intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Khoa học: Nghiên cứu phân lập tuyển chọn các chủng vi sinh vật ứng dụng xử lý nước thải giàu Nitơ, Photpho

Chia sẻ: Na Na | Ngày: | Loại File: PDF | Số trang:76

148
lượt xem
46
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề tài "Nghiên cứu phân lập tuyển chọn các chủng vi sinh vật ứng dụng xử lý nước thải giàu Nitơ, Photpho” nhằm mục đích góp phần tìm hiểu sự đa dạng về các chủng vi sinh vật tạo màng trong tự nhiên cũng như khả năng ứng dụng trong xử lý nước ô nhiễm.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Khoa học: Nghiên cứu phân lập tuyển chọn các chủng vi sinh vật ứng dụng xử lý nước thải giàu Nitơ, Photpho

  1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------- Ngô Thị Kim Toán NGHIÊN CỨU PHÂN LẬP TUYỂN CHỌN CÁC CHỦNG VI SINH VẬT ỨNG DỤNG XỬ LÝ NƯỚC THẢI GIÀU NITƠ, PHOTPHO LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2012
  2. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------- Ngô Thị Kim Toán NGHIÊN CỨU PHÂN LẬP TUYỂN CHỌN CÁC CHỦNG VI SINH VẬT ỨNG DỤNG XỬ LÝ NƯỚC THẢI GIÀU NITƠ, PHOTPHO Chuyên ngành: Sinh học thực nghiệm Mã số: 60 42 30 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN QUANG HUY Hà Nội – 2012
  3. Lêi C¶m ¬n Lêi ®Çu tiªn, em xin göi lêi c¶m ¬n ch©n thµnh ®Õn TS. NguyÔn Quang Huy, ng­êi ThÇy ®· tËn t×nh h­íng dÉn, chØ b¶o em trong suèt thêi gian häc tËp vµ thùc hiÖn luËn v¨n. Em xin göi lêi c¶m ¬n ch©n thµnh ®Õn c¸c thÇy c« gi¸o trong Khoa Sinh häc, Tr­êng §¹i häc Khoa häc Tù Nhiªn, §HQGHN ®· dµnh t©m huyÕt gi¶ng d¹y, trang bÞ kiÕn thøc cho chóng em trong suèt qu¸ tr×nh häc tËp vµ thùc hiÖn luËn v¨n. Trong qu¸ tr×nh häc tËp vµ thùc hiÖn luËn v¨n, em ®· nhËn ®­îc rÊt nhiÒu sù gióp ®ì, hç trî. Em xin göi lêi c¶m ¬n ch©n thµnh ®Õn c¸c thÇy c«, c¸n bé, häc viªn, sinh viªn trong Bé m«n Sinh lý thùc vËt vµ Hãa sinh, Khoa Sinh häc; Phßng Enzym häc vµ Ph©n tÝch ho¹t tÝnh sinh häc, Phßng thÝ nghiÖm träng ®iÓm C«ng nghÖ Protein vµ Enzym. §Ò tµi thùc hiÖn cã sù hç trî kinh phÝ cña ®Ò tµi Nghiªn cøu ph¸t triÓn c«ng nghÖ mµng sinh häc trong xö lý n­íc th¶i giµu nit¬ vµ photpho cña Bé C«ng th­¬ng Cuèi cïng, em xin göi lêi c¶m ¬n ®Õn gia ®×nh, b¹n bÌ ®· lu«n ë bªn ®éng viªn, gióp ®ì em trong suèt thêi gian häc tËp vµ thùc hiÖn luËn v¨n, gióp em tr­ëng thµnh h¬n khi s¾p b­íc ®i trªn nh÷ng con ®­êng míi. Hµ Néi, th¸ng 12 n¨m 2012 Häc viªn Ng« ThÞ Kim To¸n
  4. Luận văn thạc sĩ MỤC LỤC MỞ ĐẦU ................................................................................................................ 1 CHƯƠNG 1: TỔNG QUAN TÀI LIỆU .................................................................. 3 1.1. Tình trạng ô nhiễm môi trường nước hiện nay ở Việt Nam và thế giới ........... 3 1.2. Các phương pháp xử lý ô nhiễm nước thải có chứa hợp chất nitơ, photpho hiện nay ................................................................................................................... 5 1.2.1. Phương pháp hóa học........................................................................... 5 1.2.1.1. Xử lý các hợp chất chứa nitơ bằng phương pháp hóa học .............. 5 1.2.1.2. Xử lý các hợp chất photpho bằng phương pháp hóa học. ............... 6 1.2.2. Phương pháp sinh học.......................................................................... 7 1.3. Các vi sinh vật có khả năng chuyển hóa các hợp chất chứa nitơ, photpho trong xử lý ô nhiễm nước thải. .........................................................................................10 1.3.1. Vi sinh vật có khả năng chuyển hóa các hợp chất chứa nitơ ............... 10 1.3.2. Vi sinh vật có khả năng tích lũy photpho............................................ 12 1.4. Màng sinh học và ứng dụng của màng sinh học trong việc xử lý ô nhiễm nước thải giàu nitơ, photpho. ...........................................................................................14 1.4.1. Màng sinh học ................................................................................... 14 1.4.1.1. Định nghĩa về màng sinh học ...................................................... 14 1.4.1.2. Thành phần và quá trình hình thành màng sinh học ..................... 14 1.4.2. Vai trò và ứng dụng của sự hình thành màng sinh học ........................ 18 1.4.2.1. Vai trò của sự hình thành màng sinh học ..................................... 18 1.4.2.2. Ứng dụng của màng sinh học trong xử lý ô nhiễm....................... 20 CHƯƠNG 2: NGUYÊN LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU .................. 23 2.1. Nguyên liệu...................................................................................................23 2.2. Hóa chất, thiết bị ...........................................................................................23 2.2.1. Môi trường nuôi cấy .......................................................................... 23 2.2.2. Máy móc thiết bị ................................................................................ 24 2.3. Phương pháp nghiên cứu ...............................................................................25 Ngô Thị Kim Toán i K19 – Sinh học thực nghiệm
  5. Luận văn thạc sĩ 2.3.1. Phương pháp phân lập vi khuẩn ......................................................... 25 2.3.2. Phương pháp đánh giá khả năng hình thành biofilm ........................... 25 2.3.3. Quan sát cấu trúc biofilm bằng chụp ảnh trên kính hiển vi điện tử quét (SEM) 26 2.3.4. Ảnh hưởng của các điều kiện môi trường nuôi cấy lên sự hình thành màng sinh học ................................................................................................ 26 2.3.4.1. Ảnh hưởng của nhiệt độ môi trường nuôi cấy .............................. 26 2.3.4.2. Ảnh hưởng của pH môi trường nuôi cấy...................................... 27 2.3.5. Phương pháp nhuộm Gram. ............................................................... 27 2.3.6. Phương pháp sử dụng kit APi ............................................................ 28 2.3.7. Phương pháp đánh giá khả năng chuyển hóa các hợp chất nitơ .......... 28 2.3.7.1. Phương pháp phân tích nitơ tổng số............................................. 28 2.3.7.2. Phương pháp phân tích hàm lượng amoni (NH4+) ........................ 29 2.3.7.3. Phương pháp thử khả năng chuyển hóa nitrite ............................. 30 2.3.8. Phương pháp đánh giá khả năng tích lũy photpho .............................. 31 2.3.8.1. Phương pháp phân tích photpho tổng .......................................... 32 2.3.8.2. Phương pháp phân tích hàm lượng Ortho photphate (PO43-) ........ 32 2.3.9. Phương pháp phân loại vi sinh vật dựa trên gen 16S rRNA ................ 33 2.3.10. Phương pháp thống kê sinh học ......................................................... 33 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN ......................................................... 34 3. 1. Nghiên cứu các chủng vi sinh vật có khả năng chuyển hóa nitơ ....................34 3.1.1. Phân lập chủng vi sinh vật có khả năng chuyển hóa nitơ và có khả năng hình thành màng sinh học ............................................................................... 34 3.1.1.1. Phân lập các chủng vi sinh vật có khả năng chuyển hóa nitơ ....... 34 3.1.1.2. Khả năng hình thành màng sinh học của các chủng phân lập ....... 36 3.1.2. Khả năng chuyển hóa nitơ.................................................................. 38 3.1.2.1. Khả năng chuyển hóa amoni ....................................................... 38 3.1.2.2. Khả năng chuyển hóa nitrite ........................................................ 39 3. 2. Nghiên cứu các chủng vi sinh vật có khả năng tích lũy photpho. ...................40 Ngô Thị Kim Toán ii K19 – Sinh học thực nghiệm
  6. Luận văn thạc sĩ 3.2.1. Phân lập chủng vi sinh vật có khả năng tích lũy photpho và có khả năng hình thành màng sinh học. ..................................................................... 40 3.2.1.1. Phân lập các chủng vi sinh vật có khả năng tích lũy photpho....... 40 3.2.1.2. Khả năng hình thành màng sinh học của các chủng phân lập ....... 41 3.2.2. Khả năng xử lý photpho của các chủng nghiên cứu. ........................... 42 3. 3. Các đặc điểm hình thái, sinh lý, sinh hóa của các chủng nghiên cứu..............43 3.3.1. Khả năng tạo hình thành màng sinh học trên một số giá thể ............... 43 3.3.2. Đặc điểm hình thái của các chủng nghiên cứu .................................... 45 3.3.3. Ảnh hưởng của một số yếu tố môi trường lên sự hình thành màng sinh học .......................................................................................................... 46 3.3.4. Khả năng chuyển hóa một số chất trong bộ kit APi ............................ 48 3.3.5. Trình tự 16S rRNA và cây phát sinh chủng loại ................................. 50 KẾT LUẬN ........................................................................................................... 54 KIẾN NGHỊ .......................................................................................................... 54 TÀI LIỆU THAM KHẢO ..................................................................................... 55 Ngô Thị Kim Toán iii K19 – Sinh học thực nghiệm
  7. Luận văn thạc sĩ DANH MỤC BẢNG Bảng 3.1. Hàm lượng thành phần nitơ và photpho trong mẫu phân tích. .......................... 34 Bảng 3.2. Địa điểm và số lượng các chủng vi sinh vật có khả năng chuyển hóa nitơ ........ 35 Bảng 3.3. Địa điểm và số lượng các chủng vi sinh vật có khả năng tích lũy photpho........ 41 Bảng 3.4. Một số đặc điểm sinh hoá của các chủng theo kit APi (BioMérieus)................. 48 Ngô Thị Kim Toán iv K19 – Sinh học thực nghiệm
  8. Luận văn thạc sĩ DANH MỤC HÌNH Hình 1.1. Chu trình nitơ trong tự nhiên ................................................................... 8 Hình 1.2. Các giai đoạn chính của quá trình hình thành một biofilm ...................... 16 Hình 3.1. Hình ảnh các khuẩn lạc phân lập trên môi trường .................................. 35 Hình 3.2. Khả năng hình thành màng sinh học của các chủng trên môi trường Winogradsky 1 được phân lập từ các mẫu nước thải thu từ bể biogas .................... 36 Hình 3.3. Khả năng hình thành màng sinh học của các chủng trên môi trường Winogradsky 1 được phân lập từ các mẫu nước thải khu tập trung rác thải ............ 37 Hình 3.4. Khả năng tạo hình thành màng sinh học của các chủng trên môi trường Winogradsky 2 được phân lập ở bể biogas............................................................. 37 Hình 3.5. Khả năng chuyển hóa amoni của các chủng nghiên cứu. ........................ 38 Hình 3.6. Khả năng chuyển hóa nitrite của các chủng nghiên cứu .......................... 39 Hình 3.7. Một số khuẩn lạc phân lập trên môi trường AMM .................................. 40 Hình 3.8. Khả năng hình thàng màng sinh học của các chủng vi sinh vật có khả năng tích lũy photpho ............................................................................................ 41 Hình 3.9. Khả năng tích lũy photpho của các chủng nghiên cứu trong môi trường với hàm lượng photpho 6mg/l................................................................................ 42 Hình 3.10. Khả năng tích lũy photpho của các chủng nghiên cứu trong môi trường hàm lượng photpho18mg/l..................................................................................... 43 Hình 3.11. Khả năng hình thành biofilm trên giá thể nhựa ống eppendorf. ............ 44 Hình 3.12. Màng biofilm nổi của chủng B11.11, B21.10, B23.2, A4.2. ................. 44 Hình 3.13. Ảnh nhuộm Gram các chủng nghiên cứu ở độ phóng đại  1000 lần. ... 45 Hình 3.14. Cấu trúc hiển vi màng biofilm của chủng nghiên cứu .......................... 45 Hình 3.15. Ảnh hưởng của nhiệt độ lên khả năng hình thành màng sinh học ......... 46 Hình 3.16. Ảnh hưởng của pH môi trường ............................................................ 47 Hình 3.17. Sơ đồ cây phát sinh chủng loại của chủng B11.11 ................................ 50 Hình 3.18. Sơ đồ cây phát sinh chủng loại của chủng B21.10 ................................ 51 Hình 3.19. Sơ đồ cây phát sinh chủng loại của chủng B23.2 .................................. 52 Hình 3.20. Sơ đồ cây phát sinh chủng loại của chủng A4.2 .................................... 53 Ngô Thị Kim Toán v K19 – Sinh học thực nghiệm
  9. Luận văn thạc sĩ BẢNG KÝ HIỆU VIẾT TẮT ADH L-arginine ADI Axit adipic AMM Acetate mineral medium ARA L-arabinose BOD Biochemical oxygen demand (Nhu cầu oxy sinh học) BTNMT Bộ Tài nguyên Môi trường CAP Axit capric CIT Trisodium citrate COD Chemical oxygen demand (Nhu cầu oxy hóa học) EPS Mạng lưới các hợp chất ngoại bào (Extracellular polymeric substances) ESC Esculin ferric citrate GEL Gelatine GLU D-glucose GNT Potassium gluconate HEPES 4-(2-hydroxyethyl)-1- piperazineethanesulfonic LB Môi trường Luria betani MAL D-mantose MAN D-mannitol MLT Axit malic MNE D-mannose NAG N- acetyl- glucosamine PAC Axit phenyl acetic PNPG 4-nitrophenyl β D –galactopyranoside QCVN Quy chuẩn Việt Nam SEM Ảnh vi điện tử quét (Scanning Electron Microscope) TRP L- tryptophan URE Urea Ngô Thị Kim Toán vi K19 – Sinh học thực nghiệm
  10. Luận văn thạc sĩ MỞ ĐẦU Hiện nay, ô nhiễm môi trường đang là vấn đề được quan tâm của nhiều quốc gia trên thế giới trong đó có Việt Nam. Ô nhiễm nguồn nước không chỉ ảnh hưởng đến đời sống con người mà còn ảnh hưởng đến đa dạng sinh học. Tình trạng ô nhiễm nước thải trong đó có nguyên nhân từ các hợp chất nitơ và photpho đang có chiều hướng gia tăng trong những năm gần đây cùng với sự phát triển của kinh tế, xã hội. Để làm giảm mức độ ô nhiễm từ nước thải giàu nitơ và photpho, nhiều phương pháp đã và đang nghiên cứu bằng cách kết hợp các biện pháp vật lý, hóa học và sinh học. Xử lý nước thải dựa vào phương pháp hóa học, vật lý thường có hiệu quả cao, nhanh nhưng chi phí lớn, không mang tính bền vững. Xử lý nước thải bằng phương pháp sinh học dựa trên cơ sở sử dụng các vi sinh vật là một phương pháp được quan tâm nghiên cứu. Nhiều nhóm vi sinh vật trong tự nhiên có khả năng chuyển hóa các hợp chất chứa nitơ và photpho trong nước thải thành các chất không độc hại với môi trường. Màng sinh học được định nghĩa là dạng sống tồn tại phổ biến trong tự nhiên và khác biệt với dạng tế bào sống tự do bởi mạng lưới các hợp chất ngoại bào bao quanh và những thay đổi, biệt hóa trong tế bào để vi sinh vật thích nghi với môi trường sống. Vi sinh vật hình thành màng sinh học không chỉ giúp chúng tồn tại và chống chịu được với những điều kiện bất lợi, tận dụng được nguồn dinh dưỡng của môi trường mà còn thông qua mối quan hệ hợp tác giữa các loài khác để tăng quá trình phân giải các chất độc hại trong môi trường. Việc nghiên cứu xử lý ô nhiễm nguồn nước thải nói chung và nước thải có hàm lượng nitơ, photpho cao bằng việc sử dụng các vi sinh vật tạo màng sinh học là hướng nghiên cứu mới mang tính bền vững. Tuy nhiên, hiện nay chưa có nhiều công trình công bố về kết quả phân lập cũng như khả năng chuyển hóa nitơ, photpho của các các chủng vi sinh vật có khả năng tạo màng sinh học. Chúng tôi tiến hành thực hiện đề tài :”Nghiên cứu phân lập tuyển chọn các chủng vi sinh vật ứng dụng xử lý nước thải giàu Nitơ, Photpho” nhằm mục đích góp phần tìm Ngô Thị Kim Toán 1 K19 – Sinh học thực nghiệm
  11. Luận văn thạc sĩ hiểu sự đa dạng về các chủng vi sinh vật tạo màng trong tự nhiên cũng như khả năng ứng dụng trong xử lý nước ô nhiễm. Ngô Thị Kim Toán 2 K19 – Sinh học thực nghiệm
  12. Luận văn thạc sĩ CHƯƠNG 1: TỔNG QUAN TÀI LIỆU 1.1. Tình trạng ô nhiễm môi trường nước hiện nay ở Việt Nam và thế giới Hiện nay, ô nhiễm môi trường là vấn đề đang được quan tâm không chỉ ở Việt Nam mà còn ở nhiều quốc gia trên thế giới. Nước thải là một trong những nguyên nhân gây ô nhiễm môi trường hiện nay. Ô nhiễm nguồn nước không chỉ ảnh hưởng đến môi trường sống của con người, mà còn ảnh hưởng đến đa dạng sinh học, đến môi trường sống của các loài động, thực vật trên trái đất. Theo báo cáo môi trường Quốc gia năm 2010 của Bộ Tài Nguyên và Môi Trường, từ năm 2007 đến năm 2009, ô nhiễm môi trường nước mặt ở tất cả các chỉ số đều vượt quá tiêu chuẩn cho phép theo QCVN 08:2008. Các chỉ số COD, BOD đều vượt quá tiêu chuẩn từ 5 đến 10 lần. Hàm lượng NH4+ trong môi trường nước mặt của sông Nhuệ, sông Đáy và sông Cầu đều vượt quy chuẩn cho phép QCVN 08:2008/BTNMT cho nước mặt phù hợp với việc bảo tồn động thực vật thủy sinh là là 0,2 mg/l. Năm 2009, hàm lượng NH4+ trong nước sông Nhuệ đo tại Cự Đà trên 10 mg/l vượt quá tiêu chuẩn 50 lần, sông Đáy đo tại Cầu Hoàng 3 mg/l vượt quá tiêu chuẩn 15 lần, sông Cầu đo tại Thái Nguyên trên 22 mg/l vượt quá tiêu chuẩn 110 lần [2]. Theo Mulder, lượng hợp chất nitơ trong chuỗi thức ăn là 15 kg/người/năm, một phần trong đó được con người tiêu thụ, phần lớn được thải ra ngoài môi trường. Tính theo đầu người, mỗi người thải ra 4,75 kg nitơ một năm. Lượng nitơ trong nước thải chiếm 30% lượng nitơ tiêu thụ [41]. Nước thải ở các đô thị chủ yếu ở dạng nitơ hữu cơ và amoni, trong đó 60% ở dạng hữu cơ và 40% ở trạng thái amoni. Ở Mỹ, hàm lượng nitơ có trong nước thải phụ thuộc vào số dân và lưu lượng nước thải hằng ngày. Lượng nitơ thải vào nguồn nước trung bình là 16 g/người/ngày. Hàm lượng và các loại hợp chất chứa nitơ thay đổi trong từng loại nước thải khác nhau. Hàm lượng nitơ trong nước thải thường dao động trong khoảng 20 đến 85 mg/l trong đó nitơ ở dạng hợp chất hữu cơ trung bình từ 8 đến 35 mg/l, hàm lượng N-NH3 từ 12 đến 50 mg/l [56]. Ngô Thị Kim Toán 3 K19 – Sinh học thực nghiệm
  13. Luận văn thạc sĩ Photpho là yếu tố quan trọng trong quá trình trao đổi chất và năng lượng của sinh vật, khi nồng độ photpho quá cao trong môi trường làm tăng sinh của các loại tảo gây hiện tượng phú dưỡng. Nồng độ photpho trong nước thải trung bình từ 6 đến 20 mg/l. Việc sử dụng các chất tẩy rửa trong sinh hoạt và sản xuất là một trong số các nguyên nhân làm tăng hàm lượng photpho trong nước thải. Trong môi trường nước mặt, nitrate, photphate là hai hợp chất của nitơ và photpho cần thiết cho sự phát triển của rong, tảo. Hàm lượng photphate trong nguồn nước không ô nhiễm nhỏ hơn 0,01 mg/l. Giá trị này ở sông Mêkông là nhỏ hơn 0,05 mg/l nhưng ở những kênh rạch bị ô nhiễm nước thải do sinh hoạt và công nghiệp hàm lượng photphate có thể lên tới 5 mg/l . Photphate là chất có nhiều trong phân, sản xuất phân lân, thực phẩm, nước thải của các nhà máy chế biến phân lân, chế biến thủy sản. Theo quy định của Hà Lan cũng như tiêu chuẩn của Việt Nam, hàm lượng photphate trong nước uống không được vượt quá 6 mg/l. Theo tiêu chuẩn của cộng đồng chung châu Âu, trong nước sinh hoạt, hàm lượng photphate không được vượt quá 2,18 mg/l [4]. Nước thải chăn nuôi là một trong những nguyên nhân gây ô nhiễm nguồn nước. Ô nhiễm nước thải chăn nuôi đặc trưng là ô nhiễm hữu cơ, hàm lượng nitơ, photpho cao và vi sinh vật gây bệnh, hàm lượng nitơ tổng số nằm trong khoảng từ 512 đến 594 mg/l, trong đó N-NH3 trong nước thải từ 304 đến 471 mg/l, hàm lượng photpho tổng số dao động trong khoảng từ 13,8 đến 62 mg/l [6]. Ngày nay, cùng với sự phát triển của dân số, rác thải sinh hoạt ngày một gia tăng. Ở Việt Nam, phương pháp xử lý rác thải chính vẫn là sử dụng các hố chôn lấp. Nước rỉ rác từ các hố chôn lấp tại khu xử lý rác thải gây ảnh hưởng rất lớn đến đời sống của người dân xung quanh, gây ô nhiễm nguồn nước mặt và nước ngầm quanh khu vực. Trong nước thải rỉ rác chứa rất nhiều thành phần độc hại khác nhau trong đó đặc biệt là hàm lượng chất hữu cơ cao. Tổng hàm lượng nitơ trong nước thải rỉ rác dao động trong khoảng từ 200 đến 2000 mg/l, hàm lượng amoni cao, trung bình 200 mg/l, trong khi đó tiêu chuẩn cho phép là 0,2 mg/l[6]. Ngô Thị Kim Toán 4 K19 – Sinh học thực nghiệm
  14. Luận văn thạc sĩ 1.2. Các phương pháp xử lý ô nhiễm nước thải có chứa hợp chất nitơ, photpho hiện nay Hiện nay có nhiều phương pháp xử lý nước thải được áp dụng như phương pháp cơ học, phương pháp vật lý, phương pháp hóa học, phương pháp sinh học. Tất cả các phương pháp xử lý hiện nay đều có những ưu, nhược điểm. Trong thực tế, quá trình xử lý nước thải cần có sự kết hợp của nhiều phương pháp nhằm nâng cao hiệu quả và giảm thời gian xử lý. Ví dụ, có thể sử dụng phương pháp cơ học giúp loại bỏ các chất thải có kích thước lớn ban đầu, sau đó có thể áp dụng các phương pháp hóa học, sinh học nhằm loại bỏ các chất độc bảo đảm tính bền vững cho môi trường. 1.2.1. Phương pháp hóa học Cơ sở của phương pháp hóa học là dựa trên các phản ứng hóa học. Các phản ứng hóa học được ứng dụng trong xử lý nước thải như phản ứng oxy hóa, phản ứng trung hòa, phản ứng keo tụ… giữa chất ô nhiễm và các hóa chất bổ sung. 1.2.1.1. Xử lý các hợp chất chứa nitơ bằng phương pháp hóa học Quá trình xử lý nước thải chứa nitơ dựa trên nguyên tắc hóa học, nước thải được đưa đến pH trong khoảng từ 10 đến 11 bằng cách thêm vào Ca(OH)2 để tạo thành NH4OH, khi đó amoni chuyển từ trạng thái lỏng sang khí và sau đó được đưa ra ngoài không khí qua các tháp làm lạnh [56]. Cheung và cộng sự đã sử dụng Ca(OH)2 với nồng độ là 10 g/l, sau thời gian xử lý là 24 giờ và ở nhiệt độ từ 20 đến 23oC. Kết quả cho thấy, đã xử lý 65 – 75% NH4+ khi lưu lượng không khí bằng với môi trường, và 86 – 93% NH4+ khi lưu lượng không khí là 5l/ phút [16]. Ozturk và cộng sự đã áp dụng phương pháp này, sau 2 giờ, đã xử lý được 72 – 85% lượng amoni trong nước thải rỉ rác khi bổ sung Ca(OH)2 với hàm lượng là 8 g/l và lưu lượng không khí là 7,6 l/phút. Tuy nhiên phương pháp này có chi phí xử lý cao vì đòi hỏi lượng không khí lớn và lượng Ca(OH)2 sau đó phải được xử lý với H2SO4 trước khi thải ra môi trường [48]. Li và cộng sự đã thử nghiệm một phương pháp để loại bỏ amoni trong nước thải thông qua việc kết tủa amoni dưới dạng (NH4)MgPO4.6H2O khi thêm MgCl2 và Ngô Thị Kim Toán 5 K19 – Sinh học thực nghiệm
  15. Luận văn thạc sĩ Na2HPO4 trong quá trình xử lý. Bằng phương pháp này, với tỷ lệ Mg:NH4:PO4=1:1:1 và pH trong nước từ 8,5 đến 9, nồng độ amoni trong nước thải rỉ rác giảm từ 5.600 mg/l xuống chỉ còn 110 mg/l trong 15 phút [38]. Phương pháp này cũng đã được Yangin và cộng sự áp dụng đối với nước thải sinh hoạt, kết quả đã loại bỏ được 66% lượng amoni trong nước thải và phương pháp này còn có thể ứng dụng cho việc loại bỏ hợp chất chứa photpho trong nước thải [66]. Một phương pháp để xử lý nitơ khác là bổ sung thêm clo vào nước thải trong quá trình xử lý. Khi cho clo vào nước thải, NH3 sẽ phản ứng với clo dưới dạng HOCl để tạo ra các sản phẩm trung gian là NH2Cl, NHCl2, NCl3. Quá trình xử lý sẽ diễn ra liên tục khi thêm HOCl vào phản ứng để tạo ra sản phẩm cuối cùng là nitơ phân tử [56]. Quá trình này diễn ra phụ thuộc rất nhiều vào nhiệt độ, pH, thời gian xử lý và tỷ lệ HOCl/NH3 [49]. Với tỷ lệ HOCl/NH3 được tính theo mol bằng 1 tại pH trong khoảng từ 7 đến 8 tất cả NH3 đều chuyển hóa thành NH2Cl. Với tỉ lệ HOCl/NH3 bằng 2 sản phẩm chủ yếu là NHCl2, khi tỉ lệ trên bằng 3 thì sản phẩm xử lý tạo ra chủ yếu là NCl3 [3]. 1.2.1.2. Xử lý các hợp chất photpho bằng phương pháp hóa học. Photphate là một trong các hợp chất của photpho chiếm tỷ lệ cao trong nước thải. Quá trình xử lý nước thải có chứa hợp chất photpho bằng phương pháp hóa học dựa trên nguyên tắc chủ yếu là kết tủa photphate với các ion nhôm, sắt, canxi tạo ra các muối có độ tan thấp và tách chúng dưới dạng chất rắn [4], [6]. Phương pháp hóa học được sử dụng trước tiên trong xử lý nước thải là sử dụng kiềm hóa bằng Ca(OH)2. Khi thêm Ca(OH)2 vào nước thải, pH sẽ tăng làm dịch chuyển cân bằng về PO43-. Tỷ lệ Ca/P nằm trong khoảng 1,33 đến 2,0 và ion Ca2+ có khả năng loại bỏ photphate do nó tạo với photphate những hợp chất kém hoà tan. Hydroxy apatit C10(PO4)6(OH)2 không xuất hiện ngay trong quá trình hình thành dù nó là thành phần ổn định nhất về mặt nhiệt động và kém hòa tan nhất trong số các kết tủa của photphate canxi. Photphate canxi Ca3(PO10)2 vô định hình là dạng có cấu trúc tinh thể không ổn định và có độ tan thấp [4]. Ngô Thị Kim Toán 6 K19 – Sinh học thực nghiệm
  16. Luận văn thạc sĩ Khả năng loại bỏ photphate trong nước thải có hiệu quả cao khi ở pH >10, đặc biệt khi ở pH từ 10,5 đến 11. Đặc điểm của phương pháp dùng Ca(OH)2 là làm tăng độ kiềm của nước, thuận lợi cho phản ứng phân hủy sinh học của NH4+, không đưa anion mới vào nước thải so với cách dùng muối để kết tủa photphate. Ngoài phương pháp sử dụng Ca(OH)2, loại bỏ phosphate bằng phương pháp hóa học có thể bằng việc kết tủa sử dụng muối sắt, nhôm, các muối sắt sử dụng là: FeCl3, FeClSO4, FeSO4 khi bổ sung vào nước thải, sẽ xảy ra quá trình thủy phân tạo ra các phức chất mang điện tích dương như Fe(OH)2+, Fe(OH)2+ và một số dimer, polymer tích điện dương. Tại một giá trị pH không đổi, với tỷ lệ Fe3+/P từ 1,4 đến 1,6 có thể kết tủa hoàn toàn photphate. Nếu tỷ lệ Fe3+/P tăng, sản phẩm kết tủa tạo thành là Fe(OH)3 tăng lên như vậy kết tủa đó không phải là kết tủa của muối photphate. Do vậy nếu tỷ lệ Fe3+/P tăng lên thì hiệu suất của quá trình xử lý không thay đổi[55]. Quá trình xử lý nước thải giàu hợp chất nitơ, photpho bằng phương pháp hóa học chủ yếu là thêm một số chất làm đông tụ, keo tụ chất thải thành các muối kết tủa. Tuy nhiên, việc tách các muối này ra khỏi nước thải phải dùng đến các màng lọc: màng nano, màng thẩm thấu ngược, màng thẩm điện tích. Các màng lọc thường có giá thành cao nên việc áp dụng phương pháp hóa học chưa phù hợp với nhu cầu ứng dụng trong xử lý nước thải hiện nay. Do vậy, cần có phương pháp khác có khả năng xử lý tốt ô nhiễm mà chi phí phù hợp [4]. 1.2.2. Phương pháp sinh học Trong môi trường nước, hợp chất nitơ tồn tại chủ yếu ở dạng amoni (NH4+), nitrate (NO3-), ít hơn ở dạng nitrite (NO2-) và trong một số hợp chất hữu cơ khác. Thành phần được xem là bền đối với trường và không gây hiệu quả xấu cho môi trường là khí nitơ (N2). Nitơ hữu cơ có thể tồn tại trong các sinh vật sống hoặc các sản phẩm trung gian của quá trình phân hủy các vật chất hữu cơ [53], [54], [70]. Xử lý nước thải có chứa hợp chất nitơ dựa trên các vi sinh vật có khả năng chuyển hóa thành các chất không độc như khí N2, trả lại môi trường không khí. Phương pháp sinh học có những ưu điểm so với các phương pháp vật lý hóa học như: hiệu suất Ngô Thị Kim Toán 7 K19 – Sinh học thực nghiệm
  17. Luận văn thạc sĩ khử nitơ cao, sự ổn định và tương đối dễ vận hành, quản lý, chi phí đầu tư hợp lý và quan trọng cho sự phát triển bền vững, bảo vệ môi trường và hệ sinh thái. Để xử lý nước thải chứa nitơ theo phương pháp sinh học. Các nghiên cứu dựa trên cơ sở là trong tự nhiên luôn tồn tại các vi sinh vật có khả năng chuyển hóa hợp chất nitơ. Quá trình chuyển hóa nitơ trong tự nhiên được trình bày ở hình 1.1 [53], [57]. Các quá trình trong chu trình nitơ chuyển đổi nitơ từ dạng này sang dạng khác đều được tiến hành bởi các nhóm vi sinh vật khác nhau với mục đích lấy năng lượng hoặc để tích tụ nitơ thành một dạng cần thiết cho sự phát triển của chúng. Các dạng nitơ hữu cơ từ nguồn động thực vật sau khi chết được các vi khuẩn amoni hóa chuyển hóa thành dạng NH4+ ; sau đó NH4+ được chuyển hóa thành NO2- nhờ vi khuẩn nitrite hóa; NO2- sinh ra được nhóm sinh vật nitrate hóa chuyển hóa thành NO3-; cuối cùng nitrate được nhóm sinh vật kỵ khí chuyển thành dạng nitơ phân tử nhờ quá trình khử nitrate (Hình 1.1) [53], [54], [70]. Hình 1.1. Chu trình nitơ trong tự nhiên [69], [70] Ngô Thị Kim Toán 8 K19 – Sinh học thực nghiệm
  18. Luận văn thạc sĩ Xử lý nước thải có chứa các hợp chất photpho bằng phương pháp sinh học dựa trên khả năng của một số nhóm vi sinh vật tích lũy lượng photpho nhiều hơn mức cơ thể chúng cần trong điều kiện hiếu khí. Thông thường hàm lượng photpho trong vi sinh vật chiếm từ 1,5 đến 2,5% khối lượng tế bào khô, một số loài có khả năng hấp thu cao hơn, từ 6 đến 8%. Vì các hợp chất chứa photpho tồn tại trong nước thải dưới ba dạng: photphate đơn (PO43-), polyphotphate và hợp chất hữu cơ chứa photphate, hai hợp chất sau chiếm tỉ lệ lớn trong nước thải. Trong quá trình xử lý vi sinh, lượng photpho hao hụt từ nước thải duy nhất là lượng được vi sinh vật hấp thu để xây dựng tế bào. Trong quá trình xử lý hiếu khí, một số loài vi sinh vật có khả năng hấp thu photphate cao hơn mức bình thường trong tế bào và tồn tại ở dạng dự trữ [3], [14]. Nghiên cứu Van Bethum và cộng sự, cho thấy photpho trong cơ thể vi sinh vật được tích lũy dưới dạng chủ yếu là photphate. Trong cơ thể của chúng, photphate có thể chiếm đến 12% trọng lượng tế bào đối với vi khuẩn có tích lũy polyphotphate, và với vi khuẩn không tích lũy polyphotphate, chỉ chiếm khoảng 1đến 3% trọng lượng tế bào [63]. Trong điều kiện yếm khí, với sự có mặt của chất hữu cơ, lượng photphate dư lại được thải ra ngoài cơ thể vi sinh dưới dạng photphate đơn. Một vài loại tảo cũng có khả năng tích trữ một lượng photphate dư so với nhu cầu của tế bào [3]. Hiện nay, kết hợp phương pháp sinh học trong xử lý đối với cả nitơ, photpho trong nước ô nhiễm đang là một hướng nghiên cứu mới. Trong nghiên cứu của Jorgensen và Pauli, một số chủng vi sinh vật có khả năng tích lũy photpho cũng có khả năng khử nitrate [33]. Phương pháp kết hợp sử dụng bùn hoạt tính, các hợp chất trong các quá trình xử lý thiếu khí (anoxic), xử lý hiếu khí (aerobic), xử lý yếm khí (anaerobic) kết hợp hoặc riêng biệt trong quá trình khử nitơ và photpho [3]. Ngô Thị Kim Toán 9 K19 – Sinh học thực nghiệm
  19. Luận văn thạc sĩ 1.3. Các vi sinh vật có khả năng chuyển hóa các hợp chất chứa nitơ, photpho trong xử lý ô nhiễm nước thải. 1.3.1. Vi sinh vật có khả năng chuyển hóa các hợp chất chứa nitơ Trong nước thải có nhiều thành phần khác nhau, bao gồm các hợp chất hữu cơ và vô cơ. Trong đó các hợp chất chứa nitơ và photpho chiếm tỷ lệ lớn. Nitrate hóa là quá trình oxi hóa NH4+ thành NO3-, cung cấp năng lượng cho vi sinh vật hoạt động. Quá trình oxi hóa này xảy ra cùng với quá trình đồng hóa CO2. Hầu hết các vi sinh vật tự dưỡng hóa năng vô cơ thuộc loại hiếu khí bắt buộc đều có khả năng thực hiện quá trình này. Nitrate hóa qua 2 giai đoạn: Đầu tiên là giai đoạn oxi hóa amoni (NH4+) thành nitrite (NO2-) bởi một số đại diện thuộc nhóm vi khuẩn nitrite hóa: Nitrosomonas, Nitrosocystis, Nitrosococcus, Nitrosolobus... Tất cả chúng khá giống nhau về mặt sinh lý, sinh hóa, chỉ khác nhau về mặt hình thái học và cấu trúc tế bào. Các đại diện của chi Nitrosomonas không sinh nội bào tử, tế bào nhỏ bé hình bầu dục. Trên môi trường lỏng, quá trình phát triển của vi khuẩn thuộc chi Nitrosomonas trải qua một số giai đoạn và phụ thuộc rất nhiều vào điều kiện môi trường [12], [27]. Giai đoạn 2 của quá trình nitrate hóa oxi hóa nitrite (NO2-) thành nitrate (NO3-) bởi một số vi khuẩn: Nitrobacter Winogradsky, Nitrospina gracilis, Nitrococcus mobilis. NH4+ + 1,5 O2 Nitrosomonas NO2- + H2O + 2 H+ NO2- + 0,5 O2 Nitrobacter NO3- NH4+ + 2 O2 NO3- + H2O + 2 H+ 4 NO3- + 4 H+ + 5 Chữu cơ 5 CO2 + 2 N2 + 2 H2O Tế bào đặc trưng của nhóm vi khuẩn Nitrobacter trong dịch nuôi là dạng hình que tròn, hình hạt đậu, hoặc hình trứng, có thể di động hoặc không di động. Khi điều kiện không thuận lợi chúng có thể liên kết với nhau thành tập đoàn. Nitrospina gracilis là những trực khuẩn thẳng, thỉnh thoảng có dạng hình cầu, không di động, và có đặc trưng là liên kết tạo thành tập đoàn. Nitrococcus mobilis thì có dạng hình tròn, có tiêm mao [5]. Ngô Thị Kim Toán 10 K19 – Sinh học thực nghiệm
  20. Luận văn thạc sĩ pH thích hợp cho nhóm vi khuẩn Nitrosomonas là từ 7,8 đến 8, Nitrobacter là từ 7,3 đến 7,5. Nitrobacter sẽ tăng trưởng chậm hơn ở các mức pH cao đặc trưng cho các thủy vực nước mặn. Nitrosomonas sống ở những nơi giàu NH3 và các muối vô cơ như trong bùn đáy ao, nước cống, nước ngọt, các thủy vực bị ô nhiễm chứa nhiều hợp chất nitơ nhằm tránh ánh sáng. Nitrobacter không có khả năng di động và cần phải bám vào bề mặt giá thể như đá, cát, hoặc một giá thể sinh học … Nitrobacter không thể sống trong môi trường khô. Trong môi trường nước, chúng có thể tồn tại trong khoảng thời gian ngắn ở các điều kiện bất lợi nhờ vào việc sử dụng các chất dự trữ bên trong tế bào [31]. Oxy hóa amoni bao gồm hai phản ứng kế tiếp nhau nên tốc độ oxy hóa của quá trình bị khống chế bởi gian đoạn có tốc độ thấp hơn. Tốc độ phát triển của Nitrosomonas chậm hơn Nitrobacter do đó nồng độ NO2- thấp hơn trong giai đoạn ổn định. Vì vậy trong quá trình động học người ta chỉ sử dụng các thông số liên quan đến vi khuẩn Nitrosomonas để đặc trưng cho quá trình oxy hóa amoni [31]. Quá trình chuyển hóa các hợp chất chứa nitơ không chỉ diễn ra do các chi vi khuẩn nói trên mà trong tự nhiên còn nhiều nhóm vi sinh vật khác cũng có khả năng chuyển hóa như vậy. Nghiên cứu khả năng chuyển hóa amoni, nitrite, nitrate, Zhang và cộng sự đã phân lập được chủng vi khuẩn Pseudomonas stutzeri không chỉ có khả năng chuyển hóa nitrite mà còn có khả năng chuyển hóa amoni. Sau thời gian 18 giờ, chủng vi khuẩn này đã chuyển hóa được amoni hoàn toàn thành dạng khí N2 với hiệu suất là 39% [67]. Một Nghiên cứu khác của Zhang và cộng sự về việc sử dụng vi khuẩn Bacillus methylotrophicus trong xử lý nitơ cho thấy trong môi trường ở điều kiện pH từ 7 đến 8 và nhiệt độ là 37oC, chủng B. methylotrophicus đã làm nồng độ NH4+ ban đầu 146,71mg/l giảm xuống 38,29 mg/l sau 9 ngày nuôi cấy, với tốc độ chuyển hóa là 51,58 mg/l/ngày [68]. Nghiên cứu của Broda cho thấy sự tồn tại của các vi khuẩn gọi là anammox [15]. Các vi khuẩn này có thể oxy hoá amoni trong điều kiện kị khí (Anaerobic Amoni Oxidation) hay còn gọi là anammox. Các nhà khoa học Hà Lan và Đức đã nghiên cứu và phát hiện ra các vi khuẩn này thuộc năm chi gồm Brocadia, Ngô Thị Kim Toán 11 K19 – Sinh học thực nghiệm
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0