi vïng biÕn A2 2 R2 d¹ng h×nh häc. O2 - α1, α2: c¸c gãc ¨n. V2 - A1B1, A2B2: c¸c cung tiÕp xóc. lx - lx: h×nh chiÕu cung tiÕp xóc lªn ∆b/2 ph−¬ng n»m ngang. - H, h: chiÒu cao vËt c¸n tr−íc vµ sau khi c¸n. B b - B, b: chiÒu réng vËt c¸n tr−íc vµ sau khi c¸n. ∆b/2 - L, l: chiÒu dµi vËt c¸n tr−íc vµ H×nh 2.1- S¬ ®å c¸n gi÷a hai trôc. sau khi c¸n. 2.2- Mèi quan hÖ gi÷a c¸c ®¹i l−îng h×nh häc H - h = ∆h: l−îng Ðp tuyÖt ®èi. H−h h ∆h = 1− = : l−îng Ðp tû ®èi. H H H b - B = ∆b: d·n réng tuyÖt ®èi. b−B b ∆b = −1 = : d·n réng tû ®èi. B B B Tõ h×nh 2.1, ta xÐt hai tam gi¸c A1B1E vµ KB1A1: A1B1 B E = 1 suy ra: A1B12 = B1E.KB1 = 2R1∆h1 KB1 B1A1 Do ®ã, A1B1 = 2 R1∆h1 (2.1) Theo h×nh 2.1 ta cã A1B1 lµ d©y cung cña cung tiÕp xóc A1B1, v× gãc α1 rÊt bÐ nªn ta cã thÓ coi ®é dµi cña d©y cung b»ng ®é dµi cung. Song còng víi lý do α1 Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 16
  17. Gi¸o tr×nh: Lý thuyÕt c¸n nhá (50 - 80) cho nªn khi chiÕu d©y cung A1B1 lªn ph−¬ng n»m ngang ta coi nh− kh«ng ®æi. V× vËy, A1B1.cosα1 = A1K Víi cosα1 ≈ 1, nªn ta cã: A1B1 ≈ A1K ≈ lx V× vËy, l x1 = 2 R1∆h1 : chiÒu dµi cung tiÕp xóc (2.2) Víi gi¶ thiÕt α1 bÐ, ta còng cã biÓu thøc: lx1 ≈ R1. α1 (2.3) NÕu nh− ta còng xÐt t−¬ng tù víi O2 ta cã thÓ suy ®−îc: l x 2 = 2R 2 ∆h 2 (2.4) NÕu nh− ®é dµi cung tiÕp xóc ë trªn trôc O1 vµ O2 b»ng nhau, lx1 = lx2: → 2 R1∆h1 = 2 R 2 ∆h 2 → 2R1∆h1 = 2R2∆h2 R R1 → ∆h1 = 2 ∆h 2 vµ ∆h 2 = ∆h1 R1 R2 trong ®ã, ∆h1 + ∆h2 = ∆h = H - h R1 ⎛ R ⎞ ⎛ R + R2 ⎞ do ®ã, ∆h1 + ∆h1 = ∆h1 ⎜1 + 1 ⎟ = ∆h1 ⎜ 1 ⎜ R ⎟ ⎜ R ⎟ = ∆h ⎟ R2 ⎝ 2⎠ ⎝ 2 ⎠ R2 R1 hoÆc, ∆h1 = ∆h vµ ∆h 2 = ∆h (2.5) R1 + R 2 R1 + R 2 §−a (2.5) vµo c¸c biÓu thøc (2.2) vµ (2.4), ta cã: 2 R1R 2 ∆h l x1 = 2 R1 .∆h1 = (2.6) R1 + R 2 2 R1R 2 ∆h l x 2 = 2 R 2 .∆h 2 = (2.7) R1 + R 2 NÕu nh− hai ®−êng kÝnh trôc c¸n b»ng nhau R1 = R2 = R, ta cã: l x1 = l x 2 = l x = R.∆h (2.8) Trë l¹i h×nh 2.1, ta xÐt c¸c ®o¹n th¼ng: B1K = B1O1 - KO1, víi KO1 = R1cosα1 → B1K = R1 - Rcosα1 Mµ B1K = ∆h1 nªn: ∆h1 = R1(1 - cosα1) T−¬ng tù ®èi víi trôc O2, ta cã: ∆h2 = R2(1 - cosα2) ∆h = ∆h1 + ∆h2 = R1(1 - cosα1) + R2(1 - cosα2) Gi¶ thiÕt r»ng, R1 = R2 = R vµ α1 = α2 = α, do ®ã: cosα1 = cosα2 = cosα th× ∆h1 = ∆h2 Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 17
  18. Gi¸o tr×nh: Lý thuyÕt c¸n cho nªn: ∆h = 2∆h1 = 2∆h2 = R (1 - cosα) ∆h = D(1 - cosα) (2.9) víi D: ®−êng kÝnh lµm viÖc cña trôc c¸n. Khi gãc α bÐ (α ≈ 10 - 150) th×: 1 - cosα = 2sin2(α/2) = 2(α/2)2 = α2/2 ⎛α⎞ α 2 Do ®ã, ∆h = D (1 − cos α ) = D.2. sin 2 ⎜ ⎟ = D. ⎝2⎠ 2 ∆h Suy ra, α= (2.10) R 2.3- HÖ sè biÕn d¹ng khi c¸n Tõ gi¶ thiÕt lµ thÓ tÝch cña kim lo¹i lµ kh«ng ®æi trong qu¸ tr×nh biÕn d¹ng, ta cã: H.B.L = h.b.l = const H.B.L VËy, =1 (2.11) h.b.l H Ký hiÖu: = η : hÖ sè biÕn d¹ng theo chiÒu cao. h B = β : hÖ sè biÕn d¹ng theo chiÒu réng (hÖ sè d·n réng). b L = λ : hÖ sè biÕn d¹ng theo chiÒu dµi (hÖ sè d·n dµi). l VËy, η.β.λ = 1 Tõ biÓu thøc (2.11) chóng ta cã thÓ biÕn ®æi: H.B l F 1 = = = (λ < 1) (2.12) hb L f λ Qu¸ tr×nh c¸n lµm d·n tiÕt diÖn vµ t¨ng chiÒu dµi. 2.4- HiÖn t−îng t¨ng chiÒu dµi vïng tiÕp xóc lx Trong c«ng nghÖ c¸n nguéi, ®Æc biÖt lµ khi c¸n nguéi tÊm réng vµ máng, lùc c¸n rÊt lín. V× vËy, trôc c¸n cã l−îng biÕn d¹ng ®µn håi lín, mÆt kh¸c khi vËt c¸n th× cïng víi biÕn d¹ng d− (dÎo) cã c¶ biÕn d¹ng ®µn håi. L−îng biÕn d¹ng ®µn håi nµy khi ph«i ra ngoµi vïng tiÕp xóc th× lËp tøc bÞ mÊt ®i. Do cã biÕn d¹ng ®µn håi cña trôc c¸n vµ vËt c¸n mµ chiÒu dµi cung tiÕp xóc cña vïng biÕn d¹ng t¨ng lªn. Gi¶ thiÕt r»ng, ®¹i l−îng t¨ng lªn ®ã lµ x2. Ký hiÖu l−îng biÕn d¹ng ®µn håi cña trôc c¸n lµ y1, l−îng biÕn d¹ng ®µn håi cña vËt c¸n lµ y2. §Ó cã ®−îc mét ®¹i l−îng biÕn d¹ng ∆h/2 ph¶i thu hÑp khe hë gi÷a hai trôc c¸n l¹i, nghÜa lµ ph¶i gi¶m kho¶ng c¸ch hai t©m trôc mét kho¶ng lµ y1 + y2. Tõ h×nh (2.2), A1 vµ A2 lµ ®iÓm tiÕp xóc cña ph«i víi trôc c¸n khi cã nÐn ®µn håi vµ kh«ng cã nÐn ®µn håi; B2 vµ B3 vµ C lµ c¸c ®iÓm thÓ hiÖn khi ph«i kh«ng cã nÐn ®µn håi vµ cã nÐn ®µn håi (B2C vµ B3C). Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 18
  19. Gi¸o tr×nh: Lý thuyÕt c¸n ∆h/2 §−êng tiÕp xóc b×nh th−êng gi÷a A1 D y2 A2 B1 C trôc c¸n vµ ph«i lµ A2B2C. B2 B lx = x1 + x2 H 3 y1 h Ta xÐt 2 tam gi¸c: A2B2C vµ B1CO: x1 x2 x12 = R2 - (R - B3D)2 lx x22 = R2 - (R - B1B3)2 VËy, H×nh 2.2- S¬ ®å x¸c ®Þnh chiÒu dµi cung tiÕp xóc khi tÝnh biÕn d¹ng ®µn l x = R 2 − (R − B 3 D )2 + R 2 − (R − B1B 3 )2 håi cña trôc vµ vËt c¸n. hoÆc lµ: l x = R 2 − R 2 − B 3 D 2 + 2 RB 3 D + R 2 − R 2 − B1B 3 + 2 RB1B 3 2 Bá qua c¸c ®¹i l−îng v« cïng bÐ so víi b¸n kÝnh trôc c¸n R, ta cã: l x = 2 R.B 3 D + 2 R.B1B 3 (2.14) Tõ h×nh ta thÊy, B3D = ∆h/2 + y1 + y2 B3D = y1 + y2 (2.15) ⎛ ∆h ⎞ VËy, lx = ⎜ + y1 + y 2 ⎟ 2 R + (y1 + y 2 )2R ⎝ 2 ⎠ HoÆc, l x = R∆h + 2R(y1 + y 2 ) + (y1 + y 2 )2R (2.16) trong ®ã, 2 R(y1 + y 2 ) = x 2 (2.17) Do ®ã, l x = R∆h + x 2 + x 2 2 (2.18) TrÞ sè y1 vµ y2 lµ c¸c gi¸ trÞ nÐn ®µn håi cã biÓu thøc tÝnh gÇn ®óng nh− sau: 1 − µ2 P y1 ≈ 2 q 1 πE1 (2.19) 1 − µ2 P y 2 ≈ 2q 2 πE 2 trong ®ã, q: ¸p lùc nÐn thuû tÜnh, trÞ sè cña q cã thÓ biÓu thÞ qua ¸p lùc P trªn bÒ mÆt tiÕp xóc: q = 2X2P (2.20) µP1, µP2: hÖ sè Poisson cña trôc c¸n vµ kim lo¹i. E1, E2: m«®un ®µn håi cña trôc c¸n vµ kim lo¹i. §−a gi¸ trÞ cña y1 vµ y2 vµo biÓu thøc (2.17), ta cã: ⎛ 1 − µ2 1 − µ2 ⎞ ⎜ P1 P2 ⎟ x 2 = 8RP ⎜ + (2.21) ⎜ πE1 πE 2 ⎟⎟ ⎝ ⎠ V× khi c¸n tÊm máng th× chiÒu dµy cña thÐp tÊm so víi ®−êng kÝnh trôc c¸n Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 19
  20. Gi¸o tr×nh: Lý thuyÕt c¸n lµ rÊt bÐ nªn phÇn nÐn ®µn håi cña vËt c¸n cã thÓ bá qua (E2 ≈ ∞), cho nªn: ⎛ 1 − µ2 ⎞ ⎜ P1 ⎟ x 2 = 8RP ⎜ ⎟ (2.22) ⎜ πE1 ⎟ ⎝ ⎠ 2.5- C¸c ®Æc ®iÓm ®éng häc trong vïng biÕn d¹ng Qu¸ tr×nh c¸n so víi c¸c qu¸ tr×nh gia c«ng kim lo¹i b»ng ¸p lùc kh¸c cã nh÷ng ®Æc ®iÓm sau ®©y: - CÇn thiÕt ph¶i cã lùc ma s¸t tiÕp xóc dï cho ph¶i tiªu tèn n¨ng l−îng nhiÒu h¬n. - Lu«n lu«n tån t¹i mét vïng kh«ng biÕn d¹ng tiÕp gi¸p víi vïng biÕn d¹ng (tån t¹i mét vïng cøng bªn ngoµi vïng biÕn d¹ng). V× vËy mµ sù ph©n bè biÕn d¹ng, tèc ®é biÕn d¹ng vµ øng suÊt trong vïng biÕn d¹ng lµ kh«ng ®ång ®Òu. Ng−êi ta nghiªn cøu ¶nh h−ëng cña lùc ma s¸t tiÕp xóc cña vïng kh«ng biÕn d¹ng kÒ s¸t vïng biÕn d¹ng ®Õn sù ph©n bè øng suÊt, ph©n bè biÕn d¹ng vµ tèc ®é di chuyÓn cña c¸c chÊt ®iÓm kim lo¹i trong vËt thÓ biÕn d¹ng, th«ng qua h×nh d¸ng h×nh häc cña vïng biÕn d¹ng ®−îc thÓ hiÖn qua tû sè gi÷a chiÒu dµi cung tiÕp xóc vµ chiÒu cao trung b×nh cña vËt c¸n trong vïng tiÕp xóc (lx/hTB). Nh− ta ®· biÕt, trªn dé dµi cung tiÕp xóc bao giê còng tån t¹i lùc ma s¸t gäi lµ lùc ma O s¸t tiÕp xóc. V× r»ng gi÷a bÒ mÆt trôc c¸n vµ α R kim lo¹i cã sù tr−ît ®ång thêi, trÞ sè lùc ma ∆h/2 s¸t nµy lµm ¶nh h−ëng ®Õn sù ph©n bè øng H hTB h suÊt vµ biÕn d¹ng trong vËt thÓ ph«i c¸n. Lùc ma s¸t bao giê còng k×m h·m (c¶n trë) α R sù di chuyÓn cña c¸c chÊt ®iÓm kim lo¹i lx O trong vËt c¸n, ¶nh h−ëng cña sù k×m h·m nµy cµng xa bÒ mÆt tiÕp xóc cµng gi¶m ®i (tÝnh theo chiÒu cao vËt c¸n). V× vËy mµ c¸c H×nh 2.3- S¬ ®å vïng biÕn d¹ng chÊt ®iÓm cña kim lo¹i ë vïng t©m ph«i c¸n vµ c¸c vïng l©n cËn. cã kh¶ n¨ng di chuyÓn nhanh h¬n (tèc ®é lín h¬n) so víi c¸c chÊt ®iÓm trªn bÒ mÆt tiÕp xóc. NÕu nh− chiÒu cao hTB cµng lín (khi biÕn d¹ng tr−ît ®−îc x¶y ra trªn toµn bé chiÒu cao) th× tèc ®é di chuyÓn cña c¸c chÊt ®iÓm ë chÝnh gi÷a ph«i cµng lín (xem h×nh 2.4). 1. Tèc ®é vïng bªn ngoµi tiÕt diÖn. 2. Tèc ®é vïng t©m tiÕt diÖn. 3. Tèc ®é trung b×nh trong tiÕt diÖn. 4. §å thÞ tèc ®é cña vïng kh«ng biÕn d¹ng. 5. §å thÞ tèc ®é ë vïng ngoµi vïng biÕn d¹ng phÝa ph«i ®i vµo trôc. 6. §å thÞ tèc ®é ë vïng trÔ. Tr−êng §¹i häc B¸ch khoa - §¹i häc §µ N½ng 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2