Giáo trình Toán học phần 10
lượt xem 8
download
Định lý Cho các ẩn m g, h ∈ C1([0, 2π], 3) thoả m n g(0) = g(2π), h(0) = h(2π). Chuỗi h m (8.6.11) với các hệ số ak , bk , ck v dk xác định từ hệ ph−ơng trình (8.6.12) l nghiệm duy nhất v ổn định của b i toán DE1b.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình Toán học phần 10
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt 2π 2π 1 1 2π ∫ 2π ∫ a0 + b0lnρ = g(θ)dθ h(θ)dθ a0 + b0lnR = 0 0 2π 2π 1 1 π∫ π∫ akρk + bkρ-k = g(θ) cos kθdθ h(θ) cos kθdθ akRk + bkR-k = 0 0 2π 2π 1 1 π∫ π∫ ckρk + dkρ-k = g(θ) sin kθdθ h(θ) sin kθdθ ckRk + dkR-k = (8.6.12) 0 0 §Þnh lý Cho c¸c h m g, h ∈ C1([0, 2π], 3) tho¶ m n g(0) = g(2π), h(0) = h(2π). Chuçi h m (8.6.11) víi c¸c hÖ sè ak , bk , ck v dk x¸c ®Þnh tõ hÖ ph−¬ng tr×nh (8.6.12) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n DE1b. §7. B i to¸n Dirichlet trong h×nh ch÷ nhËt B i to¸n DE2a Cho miÒn D = [0, l] × [0, d] v h m ga ∈ C([0, l], 3) T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∂ 2u ∂ 2 u ∆u = + = 0 víi (x, y) ∈ D0 (8.7.1) ∂x2 ∂y2 v ®iÒu kiÖn biªn u(x, 0) = ga(x), u(x, d) = u(0, y) = u(l, y) = 0 (8.7.2) • T×m nghiÖm cña b i to¸n DE2a d¹ng t¸ch biÕn u(x, y) = X(x)Y(y) Thay v o ph−¬ng tr×nh (8.7.1) ®−a vÒ hÖ ph−¬ng tr×nh vi ph©n X”(x) + λX(x) = 0 Y”(y) - λY(y) = 0 X(0) = X(l) = Y(d) = 0 víi λ ∈ 3 (8.7.3) B i to¸n (8.7.3) cã hä nghiÖm riªng ®éc lËp 2 kπ kπ kπ (d − y) , λk = víi k ∈ ∠* Xk(x) = Aksin x , Yk(y) = Bksh l l l Suy ra cã hä nghiÖm riªng ®éc lËp cña b i to¸n DE2a kπ kπ (d − y) sin x víi ak = AkBk ∈ 3, k ∈ ∠* uk(x, y) = ak sh l l • T×m nghiÖm tæng qu¸t cña b i to¸n DE2a d¹ng chuçi h m Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 147
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt kπ kπ +∞ +∞ ∑u ∑a (d − y) sin u(x, y) = k (x, y ) = (8.7.4) sh x k l l k =1 k =1 ThÕ v o ®iÒu kiÖn biªn (8.7.2) kπd kπ +∞ u(x, 0) = ∑ a k sh x = ga(x) sin l l k =1 NÕu h m ga cã thÓ khai triÓn th nh chuçi Fourier trªn ®o¹n [0, l] th× kπ l 2 ∫ g a (x) sin l xdx ak = (8.7.5) kπd 0 lsh l §Þnh lý Cho h m ga ∈ C1([0, l], 3) tho¶ m n ga(0) = ga(l) = 0. Chuçi h m (8.7.4) víi hÖ sè ak tÝnh theo c«ng thøc (8.7.5) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n DE2a. • LËp luËn t−¬ng tù nh− trªn, chóng ta gi¶i c¸c b i to¸n sau ®©y. B i to¸n DE2b Cho miÒn D = [0, l] × [0, d] v h m gb ∈ C([0, d], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v ®iÒu kiÖn biªn u(l, y) = gb(y), u(x, d) = u(0, y) = u(x, 0) = 0 §Þnh lý Cho h m gb ∈ C1([0, d], 3) tho¶ m n gb(0) = gb(d) = 0. B i to¸n DE2b cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc kπ d kπ kπ +∞ 2 ∑ b k sh ∫ g b (y) sin d ydy u(x, y) = y víi bk = (8.7.6) x sin kπl 0 d d k =1 dsh d B i to¸n DE2c Cho miÒn D = [0, l] × [0, d] v h m gc ∈ C([0, l], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v ®iÒu kiÖn biªn u(x, d) = gc(x), u(0, x) = u(x, 0) = u(l, y) = 0 §Þnh lý Cho h m gc ∈ C1([0, l], 3) tho¶ m n gc(0) = gc(l) = 0. B i to¸n DE2c cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc kπ l kπ kπ +∞ 2 ∑ c k sh ∫ gc (x) sin l xdx u(x, y) = x víi ck = (8.7.7) y sin kπd 0 l l k =1 lsh l Trang 148 Gi¸o Tr×nh To¸n Chuyªn §Ò
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt B i to¸n DE2d Cho D = [0, l] × [0, d] v h m gd ∈ C([0, d], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v ®iÒu kiÖn biªn u(0, y) = gd(y), u(x, 0) = u(l, y) = u(x, d) = 0 §Þnh lý Cho h m gd ∈ C1([0, d], 3) tho¶ m n gd(0) = gd(d) = 0. B i to¸n DE2d cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc kπ kπ +∞ u(x, y) = ∑ d k sh (l − x) sin y d d k =1 kπ d 2 ∫ g d (y) sin d ydy víi dk = (8.7.8) kπl 0 dsh d B i to¸n DE2 Cho miÒn D = [0, l] × [0, d], c¸c h m g1 , g3 ∈ C([0, l], 3) v g2 , g4 ∈ C([0, d], 3) T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v ®iÒu kiÖn biªn u(x, 0) = g1(x), u(l, y) = g2(y), u(x, d) = g3(x), u(0, y) = g4(y) • T×m nghiÖm cña b i to¸n DE2 d−íi d¹ng u(x, y) = u0(x, y) + u©(x, y) + ub(x, y) + uc(x, y) + ud(x, y) Trong ®ã uα(x, y) l nghiÖm cña b i to¸n DE2α. Hm u0(x, y) = A + Bx + Cy + Dxy (8.7.9) l nghiÖm cña b i to¸n DE sao cho uα(x, y) triÖt tiªu t¹i c¸c ®Ønh cña h×nh ch÷ nhËt. Do tÝnh liªn tôc cña h m u(x, y) trªn biªn ∂D u(0, 0) = g4(0) = g1(0) = A u(l, 0) = g1(l) = g2(0) = A + Bl u(l, d) = g2(d) = g3(l) = A + Bl + Cd + Dld u(0, d) = g3(0) = g4(d) = A + Cd Gi¶i hÖ ph−¬ng tr×nh trªn suy ra g (d ) − g 4 (0) g (l) − g1 (0) ,C= 4 A = g4(0) = g1(0), B = 1 l d g (l) − g3 (0) − g1 (l) + g1 (0) g (d ) − g 2 (0) − g 4 (d ) + g 4 (0) D= 3 =2 (8.7.10) ld ld Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 149
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt • ThÕ v o ®iÒu kiÖn biªn suy ra x ga(x) = ua(x, 0) = g1(x) - g1(0) - (g1(l) - g1(0)) l x gc(x) = uc(x, d) = g3(x) - g3(0) - (g3(l) - g3(0)) l y gb(y) = ub(l, y) = g2(y) - g2(0) - (g2(d) - g2(0)) d y gd(y) = ud(0, y) = g4(y) - g4(0) - (g4(d) - g4(0)) (8.7.11) d • KÕt hîp c¸c c«ng thøc (8.7.4) - (8.7.8) nhËn ®−îc c«ng thøc kπ kπ kπ +∞ u(x, y) = u0(x, y) + ∑ a k sh (d − y) + c k sh y sin x l l l k =1 kπ kπ kπ +∞ ∑b x + d k sh (l − x) sin + (8.7.12) sh y k d d d k =1 §Þnh lý Cho c¸c h m g1 , g3 ∈ C1([0, l], 3) v g2 , g4 ∈ C1([0, d], 3) tho¶ m n g4(0) = g1(0), g1(l) = g2(0), g2(d) = g3(l), g3(0) = g4(d) Chuçi h m (8.7.12) víi h m u0(x, y) x¸c ®Þnh theo c¸c c«ng thøc (8.7.9) - (8.7.10) v c¸c hÖ sè ak , bk , ck v dk x¸c ®Þnh theo c¸c c«ng thøc (8.7.5) - (8.7.8) trong ®ã c¸c h m ga , gb , gc v gd x¸c ®Þnh theo c«ng thøc (8.7.11) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n DE2. §8. B i to¸n Neumann B i to¸n NE1 Cho miÒn D = [0, R] × [0, 2π] v h m h ∈ C([0, 2π], 3) T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace 1 ∂ ∂u 1 ∂ 2 u ∆u = r + = 0 víi (r, ϕ) ∈ D0 (8.8.1) r ∂r ∂r r 2 ∂ϕ2 v ®iÒu kiÖn biªn ∂u (R, θ) = h(θ) (8.8.2) ∂r • T×m nghiÖm cña b i to¸n NE1 d¹ng t¸ch biÕn u(r, ϕ) = V(r)Φ(ϕ) Trang 150 Gi¸o Tr×nh To¸n Chuyªn §Ò
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt Thay v o ph−¬ng tr×nh (8.8.1) nhËn ®−îc hÖ ph−¬ng tr×nh vi ph©n Φ”(ϕ) + λΦ(ϕ) = 0 r2V”(r) + rV’(r) - λV(r) = 0, λ ∈ 3 (8.8.3) B i to¸n (8.8.3) cã hä nghiÖm riªng ®éc lËp u0 = a0, uk(r, ϕ) = rk(akcoskϕ + bksinkϕ) víi ak = CkAk , bk = CkBk , k ∈ ∠* • T×m nghiÖm tæng qu¸t cña b i to¸n NE1 d¹ng chuçi h m +∞ u(r, ϕ) = a0 + ∑ r k (a k cos kϕ + b k sin kϕ) (8.8.4) k =1 ThÕ v o ®iÒu kiÖn biªn (8.8.2) ∂u +∞ (R, θ) = ∑ kR k −1 (a k cos kθ + b k sin kθ) = h(θ) ∂r k =1 NÕu h m h cã thÓ khai triÓn th nh chuçi Fourier th× a0 = u(0, θ) 2π 2π 1 1 ∫ h(θ) cos kθdθ , bk = kπR k −1 ∫ h(θ) sin kθdθ ak = (8.8.5) kπR k −1 0 0 §Þnh lý Cho h ∈ C1([0, 2π], 3) tho¶ m n h(0) = h(2π). Chuçi h m (8.8.4) víi c¸c hÖ sè ak v bk tÝnh theo c«ng thøc (8.8.5) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n NE1. • LËp luËn t−¬ng tù nh− c¸c b i to¸n DE2 chung ta gi¶i c¸c b i to¸n sau ®©y B i to¸n NE2b Cho miÒn D = [0, l] × [0, d] v h m hb ∈ C([0, d], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∂ 2u ∂ 2 u ∆u = + = 0 víi (x, y) ∈ D0 ∂x2 ∂y2 v c¸c ®iÒu kiÖn biªn ∂u u(x, d) = u(0, y) = u(x, 0) = 0, (l, y) = hb(y) ∂x §Þnh lý Cho h m hb ∈ C1([0, d], 3). B i to¸n NE2b cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc kπ kπ kπ d +∞ 2 u(x, y) = ∑ b k sh kπl ∫ y víi bk = h (y) sin ydy (8.8.6) x sin b d d d kπch k =1 0 d Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 151
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt B i to¸n NE2d Cho miÒn D = [0, l] × [0, d] v h m hd ∈ C([0, d], 3). T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v c¸c ®iÒu kiÖn biªn ∂u u(x, 0) = u(l, y) = u(x, d) = 0, (0, y) = hd(y) ∂x §Þnh lý Cho h m hd ∈ C1([0, d], 3). B i to¸n NE2d cã nghiÖm duy nhÊt v æn ®Þnh x¸c ®Þnh theo c«ng thøc kπ kπ +∞ u(x, y) = ∑ d k sh (l − x) sin y d d k =1 −2 kπ d ∫ h d (y) sin d ydy víi dk = (8.8.7) kπl 0 kπch d B i to¸n NE2 Cho miÒn D = [0, l] × [0, d] v c¸c h m g1 , g3 ∈ C([0, l], 3) v h2 , h4 ∈ C([0, d], 3) T×m h m u ∈ C(D, 3) tho¶ m n ph−¬ng tr×nh Laplace ∆u = 0 víi (x, y) ∈ D0 v c¸c ®iÒu kiÖn biªn ∂u ∂u u(x, 0) = g1(x), u(x, d) = g3(x) v (l, y) = h2(y), (0, y) = h4(y) ∂x ∂x • T×m nghiÖm cña b i to¸n NE2 d−íi d¹ng u(x, y) = u0(x, y) + ua(x, y) + ub(x, y) + uc(x, y) + ud(x, y) (8.8.8) Trong ®ã c¸c h m ua(x, y) v uc(x, y) l nghiÖm cña b i to¸n DE2a v DE2c, c¸c h m ub(x, y) v ud(x, y) l nghiÖm cña b i to¸n NE2b v NE2d, cßn h m u0(x, y) = A + Bx + Cy + Dxy (8.8.9) l nghiÖm cña b i to¸n DE sao cho uα(x, y) triÖt tiªu t¹i c¸c ®Ønh cña h×nh ch÷ nhËt • LËp luËn t−¬ng tù nh− b i to¸n DE2 suy ra g1 (l) − g1 (0) A = g1(0) B= l g3 (0) − g1 (0) g (l) − g1 (l) − g3 (0) + g1 (0) D= 3 C= (8.8.10) d ld ThÕ v o ®iÒu kiÖn biªn suy ra Trang 152 Gi¸o Tr×nh To¸n Chuyªn §Ò
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt x ga(x) = g1(x) - g1(0) - (g1(l) - g1(0)) l x gc(x) = g3(x) - g3(0) - (g3(l) - g3(0)) l hb(y) = h2(y) - (B + Dy) g (l) − g1 (0) y g3 (l) − g1 (l) − g3 (0) + g1 (0) h2(y) - 1 = - l d l hd(y) = h4(y) - (B + Dy) g (l) − g1 (0) y g3 (l) − g1 (l) − g3 (0) + g1 (0) h4(y) - 1 = - (8.8.11) l d l • KÕt hîp c¸c c«ng thøc (8.7.4), (8.7.6), (8.8.6), (8.8.7) v (8.8.8) suy ra c«ng thøc kπ kπ kπ +∞ u(x, y) = u0(x, y) + ∑ a k sh (d − y) + c k sh y sin x l l l k =1 kπ kπ kπ +∞ ∑b x + d k sh (l − x) sin + (8.8.12) sh y k d d d k =1 §Þnh lý Cho c¸c h m g1 , g3 ∈ C1([0, l], 3) v g2 , g4 ∈ C1([0, d], 3) tho¶ m n g′ (0) = hd(0), g′ (l) = hb(0) v g′c (0) = hd(d), g′c (l) = hb(d) a a Chuçi h m (8.8.12) víi h m u0(x, y) x¸c ®Þnh theo c¸c c«ng thøc (8.8.9) - (8.8.10) v c¸c hÖ sè ak v ck x¸c ®Þnh theo c¸c c«ng thøc (8.7.5) v (8.7.7) cßn c¸c hÖ sè bk v dk x¸c ®Þnh theo c¸c c«ng thøc (8.8.6) v (8.8.7) víi c¸c h m ga , gc , hb v hd x¸c ®Þnh theo c«ng thøc (8.8.11) l nghiÖm duy nhÊt v æn ®Þnh cña b i to¸n NE2. B i tËp ch−¬ng 8 • Gi¶i c¸c b i to¸n Cauchy ∂2u ∂u 2 ut=0 = xe−x = a2 2 1. ∂t ∂x ∂2u ∂u = a2 2 + 3xt2 2. ut=0 = sinx ∂t ∂x 2∂ u ∂u 2 + xe-t 3. =a ut=0 = cosx ∂t ∂x 2 ∂2u ∂u = a2 2 + te-x 4. ut=0 = sinx ∂t ∂x Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 153
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt • Gi¶i c¸c b i to¸n gi¶ Cauchy ∂2u ∂u = a2 2 + xsint 5. ut=0 = sinx, u(0, t) = 0 ∂t ∂x 2∂ u ∂u 2 ut=0 = xcosx, u(0, t) = et 6. =a + tsinx ∂t ∂x 2 ∂2u ∂u ∂u = a2 2 + te-x 7. ut=0 = cosx , (0, t) = sint ∂t ∂x ∂x ∂2u ∂u ∂u = a2 2 + xe-t 8. ut=0 = sinx , (0, t) = cost ∂t ∂x ∂x • Gi¶i c¸c b i to¸n hçn hîp sau ®©y ∂2u ∂u = a2 2 9. ut=0 = x(l - x), u(0, t) = u(l, t) = 0 ∂t ∂x ∂2u ∂u = a2 2 + tsinx 10. ut=0 = sinx, u(0, t) = u(l, t) = 0 ∂t ∂x ∂u ∂ 2u = a2 2 + tcosx 11. ut=0 = cosx , u(0, t) = 0, u(l, t) = t ∂t ∂x ∂2u ∂u ut=0 = 0, u(0, t) = 0, u(l, t) = Asinωt = a2 2 + 3xt2 12. ∂t ∂x 2∂ u ∂u 2 + (1 - x)et ut=0 = 1, u(0, t) = et, u(l, t) = 0 13. =a ∂t ∂x 2 ∂2u ∂u = a2 2 + xet ut=0 = 2x, u(0, t) = 0, u(l, t) = et 14. ∂t ∂x • Gi¶i b i to¸n Dirichlet trong h×nh trßn 15. ∆u = 0 víi (r, ϕ) ∈ [0, 2] × [0, 2π] ur=2 = x2 - xy + 2 v 16. ∆u = 0 víi (r, ϕ) ∈ [0, 2] × [0, 2π] u(2, ϕ) = A + Bsinϕ v 17. ∆u = 0 víi (r, ϕ) ∈ [0, 1] × [0, 2π] u(1, ϕ) = sin3ϕ v 18. ∆u = 0 víi (r, ϕ) ∈ [0, 1] × [0, 2π] u(1, ϕ) = cos4ϕ v 19. ∆u = 0 víi (r, ϕ) ∈ [0, R] × [0, 2π] u(R, ϕ) = 0 v • Gi¶i b i to¸n Dirichlet trong h×nh v nh kh¨n 20. ∆u = 0 víi (r, ϕ) ∈ [1, 2] × [0, 2π] v u(1, ϕ) = A, u(2, ϕ) = B 21. ∆u = 0 víi (r, ϕ) ∈ [1, 2] × [0, 2π] v u(1, ϕ) = 1 + cos2ϕ, u(2, ϕ) = sin2ϕ 22. ∆u = 0 víi (r, ϕ) ∈ [0, R] × [0, π] v u(r, 0) = u(r, π) = 0, u(R, ϕ) = Aϕ Trang 154 Gi¸o Tr×nh To¸n Chuyªn §Ò
- Ch−¬ng 8. Ph−¬ng Tr×nh TruyÒn NhiÖt • Gi¶i b i to¸n Dirichlet trong h×nh ch÷ nhËt 23. ∆u = 0 víi (x, y) ∈ [0, a] × [0, b] πx u(0, y) = Ay(b - y), u(a, y) = 0, u(x, 0) = Bsin , u(x, b) = 0 a ∆u = 0 víi (x, y) ∈ [0, π] × [-1, 1] 24. u(0, y) = u(π, y) = 0, u(x, -1) = u(x, 1) = sin2x ∆u = 0 víi (x, y) ∈ [0, a] × [0, +∞) 25. x u(0, y) = u(a, y) = 0, u(x, 0) = A(1 - ), u(x, +∞) = 0 a • Gi¶i b i to¸n Neuman trong h×nh trßn ∂u ∆u = 0 víi (r, ϕ) ∈ [0, 2] × [0, 2π] v (2, ϕ) = Aϕ 26. ∂r ∂u ∆u = 0 víi (r, ϕ) ∈ [0, 1] × [0, 2π] v (1, ϕ) = 2cosϕ 27. ∂r ∂u ∆u = 0 víi (r, ϕ) ∈ [0, 1] × [0, 2π] v (1, ϕ) = - sinϕ 29. ∂r • Gi¶i b i to¸n hçn hîp trong h×nh ch÷ nhËt 29. ∆u = 0 víi (x, y) ∈ [0, a] × [0, b] ∂u ∂u u(0, y) = A, u(a, y) = By, (x, 0) = (x, b) = 0 ∂y ∂y ∆u = 0 víi (x, y) ∈ [0, a] × [0, b] 30. ∂u ∂u u(0, y) = A, u(a, y) = By, (x, 0) = (x, b) = 0 ∂y ∂y ∆u = 0 víi (x, y) ∈ [0, π] × [0, π] 31. ∂u ∂u u(x, 0) = A, u(x, π) = Bx, (π, y) = siny (0, y) = cosy, ∂x ∂x ∆u = -2 víi (x, y) ∈ [0, a] × [-b, b] 32. u(0, y) = u(a, y) = u(x, 0) = u(x, b) = 0 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 155
- T i LiÖu Tham Kh¶o [1] §Æng §×nh Ang - TrÇn L−u C−êng - Huúnh B¸ L©n - NguyÔn V¨n Nh©n (2001) BiÕn ®æi tÝch ph©n, NXB Gi¸o dôc, H néi [2] §Ëu ThÕ CÊp (1999) H m mét biÕn phøc, NXB Gi¸o dôc, H néi [3] D−¬ng T«n §¶m (1992) Ph−¬ng tr×nh vËt lý - to¸n, NXB §¹i häc & GDCN, H néi [4] G.M Fichtengon (1972) C¬ së gi¶i tÝch to¸n häc, TËp 2, NXB §¹i häc & THCN, H néi [5] Phan B¸ Ngäc (1980) H m biÕn phøc v phÐp biÕn ®æi Laplace, NXB §¹i häc & THCN, H néi [6] B.V Sabat (1979) NhËp m«n gi¶i tÝch phøc, TËp 1, NXB §¹i häc & THCN, H néi [7] NguyÔn Thuû Thanh (1985) C¬ së lý thuyÕt h m biÕn phøc, NXB §¹i häc & THCN, H néi [8] NguyÔn §×nh TrÝ - NguyÔn Träng Th¸i (1977) Ph−¬ng tr×nh vËt lý - to¸n, NXB §¹i häc & THCN, H néi [9] A.V Oppenheim & A.S Willsky (1997) Signals & Systems, Prentice Hall, New Jersey [10] J. Monier (1997) Analyse 3 et Analyse 4, Dunod, Paris [11] W. Rudin (1998) Analyse rÐelle et complexe, Dunod, Paris [12] H. Pc (1978) ДДДДДДДДДДДДД Д ДДДДДДДДДД ДДДДДДДДД,ДДД 2, H, Trang 156 Gi¸o Tr×nh To¸n Chuyªn §Ò
- Môc lôc Lêi nãi ®Çu ................................................................................................................................................... 6 Ch−¬ng 1. Sè phøc........................................................................................................................................ 5 §1. Tr−êng sè phøc ................................................................................................................................. 5 §2. D¹ng ®¹i sè cña sè phøc ................................................................................................................... 6 §3. D¹ng l−îng gi¸c cña sè phøc ............................................................................................................ 7 §4. C¸c øng dông h×nh häc ph¼ng......................................................................................................... 10 §5. D y trÞ phøc .................................................................................................................................... 12 §6. H m trÞ phøc ................................................................................................................................... 14 §7. TËp con cña tËp sè phøc.................................................................................................................. 16 B i tËp ch−¬ng 1 .................................................................................................................................... 19 Ch−¬ng 2. H m biÕn phøc.......................................................................................................................... 22 §1. H m biÕn phøc................................................................................................................................ 22 §2. Giíi h¹n v liªn tôc......................................................................................................................... 23 §3. §¹o h m phøc................................................................................................................................. 25 §4. H m gi¶i tÝch .................................................................................................................................. 27 §5. H m luü thõa .................................................................................................................................. 28 §6. H m mò .......................................................................................................................................... 30 §7. H m l−îng gi¸c............................................................................................................................... 31 §8. BiÕn h×nh b¶o gi¸c ......................................................................................................................... 32 §9. H m tuyÕn tÝnh v h m nghÞch ®¶o ................................................................................................ 34 §10. H m ph©n tuyÕn tÝnh v h m Jucop .............................................................................................. 36 §11. C¸c vÝ dô biÕn h×nh b¶o gi¸c......................................................................................................... 37 B i tËp ch−¬ng 2 .................................................................................................................................... 40 Ch−¬ng 3. TÝch Ph©n Phøc ......................................................................................................................... 43 §1. TÝch ph©n phøc................................................................................................................................ 43 §2. C¸c tÝnh chÊt cña tÝch ph©n phøc .................................................................................................... 44 §3. §Þnh lý Cauchy ............................................................................................................................... 46 §4. C«ng thøc tÝch ph©n Cauchy ........................................................................................................... 48 §5. TÝch ph©n Cauchy ........................................................................................................................... 50 §6. §Þnh lý trÞ trung b×nh ...................................................................................................................... 52 §7. H m ®iÒu ho .................................................................................................................................. 54 B i tËp ch−¬ng 3 .................................................................................................................................... 57 Ch−¬ng 4. CHUçI h m PHøC v ThÆng d−................................................................................................ 59 §1. Chuçi h m phøc.............................................................................................................................. 59 §2. Chuçi luü thõa phøc........................................................................................................................ 61 §3. Chuçi Taylor ................................................................................................................................... 63 §4. Kh«ng ®iÓm cña h m gi¶i tÝch ........................................................................................................ 64 §5. Chuçi Laurent ................................................................................................................................. 66 §6. Ph©n lo¹i ®iÓm bÊt th−êng .............................................................................................................. 67 §7. ThÆng d− ......................................................................................................................................... 69 §8. ThÆng d− Loga............................................................................................................................... 71 §9. C¸c øng dông thÆng d− ................................................................................................................... 73 B i tËp ch−¬ng 4 .................................................................................................................................... 76 Ch−¬ng 5. BiÕn ®æi fourier v BiÕn ®æi laplace .......................................................................................... 79 §1. TÝch ph©n suy réng ......................................................................................................................... 79 §2. C¸c bæ ®Ò Fourier............................................................................................................................ 81 Gi¸o Tr×nh To¸n Chuyªn §Ò Trang 157
- §3. BiÕn ®æi Fourier...............................................................................................................................83 §4. TÝnh chÊt cña biÕn ®æi Fourier ........................................................................................................85 §5. T×m ¶nh, gèc cña biÕn ®æi Fourier ..................................................................................................87 §6. BiÕn ®æi Laplace..............................................................................................................................91 §7. BiÕn ®æi Laplace ng−îc ...................................................................................................................92 §8. TÝnh chÊt cña BiÕn ®æi Laplace .......................................................................................................94 §9. T×m ¶nh, gèc cña biÕn ®æi Laplace..................................................................................................96 B i tËp ch−¬ng 5.....................................................................................................................................99 Ch−¬ng 6. Lý thuyÕt tr−êng ......................................................................................................................101 §1. Tr−êng v« h−íng ...........................................................................................................................101 §2. Gradient.........................................................................................................................................102 §3. Tr−êng vect¬ .................................................................................................................................103 §4. Th«ng l−îng ..................................................................................................................................104 §5. Ho n l−u........................................................................................................................................106 §6. To¸n tö Hamilton ..........................................................................................................................107 §7. Tr−êng thÕ .....................................................................................................................................108 §8. Tr−êng èng ....................................................................................................................................110 B i tËp ch−¬ng 6...................................................................................................................................111 Ch−¬ng 7. Ph−¬ng tr×nh truyÒn sãng.........................................................................................................113 §1. Ph−¬ng tr×nh ®¹o h m riªng tuyÕn tÝnh cÊp 2 ................................................................................113 §2. Ph−¬ng tr×nh vËt lý - to¸n ..............................................................................................................116 §3. C¸c b i to¸n c¬ b¶n .......................................................................................................................118 §4. B i to¸n Cauchy thuÇn nhÊt...........................................................................................................120 §5. B i to¸n Cauchy kh«ng thuÇn nhÊt................................................................................................122 §6. B i to¸n gi¶ Cauchy.......................................................................................................................124 §7. B i to¸n hçn hîp thuÇn nhÊt ..........................................................................................................126 §8. B i to¸n hçn hîp kh«ng thuÇn nhÊt ...............................................................................................128 B i tËp ch−¬ng 7...................................................................................................................................131 Ch−¬ng 8. Ph−¬ng tr×nh truyÒn nhiÖt ........................................................................................................133 §1. B i to¸n Cauchy thuÇn nhÊt...........................................................................................................133 §2. B i to¸n Cauchy kh«ng thuÇn nhÊt................................................................................................135 §3. B i to¸n gi¶ Cauchy.......................................................................................................................137 §4. B i to¸n hçn hîp thuÇn nhÊt ..........................................................................................................140 §5. B i to¸n hçn hîp kh«ng thuÇn nhÊt ...............................................................................................142 §6. B i to¸n Dirichlet trong h×nh trßn..................................................................................................144 §7. B i to¸n Dirichlet trong h×nh ch÷ nhËt ..........................................................................................147 §8. B i to¸n Neumann .........................................................................................................................150 B i tËp ch−¬ng 8...................................................................................................................................153 T i LiÖu Tham Kh¶o.................................................................................................................................156 Môc lôc.....................................................................................................................................................157 Trang 158 Gi¸o Tr×nh To¸n Chuyªn §Ò
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình Toán rời rạc ứng dụng trong tin học: Phần 2 - NXB KH và KT Hà Nội
362 p | 519 | 252
-
Giáo trình Toán học cao cấp (tập 2) - NXB Giáo dục
213 p | 594 | 148
-
Giáo trình Cơ học chất lỏng 10
14 p | 180 | 55
-
Đề thi hết học phần: TOÁN KINH TẾ 1 (đề 1)
5 p | 198 | 39
-
Giáo trình -Kiểm soát vệ sinh thú y các sản phẩm động vật - An toàn thực phẩm-chương 10
20 p | 132 | 34
-
Đề kiểm tra môn: phương trình vi phân đạo hàm riêng, đề số 10
1 p | 157 | 28
-
Giáo trình toán học - Tập 3 P19
29 p | 97 | 14
-
Giáo trình Toán cao cấp (bậc cao đẳng khối kỹ thuật và kinh tế): Phần 2
98 p | 129 | 14
-
Giáo trình Toán cao cấp: Phần 1 (Dùng cho sinh viên học các hệ Kinh tế)
171 p | 60 | 8
-
Giáo trình hướng dẫn phân tích cấu tạo mạng tinh thể lý tưởng của kim loại nguyên chất p9
5 p | 63 | 8
-
Giáo trình Toán cao cấp: Phần 2 (Dùng cho sinh viên học các hệ Kinh tế)
149 p | 24 | 6
-
Giáo trình hướng dẫn phân tích nguyên lý chồng chất các chấn động trong hiện tượng giao thoa p2
5 p | 88 | 5
-
Hướng dẫn cách tính đúng dành cho sinh viên phần 10
5 p | 78 | 5
-
Giáo trình phân tích khả năng thẩm định quá trình kiểm định hệ số ổn định lật p1
5 p | 59 | 4
-
Giáo trình xử lý nước các hợp chất hữu cơ bằng phương pháp cơ lý học kết hợp hóa học-hóa lý p8
10 p | 62 | 4
-
Giáo trình hướng dẫn sử dụng các thiết bị phân li các giọt ẩm ra khỏi hơi và sang bộ quá nhiệt p10
5 p | 59 | 3
-
Đánh giá năng lực mô hình hóa toán học của học sinh: Trường hợp chủ đề hệ thức lượng trong tam giác ở lớp 10
15 p | 17 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn