Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p4
lượt xem 4
download
Định lý Thăng dư của h m f tại điểm a l hệ số c-1 của khai triển Laurent tại điểm đó. Resf(a) = c-1 (4.7.3) Chứng minh Khai triển Laurent h m f tại điểm a +∞ +∞ c ưn 1 f (ζ ) + ∑ c n (z ư a ) n với cn = f(z) = ∑ ∫ (ζ ư a ) n +1 dζ , n ∈9 n 2 πi Γ n =1 ( z ư a ) n =0 So sánh với công thức (4.7.1) suy ra công thức (4.7.3)
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p4
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k §Þnh lý Th¨ng d− cña h m f t¹i ®iÓm a l hÖ sè c-1 cña khai triÓn Laurent t¹i ®iÓm ®ã. Resf(a) = c-1 (4.7.3) Chøng minh Khai triÓn Laurent h m f t¹i ®iÓm a f (ζ ) +∞ +∞ c −n 1 f(z) = ∑ + ∑ c n (z − a ) n víi cn = ∫ (ζ − a ) n +1 dζ , n ∈9 2 πi Γ n =1 ( z − a ) n n =0 So s¸nh víi c«ng thøc (4.7.1) suy ra c«ng thøc (4.7.3) HÖ qu¶ Cho ®iÓm a l cùc ®iÓm cÊp m cña h m f 1 lim d ( m −1) [(z − a ) m f (z)] Resf(a) = (4.7.4) (m − 1)! z →a dz ( m −1) Chøng minh Khai triÓn Laurent t¹i cùc ®iÓm a cÊp m +∞ c −m c + ... + −1 + ∑ c n (z − a ) n f(z) = z−a (z − a ) m n =0 Suy ra (z - a)mf(z) = c-m + ... + c-1(z - a)m-1 + c0(z - a)m + .... [(z - a)mf(z)](m-1) = (m - 1)!c-1 + m(m-1)..2c0(z - a) + ... ChuyÓn qua giíi h¹n hai vÕ lim [(z - a)mf(z)](m-1) = (m - 1)!c-1 z →a ez cã hai cùc ®iÓm cÊp 3 l ±i VÝ dô H m f(z) = (z 2 + 1) 3 ″ 1 ez 12e z e2 6e z 1 1i − + = (z + i ) 3 (z + i ) 4 (z + i ) 5 = 16 e (3 - 2i) Resf(i) = lim (z + i) 3 2 2! z →i z =i §Þnh lý Cho h m f cã c¸c cùc ®iÓm h÷u h¹n l ak víi k = 1...n n ∑ Re sf (a ) + Resf(∞) = 0 (4.7.5) k k =1 Chøng minh Gäi Γk víi k = 1...n l c¸c ®−êng trßn | z - ak | = Rk ®ñ bÐ ®Ó chØ bao riªng tõng ®iÓm ak v Γ l ®−êng trßn | z | = R ®ñ lín ®Ó bao hÕt tÊt c¶ c¸c ®−êng trßn Γk. Theo c«ng thøc tÝch ph©n Cauchy n ∑ ∫ f (z)dz ∫ f (z)dz = ∫ f (z)dz =- k =1 Γk Γ− Γ ChuyÓn vÕ sau ®ã chia hai vÕ cho 2πi suy ra c«ng thøc (4.7.5) Trang 70 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k HÖ qu¶ Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v h m f liªn tôc trªn Γ, gi¶i tÝch trong DΓ ngo¹i trõ h÷u h¹n cùc ®iÓm ak ∈ DΓ víi k = 1...n n ∫ f (z)dz = 2πi ∑ Re sf (a k ) (4.7.6) k =1 Γ sin zdz ∫ (z víi Γ l ®−êng trßn | z | = 2 ®Þnh h−íng d−¬ng VÝ dô TÝnh I = + 1)(z + 3) 2 Γ H m f(z) cã hai cùc ®iÓm z = ±i n»m trong miÒn DΓ v mét cùc ®iÓm z = -3 n»m ngo i miÒn DΓ. sin( −i ) sin z Resf(-i) = lim = z → − i ( z − i )( z − 3) − 2 + 6i i sin(i ) -3 Resf(i) = lim = -i (z + i )(z − 3) − 2 − 6i z →i 3 I = 2πi[Resf(-i) + Resf(i)] = - sin(i) 5 §8. ThÆng d− Loga • Cho h m f gi¶i tÝch v kh¸c kh«ng trong B(a, R) - {a}, liªn tôc trªn Γ = ∂B(a, R). TÝch ph©n 1 f ′(z ) 2 πi ∫ f (z ) ResLnf(a) = dz (4.8.1) Γ gäi l thÆng d− loga cña h m f t¹i ®iÓm a. Theo ®Þnh nghÜa trªn f ′(z) víi z ∈ B(a, R) - {a} ResLnf(a) = Resg(a) trong ®ã g(z) = [Ln f(z)]’ = f (z) §Þnh lý Víi c¸c kÝ hiÖu nh− trªn 1. NÕu a l kh«ng ®iÓm cÊp n cña h m th× ResLnf(a) = n 2. NÕu b l cùc ®iÓm cÊp m cña h m f th× ResLnf(b) = -m Chøng minh 1. Theo hÖ qu¶ 3, §4 ∀ z ∈ B(a, R), f(z) = (z - a)nh(z) víi h(z) l h m gi¶i tÝch trong B(a, R) v h(a) ≠ 0 §¹o h m h m f suy ra f’(z) = n(z - a)n-1h(z) + (z - a)nh(z) h ′(z) h ′(z) n g(z) = + víi l h m gi¶i tÝch trong B(a, R) z−a h( z ) h( z ) Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 71
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k Suy ra ResLnf(a) = c-1(g) = n 2. Theo hÖ qu¶ 3, §5 h( z ) ∀ z ∈ B(a, R), f(z) = víi h(z) l h m gi¶i tÝch trong B(a, R) v h(a) ≠ 0 (z − a ) m §¹o h m h m f suy ra −m 1 f’(z) = h(z) + h’(z) m +1 (z − a ) (z − a ) m h ′(z) h ′(z) −m g(z) = + víi l h m gi¶i tÝch trong B(a, R) z−a h( z ) h( z ) Suy ra ResLnf(a) = c-1(g) = -m HÖ qu¶ 1 Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v h m f liªn tôc trªn Γ, cã c¸c kh«ng ®iÓm ak cÊp nk víi k = 1...p v gi¶i tÝch trong DΓ ngo¹i trõ c¸c cùc ®iÓm bj cÊp mj víi j = 1...q 1 f ′(z) p q ∑ nk − ∑ mj = N - M 2 πi ∫ f (z) dz = (4.8.2) k =1 j =1 Γ Chøng minh KÕt hîp ®Þnh lý trªn, c«ng thøc tÝch ph©n Cauchy v lËp luËn t−¬ng tù hÖ qu¶ 1, §7 • Ta xem mét kh«ng ®iÓm cÊp n l n kh«ng ®iÓm ®¬n trïng nhau v mét cùc ®iÓm cÊp m l m cùc ®iÓm ®¬n trïng nhau. Theo c«ng thøc Newtown - Leibniz v ®Þnh nghÜa h m logarit phøc f ′(z) ∫ f (z) dz = ∫ d[ln f (z)] = ∆ΓLnf(z) = ∆Γln| f(z) | + i∆ΓArgf(z) = i∆ΓArgf(z) Γ Γ KÕt hîp víi c«ng thøc (4.8.2) suy ra hÖ qu¶ sau ®©y. HÖ qu¶ 2 (Nguyªn lý Argument) Sè gia cña argument cña h m f khi z ch¹y hÕt mét vßng trªn ®−êng cong Γ kÝn, tr¬n tõng khóc v ®Þnh h−íng d−¬ng b»ng 2π nh©n víi hiÖu sè cña sè kh«ng ®iÓm trõ ®i sè cùc ®iÓm cña h m f n»m trong miÒn DΓ. Tøc l ∆ΓArgf(z) = 2π(N - M) (4.8.3) HÖ qu¶ 3 (§Þnh lý RouchÐ) Cho ®−êng cong Γ ®¬n, kÝn, tr¬n tõng khóc, ®Þnh h−íng d−¬ng v c¸c h m f , g liªn tôc trªn Γ, gi¶i tÝch trong DΓ. KÝ hiÖu NΓ(f) l sè kh«ng ®iÓm cña h m f n»m trong DΓ. Khi ®ã nÕu ∀ z ∈ Γ, | f(z) | > | g(z) | th× NΓ(f + g) = NΓ(f). Chøng minh Trang 72 Gi¸o Tr×nh To¸n Chuyªn §Ò
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k g( z ) g( z ) ∀ z ∈ Γ, < 1 ⇒ ∆ΓArg(1 + Theo gi¶ thiÕt )=0 f (z ) f (z) Suy ra f (z) 1+ 1 ∆ΓArg[f(z) + g(z)] g( z ) NΓ(f + g) = 2π g( z ) 1 1 ∆ΓArg[f(z)(1 + = )] 2π f (z) g( z ) 1 1 ∆ΓArgf(z) + ∆ΓArg(1 + = ) = NΓ(f) 2π 2π f (z) HÖ qu¶ 4 (§Þnh lý D’Alembert - Gauss) Mäi ®a thøc hÖ sè phøc bËc n cã ®óng n kh«ng ®iÓm phøc trong ®ã kh«ng ®iÓm béi k tÝnh l k kh«ng ®iÓm. Chøng minh Gi¶ sö P(z) = a0 + a1z + ... + zn víi ak ∈ ∀ KÝ hiÖu f(z) = zn, g(z) = a0 + ... + an-1zn-1, M = Max{| ak | , k = 0...(n-1)} v R = nM + 1 Trªn ®−êng trßn Γ : | z | = R | g(z) | ≤ M(1 + ... + Rn-1) ≤ nMRn-1 < Rn = | f(z) | Theo hÖ qu¶ 3 NΓ(P) = NΓ(f + g) = NΓ(f) = n §9. C¸c øng dông thÆng d− §Þnh lý (Bæ ®Ò Jordan) Cho ®−êng cong ΓR = {| z | = R, Imz ≥ β} v h m f gi¶i tÝch trong nöa mÆt ph¼ng D = {Imz > β} ngo¹i trõ h÷u h¹n ®iÓm bÊt th−êng. Khi ®ã ta cã ∫ f (z)dz 1. NÕu lim zf(z) = 0 th× lim =0 (4.9.1) z →∞ R → +∞ ΓR iλz ∫ f (z)e 2. NÕu lim f(z) = 0 th× ∀ λ > 0, lim dz = 0 (4.9.2) z →∞ R → +∞ ΓR Chøng minh Γ2 1. Tõ gi¶ thiÕt suy ra M ∀ z ∈ ΓR, | zf(z) | ≤ M R →→ 0 ⇔ | f(z) | ≤ +∞ R Γ3 Γ1 Suy ra θ β Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 73
- h a n g e Vi h a n g e Vi XC XC e e F- F- w w PD PD er er ! ! W W O O N N y y bu bu to to k k lic lic C C w w m m w w w w o o .c .c Ch−¬ng 4. Chuçi H m Phøc V ThÆng D− .d o .d o c u -tr a c k c u -tr a c k M ∫ f (z) ds = ∫ f (z)dz ≤ R(π + 2θ) R →→ 0 +∞ R ΓR Γ 2. Tõ gi¶ thiÕt suy ra ∀ z ∈ ΓR, | f(z) | ≤ M R →→ 0 +∞ Suy ra iλz ∫e iλz iλz iλz ∫e ∫e ∫e f (z)dz ≤ f (z) ds + f (z) ds + f (z) ds ΓR Γ1 Γ2 Γ3 ¦íc l−îng tÝch ph©n, ta cã f (z) ds ≤ 2Me-λyRθ ≤ 2Me-λ|β|β → 0 iλz iλz ∫e ∫e f (z) ds + R → +∞ Γ1 Γ3 π f (z) ds = MR ∫ e − λR sin t dt = πMRe-λRsinα → 0 víi α ∈ (0, π) iλz ∫e R → +∞ Γ2 0 HÖ qu¶ 1 Cho f(z) l ph©n thøc h÷u tû sao cho bËc cña mÉu sè lín h¬n bËc tö sè Ýt nhÊt l hai ®¬n vÞ, cã c¸c cùc ®iÓm ak víi k = 1...p n»m trong nöa mÆt ph¼ng trªn v cã c¸c cùc ®iÓm ®¬n bj víi j = 1...q n»m trªn trôc thùc. Khi ®ã ta cã +∞ q p ∫ f (x)dx = 2πi ∑ Re sf (a k ) + πi ∑ Re sf (b j ) (4.9.3) k =1 j =1 −∞ Chøng minh ΓR • §Ó ®¬n gi¶n, xÐt tr−êng hîp h m f cã mét cùc ®iÓm a thuéc nöa mÆt ph¼ng trªn v mét cùc ®iÓm ®¬n b thuéc a Γρ trôc thùc. Tr−êng hîp tæng qu¸t chøng minh t−¬ng tù. KÝ hiÖu -R b R ΓR : | z | = R, Imz > 0, Γρ : | z | = ρ, Imz > 0 Γ = ΓR ∪ [-R, b - ρ] ∪ Γρ ∪ [b + ρ, R] Theo c«ng thøc (4.7.6) ∫ f (z)dz ∫ f (z)dz + ∫ f (z)dz + ∫ f (z)dz ∫ f (z)dz = 2πiResf(a) + = Γ Γρ ΓR [ − R,b −ρ ] [ b + ρ,R ] KÕt hîp víi c«ng thøc (4.9.1) suy ra +∞ ∫ f (x)dx = ∫ f (z)dz ∫ f (z)dz + lim lim R → +∞ ,ρ →0 R → +∞ ,ρ →0 −∞ [ − R,b −ρ ] [ b + ρ,R ] ∫ f (z)dz = 2πiResf(a) - lim (1) ρ →0 Γρ c −1 Do b l cùc ®iÓm ®¬n nªn f(z) = + g(z) víi g(z) gi¶i tÝch trong l©n cËn ®iÓm b z−b Suy ra h m g(z) bÞ chÆn trªn Γρ Trang 74 Gi¸o Tr×nh To¸n Chuyªn §Ò
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Giải tích các hàm nhiều biến: Những nguyên lý cơ bản và tính toán thực hành - Viện Toán học
352 p | 412 | 163
-
CHƯƠNG 2 PHÂN TÍCH ĐỊNH TÍNH
34 p | 826 | 162
-
Giáo trình Phân tích định tính: Phần 2 - TS.DS. Lê Thị Hải Yến (chủ biên)
66 p | 204 | 87
-
Giáo trình phân tích các tổn thất của dòng khí khi chuyển động qua cánh động cơ phụ thuộc vào đặc tính hình học và chế độ dòng chảy p1
5 p | 88 | 9
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10
5 p | 81 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p3
5 p | 77 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8
5 p | 98 | 3
-
Giáo trình phân tích quy trình ứng dụng cấu tạo các đặc tính của diot trong mạch xoay chiều p1
9 p | 43 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p5
5 p | 73 | 3
-
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9
5 p | 88 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p10
5 p | 65 | 3
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p9
5 p | 68 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p8
5 p | 55 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p7
5 p | 58 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p4
5 p | 61 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p3
5 p | 59 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p2
5 p | 63 | 2
-
Giáo trình hướng dẫn phân tích các tính chất của hàm điều hòa dạng vi phân p6
5 p | 95 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn