intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Toán học: Sự tồn tại nghiệm mạnh địa phương của hệ phương trình Navier – Stokes

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:38

23
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn trình bày một vài kết quả nghiên cứu về nghiệm của bài toán chứa hệ phương trình Navier – Stokes. Để hiểu rõ hơn, mời các bạn tham khảo chi tiết nội dung luận văn này.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Toán học: Sự tồn tại nghiệm mạnh địa phương của hệ phương trình Navier – Stokes

  1. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM TRẦN THỊ HUYỀN TRANG SỰ TỒN TẠI NGHIỆM MẠNH ĐỊA PHƯƠNG CỦA HỆ PHƯƠNG TRÌNH NAVIER - STOKES Chuyên ngành: Toán Giải tích Mã số : 8460102 LUẬN VĂN THẠC SĨ TOÁN HỌC Cán bộ hướng dẫn khoa học: TS. Phạm Thị Thủy Thái Nguyên, năm 2020
  2. Lời cam đoan Tôi xin cam đoan rằng nội dung trình bày trong luận văn này là trung thực và không trùng lặp với đề tài khác. Tôi cũng xin cam đoan rằng mọi sự giúp đỡ cho việc thực hiện luận văn này đã được cảm ơn và các thông tin trích dẫn trong luận văn đã được chỉ rõ nguồn gốc. Thái Nguyên, tháng 9 năm 2020 Người viết luận văn Trần Thị Huyền Trang i
  3. Lời cảm ơn Luận văn này được hoàn thành dưới sự hướng dẫn của TS. Phạm Thị Thủy. Do đây là những kiến thức khá mới mẻ và khoảng thời gian nghiên cứu còn hạn chế nên luận văn không tránh khỏi những sai sót. Tôi rất mong nhận được những ý kiến đóng góp của quý thầy cô và mọi người để luận văn được hoàn thiện hơn. Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới TS. Phạm Thị Thủy đã trực tiếp giao đề tài, hướng dẫn và giúp đỡ tận tình trong suốt quá trình nghiên cứu và hoàn thành luận văn. Tôi xin chân thành cảm ơn Ban chủ nhiệm khoa Toán cùng các quý thầy cô đã quan tâm, nhiệt tình giảng dạy trong suốt khóa học. Tôi cũng xin cảm ơn gia đình, bạn bè đã giúp đỡ tôi trong suốt quá trình học tập và hoàn thành luận văn. Trân trọng cảm ơn! ii
  4. Mục lục Lời cam đoan ............................................................................................................... i Lời cảm ơn .................................................................................................................. ii Mục lục........................................................................................................................ iii Lời nói đầu ................................................................................................................... 1 Chương 1. Kiến thức chuẩn bị .................................................................................. 2 1.1. Không gian hàm ............................................................................................... 2 1.1.1. Không gian hàm trơn ...................................................................................... 2 1.1.2. Không gian hàm suy rộng .............................................................................. 3 1.1.3. Không gian Sobolev ....................................................................................... 6 1.2. Phương trình Navier – Stokes ......................................................................... 10 Chương 2. Nghiệm mạnh địa phương của hệ phương trình Navier – Stokes .... 15 2.1. Bài toán 1 ......................................................................................................... 15 2.1.1. Định nghĩa nghiệm yếu và nghiệm mạnh của hệ phương trình Navier – Stokes trong  0,T  .................................................................................................. 15 2.1.2. Sự tồn tại nghiệm mạnh của hệ phương trình Navier – Stokes trong  0,T  ................................................................................................................................ 16 2.2. Bài toán 2 ......................................................................................................... 23 2.2.1. Định nghĩa nghiệm yếu và nghiệm mạnh của hệ phương trình Navier – Stokes trong  0,T  × ............................................................................................. 23 2.2.2. Sự tồn tại nghiệm mạnh của hệ phương trình Navier – Stokes trong 0,T    ................................................................................................................. 24 Kết luận ...................................................................................................................... 33 Tài liệu tham khảo ...................................................................................................... 3 iii
  5. Lời nói đầu Phương trình Navier – Stokes lần đầu tiên được Claude – Louis Navier thiết lập vào năm 1821 cho các chất lỏng không nén được và năm 1822 cho các chất lỏng nhớt. Nhưng Navier đi đến phương trình Navier – Stokes mà chưa hoàn toàn nhận thức rõ tầm quan trọng của các yếu tố xuất hiện trong phương trình. Cho đến khi George Stokes thiết lập lại dựa trên những giả thiết chính xác hơn trong một bài báo tựa đề On the theories of the internal friction of fluids in motion, xuất bản năm 1845. Cho đến nay đã có rất nhiều công trình nghiên cứu về phương trình Navier – Stokes. Tuy nhiên, những hiểu biết về phương trình Navier – Stokes còn rất khiêm tốn, muốn biết lượng nhiệt lưu thông khi một chiếc máy bay đang bay, sự hình thành bão, sự chuyển động của không khí, giải thích hiện tượng sóng đập vào đuôi con tàu đang chạy trên mặt nước,... ta đều phải tìm cách giải phương trình Navier – Stokes, do nhu cầu của Khoa học và Công nghệ mà việc nghiên cứu phương trình Navier – Stokes ngày càng trở nên thời sự và cấp thiết. Luận văn trình bày một vài kết quả nghiên cứu về nghiệm của bài toán chứa hệ phương trình Navier – Stokes. Luận văn được bố cục thành hai chương cùng với Lời nói đầu, Kết luận và Danh mục các tài liệu tham khảo. Trong đó, Chương 2 là nội dung chính của luận văn. Chương 1: Kiến thức chuẩn bị Chương này trình bày các khái niệm và các kết quả cơ sở cần thiết được sử dụng trong Chương 2. Chương 2: Nghiệm mạnh địa phương của hệ phương trình Navier – Stokes Trình bày định nghĩa về nghiệm yếu và nghiệm mạnh, sự tồn tại nghiệm mạnh địa phương của hệ phương trình Navier – Stokes trong miền   3 và miền bị chặn  3 với một khoảng 0, T  ,0  T   . 1
  6. Chương 1 Kiến thức chuẩn bị Trong Chương 1 trình bày lại một số kiến thức cơ sở làm nền tảng để nghiên cứu chương 2. Các tài liệu tham khảo được trích dẫn trong [1], [2], [3], [4], [7]. 1.1. Không gian hàm 1.1.1. Không gian hàm trơn Định nghĩa 1.1.1. Giả sử   n là một miền với n  1. Nếu n  1,    a, b  là một khoảng mở với   a  b  . Giả sử k  , ta kí hiệu C k    là không gian của tất cả các hàm u:   x u  x sao cho D u tồn tại và liên tục trong  với mọi   n 0 ,0    k . C 0    là không gian của tất cả các hàm u :   .  C     : C k    gọi là không gian hàm trơn trong  . k 0 Giả sử M là bao đóng của tập M  n . Ta kí hiệu supp u : x ; u  x   0 là giá của hàm u :   . Nếu k  0 hoặc k   thì ta đặt C0k   : u  C k   ; supp u compact , supp u  . Do đó u  C0k    nghĩa là u  C k    và u  0 trong  ngoại trừ một tập con compact nào đó của  . Đặc biệt C0k    là không gian của tất cả các hàm trơn u bằng không ngoại trừ một tập con compact nào đó phụ thuộc vào u. Giả sử u M là hạn chế của hàm u trên tập con M. Với k  0 hoặc k   ta kí   hiệu C k  là không gian của tất cả các hạn chế u  với u  C k   sao cho n sup D u  x   .   k , x n 2
  7. Nếu k   thì ta thay   k bởi   . Ta xác định chuẩn u Ck  u Ck   :  sup D u  x  .  k , x Nếu k   thì ta thay   k bởi   . Ta ký hiệu k Cloc     : u  ; u  C k  n . Giả sử n  2,0  T  . Ta xác định không gian của trường vectơ không phân kỳ trơn  C0,    : u  C0    ; div u  0 . n  Ta xét không gian thử  C0   0, T  ; C0,     : u  C0   0, T     ; div u  0 , n  trong đó div áp dụng cho các biến số x   x1 ,..., xn    và  C0 0, T  ; C0,     : u 0,T  ; u  C0   1, T     ; div u  0 . n  1.1.2. Không gian hàm suy rộng Giả sử   n là một miền bất kỳ với n  1. Trong lý thuyết hàm suy rộng, không gian tuyến tính C0    của hàm trơn trên  gọi là không gian thử và   C0    gọi là hàm thử. Cho phiếm hàm tuyến tính F :   F   ,   C0    . Hàm F liên tục khi và chỉ khi với mỗi miền con G  , G  , tồn tại k  0 và C  C  F , G   0 sao cho F    C  Ck G   thỏa mãn với mọi   C0    . Định nghĩa 1.1.2. Không gian tuyến tính C0    của tất cả các phiếm hàm tuyến tính F : C0      F   3
  8. liên tục, được gọi là không gian hàm suy rộng trong  . Kí hiệu F     F ,    F ,  là giá trị của F tại  . Mỗi hàm f  L1loc    xác định một hàm suy rộng được định nghĩa bởi  f ,   f , :  f  dx.  Ta kí hiệu hàm suy rộng là f ,.  f ,.  hoặc f . Do đó ta xác định f với hàm suy rộng f ,. và phép nhúng L1loc     C0    . Mỗi f  L1loc    gọi là một hàm suy rộng chính quy. Xét toán tử vi phân bất kỳ D  D11 ...Dn n với   1 ,..., n   n 0 . Với mỗi F  C0    hàm suy rộng D F  C0    được định nghĩa bởi  D F ,  :  1  F , D  ,   C0    .  Đặc biệt, với mỗi f  L1loc    hàm suy rộng D f   D f ,.  C0    được định nghĩa bởi  D f ,  :  1 f , D   1  f  D  dx.     Nếu D f chính quy thì tồn tại một hàm của L1loc    biểu thị qua D f sao cho  D f ,   D f ,    D f dx với mọi   C0    .  Kí hiệu D f  L1loc    là D f chính quy và coi như một hàm trong L1loc    . Giả sử F  C0    và D :   a D , k k 0 , a  (1.1) là toán tử vi phân bất kỳ. DF  C0    được định nghĩa bởi  DF ,     1 a  F , D  ,   C0    .  (1.2)  k 4
  9. Đặc biệt, nếu f  L1loc    và Df được định nghĩa bởi (1.2) là hàm suy rộng chính quy xác định bởi một hàm được biểu thị qua Df thì ta viết đơn giản Df  L1loc    . Khi đó  Df ,   Df ,    Df  dx    1 a f , D với mọi   C0    .    k Giả sử f  L1loc    và   1 ,..., n   n 0 . Nếu D f chính quy, D f  L1loc    thì ta gọi D f là đạo hàm yếu cấp  của f . Nếu 1  q   thì ký hiệu D f  Lq    là D f chính quy và là một hàm trong Lq    , khi đó ta viết D f  . q Tương tự, Df  Lq    với D thỏa mãn (1.1) là chính quy. Ta xét không gian tương ứng cho trường vectơ. Giả sử m và C0   : 1 ,...,m  ,  j  C0   , j  1,..., m m là không gian hàm thử có giá trị vectơ   1 ,...,m  được trang bị tôpô tương ứng. Với mỗi F   F1 ,..., Fm  , Fj  C0    , j  1,..., m ta định nghĩa hàm F:   F ,  ,   1,...,m   C0   m bởi  F ,    F ,  :  F1 ,1   ...   F1 ,m . Ta ký hiệu  C0    C0       F1 ,..., Fm  ; Fj  C0    , j  1,..., m m m  là không gian suy rộng của không gian thử C0   . m Giả sử f  L1loc   và   1 ,..., n   thì f   f1 ,..., f m  xác định hàm suy rộng m n 0   f ,   f ,   f . dx  trong đó f .  f11  ...  f mm ,  1,...,m   C0   . Khi đó ta có phép nhúng m L1loc     C0     . m m 5
  10. Để xác định nghiệm yếu của phương trình Navier – Stokes ta xét không gian con của hàm thử không phân kỳ  C0,    :   C0    ; div   0  C0    . n  n Không gian C0,    của hàm tuyến tính liên tục được định nghĩa trên C0,    là không gian của tất cả các hạn chế , F  C0,     . n F C  0, Do đó C0,    F C  0,   , F  C0,     . n  Xét không gian Hilbert L2   với tích vô hướng n u, v   u, v :  u  x  .v  x  dx  và không gian con L2    : C0,     L2    n . 2 n là bao đóng trong chuẩn . 2 . Với mỗi u  L2   xác định hàm u, . :  u, ,   C0   ta được n n phép nhúng tự nhiên L2     C0     . n n Tương tự, với mỗi u  L2    xác định hàm u, . :  u,  ,   C0,    được phép nhúng tự nhiên L2     C0,    . Sau đó, ta sử dụng phép chiếu trực giao P : L2   L2   được gọi là phép chiếu n Helmholtz. 1.1.3. Không gian Sobolev 6
  11. Định nghĩa 1.1.3. Giả sử   n là một miền với n  1, 1  q  , khi đó Lq    là không gian Banach của tất cả các hàm thực đo được Lebesgue u được định nghĩa trên  có chuẩn hữu hạn   1 u  x  dx . q uq u  u  u : q q , Lq    Lq  Nếu q  2 thì Lq     L2    trở thành không gian Hilbert với tích vô hướng u, v   u, v :  u  x  .v  x  dx, với u , v  L2    .  Nếu q  , ta giả sử Lq     L    là không gian Banach thông thường của tất cả các hàm đo được u với cận trên đúng hữu hạn u   u  ,  u L     u L : ess  sup u  x  . x q Giả sử q : là số mũ liên hợp (đối ngẫu) của q, ta đặt q   nếu q  1 và q 1 1 1 1 1 q  1 nếu q   . Đặt  0 nếu q   và  0 nếu q   , ta luôn có   1. q q q q Nếu u  Lq    , v  Lq    thì u.v  L1    và bất đẳng thức Holder không đổi uv 1  u q v q . (1.3) 1 1 1 Giả sử 1    ,   q  ,   r   sao cho   và  q r q r u  Lq    , v  Lr    thì uv  L    . Đặt q : sao cho q : và áp dụng (1.3) ta   có uv   u q v r. (1.4) 1  1 Giả sử 1  q    r  ,0    1 sao cho   và  q r  1 u  Lq     Lr    thì u  L    . Đặt u  u u và áp dụng (1.4), sau đó sử dụng bất đẳng thức Young a b1   a  1    b  a  b 7
  12. với a, b  0 ta có  1 u  u q v r  u q  u r. (1.5) Xét không gian Lqloc ,1  q  . Ta nói u  Lqloc    khi và chỉ khi u  Lq  B  với mỗi hình cầu mở B  , B  . Ta nói u  Lqloc  khi và chỉ khi u  Lq  B    với   mỗi hình cầu B  n , B   . Ta có thể viết đơn giản u thay vì u  hoặc u B . Do đó   Lq    Lqloc   Lqloc   . Nếu  bị chặn thì   Lq    Lqloc  , Lq    Lqloc    . Giả sử  u j    u j   là một dãy trong Lq    . Ta có u  lim u j trong Lq    j 1 j  khi và chỉ khi u  Lq    và lim u uj  0. Do đó u  lim u j trong Lqloc    hoặc j  q j    trong Lqloc  khi và chỉ khi lim j  u uj Lq  B   0 hoặc lim j  u uj Lq  B    0 không đổi với mọi hình cầu mở B  , B   hoặc B  n , B   . Giả sử m , ta định nghĩa không gian Lq của trường vectơ u   u1 ,..., um  Lq   : u   u1 ,..., um  , u j  Lq   , j  1,..., m m là không gian Banach với chuẩn 1  m q q u q  u q ,  u Lq     u Lq :   u j  .  j 1  q Khi đó không gian L2    là không gian Hilbert với tích vô hướng m m u, v  u, v  :  u j , v j  j 1 với u.v  u1v1  ...  umvm . Bất đẳng thức (1.3), (1.4) và (1.5) vẫn đúng trong trường hợp vectơ có giá trị. 8
  13. Định nghĩa 1.1.4. Giả sử   n là một miền bất kỳ với n  1, k  , 1  q  . Không gian Lq  Sobolev bậc k W k ,q   được định nghĩa là không gian của mọi u  Lq    sao cho D u  Lq    với mọi   k . Khi đó D u là hàm suy rộng chính quy được định nghĩa bởi một hàm biểu thị qua D u . Chuẩn trong W k ,q   được định nghĩa bởi 1   q :   D u q u  u  u  u  , với 1  q   , W k , q  Wk ,q k ,q k , q ,   k q   u W k ,     u Wk ,  u k ,  u k , , : max D u , với q  .  k  Do đó, không gian L2  Sobolev bậc nhất W1,2   được định nghĩa là không gian của u  L2    sao cho D u  L2    với mọi   1. Chuẩn trong W1,2   được định nghĩa bởi 1   2 :   D u 2 u  u  u  u  . W1,2    W1,2 1,2 1,2,   1 2   Khi đó W01,2   : u  W1,2   ; supp u compact , supp u   và  W0,1,2    : u  W1,2    ; div u  0 . n  Định nghĩa 1.1.5. Không gian Bochner trên    0,T  được ký hiệu bởi Ls  0, T ; Lq    , 1  q, s   với chuẩn   T 1/ s s      d và cặp ,  ,   Ls 0,T ; Lq    , q , s ;T 0 q  ,T ,    ,  biểu thị sự ghép cặp của các hàm, trường vectơ trên  và ,   ,T có nghĩa ghép cặp tương ứng trên  0, T   . 9
  14. 1.2. Phương trình Navier – Stokes Giả sử miền    mở,   n . Trong phần này, ta giả sử  trơn,  gồm các biến số x   x1 ,..., xn  gọi là không gian biến,  0,T  là khoảng thời gian với 0  T  , t   0, T  gọi là biến thời gian. Trong trường hợp n  2 và n  3, ta giả sử miền  được lấp đầy với chất lỏng như nước, không khí, dầu,... u  t , x    u1  t , x  ,..., un  t , x   là vận tốc của chất lỏng tại  t , x    t , x1 ,..., xn  , t   0, T  , x  . p  t , x  thể hiện áp suất tại  t , x  . f  t , x    f1  t , x  ,..., f n  t , x   là ngoại lực đã biết. Trong mô hình vật lý, ta giả sử rằng chuyển động của chất lỏng được mô tả bằng phương trình ut  vu  u.u  p  f , (1.6) div u  0, với t   0, T  , x  . Phương trình này gọi là phương trình Navier – Stokes. Điều kiện đầu tiên có nghĩa là sự cân bằng các lực theo định luật Newton. Điều kiện div u  0 có nghĩa là chất lỏng đồng nhất và không nén được. Hằng số v  0 là độ nhớt của chất lỏng, nó phụ thuộc vào tính chất vật lý và là hằng số cố định. ut là đạo hàm theo thời gian, ta viết d  ut  u  u  u. dt t Ta có     ut  u.u  ut   u1  ...  un u  x1 xn  mô tả gia tốc toàn phần của một phần nhỏ chất lỏng.  Dj  , j  1,..., n ,    D1 ,..., Dn  . x j Số hạng 10
  15. vu  v  D12  ...  Dn2  u mô tả ma sát giữa những phần nhỏ của chất lỏng. p   D1 ,..., Dn  p là gradient của áp suất p. Phương trình (1.6) là hệ n  1 phương trình vi phân từng phần với n  1 biến  t , x1 ,..., xn  và n  1 hàm  p, u1 ,..., un  chưa biết. Ta thêm điều kiện u   0 nếu    (1.7) tức là u  t , x   0 với mọi t   0, T  , x . Ta thêm điều kiện ban đầu u  0   u0 (1.8) với vận tốc ban đầu u0 tại t  0 tức là u  0, x   u0  x  với mọi x. Ta kí hiệu u  t , .  u  t  , t   0, T  . Do đó (1.8) có thể viết dưới dạng u  0, .  u0 .  . Nếu  không bị chặn ta giả sử u  t , x   0 khi x  . Phương trình (1.6) cùng với điều kiện (1.7) và (1.8) là hệ phương trình Navier – Stokes với điều kiện u0 , f . Ký hiệu không gian Euclid n :  x1,..., xn  , x j  , j  1,..., n với chuẩn 1 x :  x  ...  x 2 1  2 2 n . Ta viết e1 : 1,0,...,0  , e2 :  0,1,0,...,0  ,..., en :  0,...,0,1 và x   x1 ,..., xn   x1e1  ...  xnen    n .  D j : , j  1,..., n là đạo hàm riêng,  :  D1 ,..., Dn  là gradient. x j 11
  16. Căn cứ vào chỉ số   1 ,..., n   n 0 , ta định nghĩa toán tử 1 2 n  1 2 n          D : D1 D2 ...Dn     ...   x1   x2   xn   trong đó D j j  I là đồng nhất thức nếu  j  0, j  1,..., n. Trong nhiều trường hợp, kí hiệu I là đồng nhất thức.  2 :  D j Dk  n là ma trận của đạo hàm cấp hai. j , k 1 Kí hiệu  : 1  ...   n với   1 ,..., n   n 0 . Tuy nhiên nếu x   x1 ,..., xn   n , y   y1 ,..., yn   n thì ta kí hiệu 1 1  2 x :  x12  ...  x  x  y :    x j  y j   n 2 2 2 n ,  j 1  đối với chuẩn Euclid. x. y  x1 y1  ...  xn yn là tích vô hướng. Giả sử u:  n x u  x    u1  x  ,..., un  x   là một trường vectơ. Ta đặt div u : .u  D1u1  ...  Dnun , u : div u   D12  ...  Dn2  u   u1 ,..., un  , u :  D1 ,..., Dn  u   D j uk  n , j , k 1  2u :  D j Dk  u   D j Dk ul  n n j , k 1 j , k ,l 1 và u.u   u. u : u1D1  ...  un Dn  u  u1D1uk  ...  un Dnuk k 1 . n Hơn nữa div  u u   D1  u1u   ...  Dn  unu    D1 u1uk   ...  Dn unuk  k 1 n trong đó ma trận 12
  17. u u  u  u   u j uk  n j ,k 1 có nghĩa là tích tenxơ thông thường. Ta kí hiệu đơn giản là u u . Nếu p:  x p  x là một trường vô hướng, ta đặt p   D1 ,..., Dn  p   D1 p,..., Dn p  . Nếu div u  0 thì ta nói u không phân kỳ hoặc solenoidal. Khi đó u.u  D1  u1u   ...  Dn  unu    D1u1  ...  Dnun   D1  u1u   ...  Dn  unu   div  uu  . Giả sử , F   Fjk  n F:  n2 j , k 1 là các trường ma trận. Ta định nghĩa trường vectơ div F   D1F1k  ...  Dn Fnk k 1 . n Ngoài ra, ta định nghĩa các lũy thừa A : D  A  L2    , 1    1 sao cho D  A  D  A   L2   với    0,1 thỏa mãn bất đẳng thức , v  D  A ,0    1  1 A v  Av 2 v 2 (1.9) 2 và phép nhúng v q  C A v , v  D  A  ,0    , 2   1 3 3 (1.10) 2 2 q 2 với hằng số C  C    0 độc lập với . Hơn nữa A1/2v  v 2 , v W0,1,2    D  A1/2  2 và 13
  18. A etAv  t  v 2 , v  L2   ,0    1 (1.11) 2 và A1/ s etAv  v 2 , v  L2   ,2  s  . (1.12) 2, s ;T 14
  19. Chương 2 Nghiệm mạnh địa phương của bài toán chứa hệ phương trình Navier – Stokes Chương này trình bày định nghĩa về nghiệm yếu và nghiệm mạnh, sự tồn tại nghiệm mạnh địa phương của hệ phương trình Navier – Stokes trong hai trường hợp: xét trên miền   3 và xét trên miền bị chặn   3 với một khoảng 0, T  ,0  T  . Các tài liệu tham khảo được trích dẫn trong [6], [7], [8], [9], [10]. 2.1. Bài toán 1 Xét bài toán chứa hệ phương trình Navier – Stokes ut  u  u.u  p  0, div u  0, (2.1) u   0, u  0   u0 , trong miền   3 , biên  trên khoảng 0, T  ,0  T   với điều kiện ban đầu u0  L2    và ngoại lực bằng không.   8 Khi đó điều kiện etAu0 dt   là cần và đủ cho sự tồn tại của một nghiệm 0 4   mạnh địa phương duy nhất u  L8 0,T ; L4   trong một số khoảng 0, T  ,0  T   2 3 với u  0   u0 thỏa mãn điều kiện Serrin   1. 8 4 Ta đi tìm nghiệm yếu và nghiệm mạnh của bài toán chứa hệ phương trình Navier – Stokes. 2.1.1. Định nghĩa nghiệm yếu và nghiệm mạnh của hệ phương trình Navier – Stokes trong  0,T  Định nghĩa 2.1. Cho u0  L2    . Khi đó u  L  0, T ; L2     L2loc 0,T  ;W01,2    (2.2) được gọi là nghiệm yếu của hệ phương trình Navier – Stokes (2.1) với điều kiện ban đầu u  0   u0 nếu 15
  20.  u, wt ,T  u, w ,T  uu, w ,T  u0 , w 0  (2.3)   thỏa mãn mỗi hàm thử w  C0 0,T  ; C0,   , ngoài ra có bất đẳng thức năng lượng t 1 1 u  t  2   u 2 d  u  0  2 2 2 2 2 0 2 luôn đúng với t   0, T  . Định nghĩa 2.2. Một nghiệm yếu u của (2.1) được gọi là nghiệm mạnh nếu thỏa mãn   điều kiện bổ sung Serrin u  Lsloc 0, T  ; Lq   với số mũ 2  s  , 3  q  , trong 2 3 đó   1. s q Định nghĩa 2.3. Nghiệm u thỏa mãn (2.2) được gọi là nghiệm yếu của hệ phương trình (tuyến tính) Stokes ut  u  u.u  p  0, div u  0, u   0, u  0   u0 , với F   Fij   i1 / x i Fij  j1 , F  L2loc 0,T ; L2  nếu 3 3 3 , div F  i ,i 1  u, wt ,T  u, w ,T  u0 , w 0   F , w ,T (2.4)  với mọi hàm w  C0 0,T  ; C0,   .  2.1.2. Sự tồn tại nghiệm mạnh của hệ phương trình Navier – Stokes trong  0,T  Định lý 2.4. Cho miền   3 , u0  L2    . i) Điều kiện  8 0 e  tAu0 dt   4 (2.5) là cần và đủ cho sự tồn tại của một nghiệm mạnh duy nhất u  L8  0,T ; L4    (2.6) của hệ phương trình Navier – Stokes (2.1) với u  0   u0 trên khoảng  0, T  ,0  T  . 16
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2