LUYỆN TẬP: HỆ TỌA ĐỘ TRONG KHÔNG GIAN
lượt xem 18
download
LUYỆN TẬP: HỆ TỌA ĐỘ TRONG KHÔNG GIAN (Chương trình chuẩn) Rèn các thao tác tư duy chủ động phân tích, tổng hợp, tính cẩn thận, thái độ làm việc nghiêm túc.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN TẬP: HỆ TỌA ĐỘ TRONG KHÔNG GIAN
- LUYỆN TẬP: HỆ TỌA ĐỘ TRONG KHÔNG GIAN (Chương trình chuẩn) I. Mục tiêu: Học xong 2 tiết này học sinh nắm vững lý thuyết giải thành thao về ba dạng toán cơ bản sau: 1) Về kiến thức: + Toạ độ, biểu thức toạ độ và tích vô hướng của hai vectơ. + Toạ độ của một điểm. + Phương trình mặt cầu. 2) Về kĩ năng: + Có kỹ năng vận dụng thành thạo các định lý và các hệ quả về toạ độ vectơ, toạ độ điểm và phương trình mặt cầu để giải các dạng toán có liên quan. 3) Về tư duy và thái độ: + Rèn các thao tác tư duy chủ động phân tích, tổng hợp, tính cẩn thận, thái độ làm việc nghiêm túc. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Giáo án, bảng phụ; phiếu học tập. + Học sinh: SGK, các dụng cụ học tập. III. Phương pháp dạy học: Gợi mở, nêu vấn đề, giải quyết vấn đề . IV. Tiến trình bài dạy: 1) Ổn định tổ chức: (1’) 2) Bài mới: * Tiết 1: * Hoạt động 1: r r r Bài tập 1 : Trong không gian Oxyz cho a(1; −3;2); b(3;0;4); c(0;5;-1). r 1r r r 1r r a) Tính toạ độ véc tơ u = b và v = 3a − b + 2c 2 2 rr r r r b) Tính a.b và a.(b − c). r r c) Tính và a − 2c . TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng, trình chiếu 20’ Gọi 3 HS giải 3 câu. HS1: Giải câu a Bài tập 1 : Câu a Gọi HS1 giải câu a r 1r 1 r Hỏi nhắc lại: k. a =? u = b = (3;0; 4) = r r r 2 2 r a±b±c =? Tính 3 a = r r 3a = ? 2c= r r 2c= ? Suy ra v = HS2: Giải câu b rr Bài tập 1 : Câu b Tính a.b Gọi HS2 giải câu b r r rr Tính (b − c). Nhắc lại : a.b = r r r Suy ra: a.(b − c). TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng, trình chiếu Gọi HS3 giải câu c HS3: Giải câu c Bài tập 1 : Câu c r r Nhắc lại: a = ? Tính a = 1
- r r r 2 c đã có . a − 2c = r r Gọi học sinh nhận xét Suy ra a − 2c = đánh giá. * Hoạt động 2: Bài tập 2 : Trong không gian Oxyz cho ba điểm A(1;2;-1); B(3;0;1); C(3;2;0). uuu r a) Tính AB ; AB và BC. b) Tính toạ độ trong tâm G của tam giác ABC. c) Tính độ dài trung tuyến CI của tam giác ABC. d) Tìm toạ độ điểm D để ABCD là hình bình hành. TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng, trình chiếu 24’ Gọi 3 Học sinh giải uuu giải câu a và b. HS1 r Bài tập 2 : Câu a;b Gọi HS1 giải câu uuu b. arvà AB = Hỏi và nhắc lại : AB = ? AB = AB = ? AC = Công thức trọng tâm tam Toạ độ trọng tâm tam giác giác. ABC HS2 giải câu c Bài tập 2 : Câu c Gọi HS2 giải câu c Tính toạ độ trung điểm I Hỏi : hướng giải câu c của AB. Công thức toạ độ trung Suy ra độ dài trung tuyến điểm AB CI. uuur Gọi HS3 giải câu d HS3 Ghi lại toạ độ ABr Hỏi : hướng giải câu d uuu Gọi D(x;y;z) suy ra DC Nhắc lại công thức Để ABCD là hbh khi r r uuu uuu r r a =b AB= DC Vẽ hình hướng dẫn. Suy ra toạ độ điểm D. Lưu ý: tuy theo hình bình hành suy ra D có toạ độ khác nhau. Gọi học sinh nhận xét đánh giá. Tiết 2: Ổn định tổ chức ( 1’ ) * Hoạt động 3: Bài tập 3: Tìm tâm và bán kính các mặt cầu sau: a) x + y2 + z2 – 4x + 2z + 1 =0 2 b) 2x2 + 2y2 + 2z2 + 6y - 2z - 2 =0 TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng, trình chiếu 15’ Gọi 2 Học sinh giải HS1 giải câu a Bài tập 3 : Câu a Gọi HS1 giải câu a Hỏi : 2A= ? 2B= ? Hỏi : 2A= -4; 2B= 0 2C= ? 2C= 2 Nhắc lại tâm I; bk: R Suy ra A; B; C Suy ra tâm I; bk R. 2
- Bài tập 3 : Câu b Gọi HS2 giải câu b HS2 giải câu b Hướng giải câu b Chia hai vế PT cho 2 Lưu ý hệ số x2 ;y2 ;z2 là 1 PT x2 + y2 + z2 +3x - z - 1 =0 Gọi học sinh nhận xét Suy ra tâm I ; bk R. tương tự đánh giá. câu a. * Hoạt động 4: Bài tập 4: Trong không gian Oxyz cho hai điểm: A(4;-3;1) và B (0;1;3) a) Viết phương trình mặt cầu đường kính AB. b) Viết phương trình mặt cầu qua gốc toạ độ O và có tâm B. c) Viết phương trình mặt cầu tâm nằm trên Oy và qua hai điểm A;B. TG Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng, trình chiếu 22’ Gọi 2 h.sinh giải câu a;b HS1 giải câu a Bài tập 4 : Câu a Gọi HS1 giải câu a Tâm I trung điểm AB Hỏi : Viết pt mặt cầu cần Suy ra tâm I biết điều gì? dạng? Bk R = AI hoặc + Tâm = ? R = AB/2 + Bán kính R = ? Viết pt mặt cầu Nhắc lại tâm I; bk: R Dạng pt mặt cầu HS2 giải câu b Bài tập 4 : Câu b Gọi HS2 giải câu b Tâm I trùng O(0;0;0) Hướng giải câu b Bk R = OB= Tâm I trùng O Viết pt mặt cầu Bk R = ? Bài tập 4 : Câu c: Bg: Dạng pt mặt cầu Tâm I thuộc Oy suy ra Gọi học sinh nhận xét I(0;y;0). đánh giá Mặt cầu qua A;B suy ra AI = BI AI2 = BI2 Cho học sinh xung phong HS3 giải câu c 42 +(y+3)2 +12= giải câu c. Tâm I thuộc Oy suy ra 02 + (y-1)2 + 32 Hỏi tâm I thuộc Oy suy ra I(0;y;0)? 8y + 16 = 0 I có toa độ? Mặt cầu qua A;B suy ra y = -2 AI = BI AI2 = BI2 Mặt cầu qua A;B suy ra IA Tâm I (0;-2;0) ? IB Giải pt tìm y Kb R = AI = Suy ra tâm I bk R Giải pt tìm tâm I Viết pt mặt cầu Suy ra bk R = 18 PTmc cần tìm. Gọi học sinh nhận xét x2 + (y+2)2 + z2 =18 đánh giá. V) Củng cố toàn bài: (6’) + Nắm vững thành thạo ba dạng bài tập trên. + Vận dụng làm bài trắc nghiệm thông qua trình chiếu. 3
- (Giáo viên tự ra đề phù hợp với năng lực học sinh đang dạy có thể tham khảo các bài tập trắc nghiệm sau .) → → Câu 1: Trong không gian Oxyz cho 2 vectơ a = (1; 2; 2) và b = (1; 2; -2); khi đó : → → → a ( a + b ) có giá trị bằng : A. 10 B. 18 C. 4 D. 8 → → Câu 2: Trong không gian Oxyz cho 2 vectơ a = (3; 1; 2) và b = (2; 0; -1); khi đó → → vectơ 2 a − b có độ dài bằng : A. 3 5 B. 29 C. 11 D. 5 3 Câu 3: Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) B. D(1; 2 ; -2) C. D(-1;-2 ; 2) D. D(1; -2 ; -2) Câu 4: Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (–2;0;1). Toạ độ điểm C nằm trên trục Oz để Δ ABC cân tại C là : 2 A. C(0;0;2) B. C(0;0;–2) C. C(0;–1;0) D. C( ;0;0) 3 Câu 5: Trong không gian Oxyz ,cho mặt cầu (S): x2 + y2 + z2 + 4x – 2z – 4 = 0, (S) có toạ độ tâm I và bán kính R là: A. I (–2;0;1) , R = 3 B. I (4;0;–2) , R =1 C. I (0;2;–1) , R = 9. D. I (–2;1;0) , R = 3 Câu 6: Trong không gian Oxyz ,phương trình mặt cầu (S) có tâm I(1;- 2; 4) và đi qua A(3;0;3) là : A. (x-1)2 + (y+2) 2 + (z-4) 2 = 9 B. (x- 1)2 + (y+2) 2 + (z- 4) 2 = 3 C. (x+1)2 + (y-2) 2 + (z+4) 2 = 9 D. (x+1)2 + (y-2) 2 + (z+4) 2 = 3. Câu 7: Trong không gian Oxyz ,mặt cầu (S) có đường kính OA với A(-2; -2; 4) có phương trình là: A. x2 + y2 + z2 + 2x + 2y – 4z = 0 B. x2 + y2 + z2 - 2x - 2y + 4z = 0 C. x2 + y2 + z2 + x + y – 2z = 0 D..x2 + y2 + z2 + 2x + 2y + 4z = 0 r r r Câu 7: Cho 3 vectơ i = (1; 0; 0) , j = (0;1; 0) và k = (0; 0;1) . Vectơ nào sau đây không r r r r vuông góc với vectơ v = 2i − j + 3k r r r r r r r r r r A. i + 3j − k B. i − j − k C. i + 2 j D. 3i − 2k Câu 8: Cho tam giác ABC có A(0;0;1) , B(– 1;2;1) , C(– 1;0;4). Diện tích của tam giác ABC là: 7 8 A. B. C. 3 D. 7 2 3 VI) Hướng dẫn học sinh học bài ở nhà và ra bài tập về nhà: (1’) + Tương tự bài tập trên giải các bài tập 1 đến 6 SGK trang 68. + Tham khảo - giải các bài tập còn lại trong sách bài tập hình học. 4
- 5
CÓ THỂ BẠN MUỐN DOWNLOAD
-
PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG ÔN THI ĐẠI HỌC NĂM 2009
10 p | 1064 | 255
-
Bài tập Hình học Giải tích 12: Phương pháp tọa độ trong không gian
14 p | 486 | 93
-
Ôn tập Phương pháp tọa độ trong không gian
13 p | 248 | 19
-
Giáo án Toán 12 ban cơ bản : Tên bài dạy : LUYỆN TẬP: HỆ TỌA ĐỘ TRONG KHÔNG GIAN
12 p | 101 | 14
-
LUYỆN TẬP: Đồ thị của hàm số và phép tịnh tiến hệ toạ đô
6 p | 254 | 12
-
Giáo án Giải tích 12 ban tự nhiên : Tên bài dạy : LUYỆN TẬP Đường tiệm cận của đồ thi hàm số
8 p | 114 | 10
-
ÔN THI TOÁN: HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN
10 p | 111 | 8
-
Giải bài tập Luyện tập hàm số y = ax (a # 0) SGK Đại số 7 tập 1
7 p | 95 | 7
-
TIẾT 12 LUYỆN TẬP TOẠ ĐỘ CỦA VÉC TƠ VÀ CỦA ĐIỂM
4 p | 97 | 7
-
Bài giảng Hình học 12 - Tiết 29: Luyện tập hệ toạ độ trong không gian (Bài tập về mặt cầu)
13 p | 47 | 6
-
Ôn tập chương III
6 p | 78 | 5
-
Đề cương ôn tập học kì 2 môn Toán lớp 12 năm 2020-2021 - Trường THPT Kim Liên
16 p | 17 | 4
-
LUYỆN TẬP - §4 Đồ thị của hàm số và phép tịn tiến hệ toạ đô
5 p | 119 | 4
-
Bài giảng Hình học lớp 10: Hệ trục tọa độ (TT) - Trường THPT Bình Chánh
10 p | 8 | 3
-
Sáng kiến kinh nghiệm: Rèn luyện cho học sinh kỹ năng sử dụng khoảng cách từ 1 điểm đến 1 đường thẳng để giải quyết một số dạng toán hình tọa độ phẳng
19 p | 36 | 3
-
Đề thi thử ĐH lần 1 môn Toán năm 2013 - THPT Thuận Thành số 3 (Kèm Đ.án)
9 p | 48 | 3
-
Đề cương ôn tập học kì 2 môn Toán lớp 12 năm 2023-2024 - Trường THPT Phúc Thọ, Hà Nội
22 p | 5 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn