LUYỆN THI ĐẠI HỌC: BẤT ĐẲNG THỨC
lượt xem 21
download
Tài liệu tham khảo được trích từ các trang web chuyên ôn luyện vào Đại học cho các bạn học sinh Phổ thông có tư liệu ôn thi tốt đạt kết quả cao vào các trường Cao đẳng, Đại học
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN THI ĐẠI HỌC: BẤT ĐẲNG THỨC
- www.MATHVN.com BẤT ĐẲNG THỨC VÀ CỰC TRỊ (Chuyên đề LTĐH 2011) Để chứng minh các BĐT ta có thể sử dụng một số bất đẳng thức hoặc dùng phương pháp đánh giá. I.Sử dụng một số BĐT cơ bản: Các BĐT cơ bản ở đây là BĐT Cô-Si: Với n số không âm bất kì: a1 ; a2 ;...an ( n ³ 2) ta luôn có: a1 + a2 + ... + an n ³ a1a2 ...an ( I ) ; dấu bằng xảy ra khi và chỉ khi: n a1 = a2 = ... = an . BĐT Bunhiacôpxki: Với hai bộ số thực bất kì ( a1 ; a2 ;...an ),(b1 ; b2 ;...bn ) ta luôn có: ( a1b1 + a2b2 + ... + anbn ) 2 £ ( a12 + a2 + ... + an )(b12 + b22 + ... + bn )( II ) ; dấu bằng 2 2 2 xảy ra khi và chỉ a a1 a2 = ... = n . BĐT: a 2 + b 2 + c 2 ³ ab + bc + ca ( III ) ; dấu bằng xảy ra = Khi: b1 b2 bn khi a = b = c. n2 11 1 + + ... + ³ BĐT: ( IV ) ; trong đó a1 , a2 ,...an là các số an a1 + a2 + ... + an a1 a2 dương; dấu bằng xảy ra khi và chỉ khi các số này bằng nhau. Bài 1: Cho a > b > 0 . Chứng minh: 1 4 1 a/a + ³ 3; b / a + ³ 3; c / a + ³ 2 2. b( a - b) (a - b)(b + 1) b( a - b) 2 2 1 1 Giải: a/ Theo BĐT (I) ta có: b + (a - b) + ³ 3 3 b.(a - b). =3 b( a - b) b( a - b) (đpcm). Dấu bằng xảy ra khi b = 1; a = 2. Bài 2: Cho a > 1; b > 1. Chứng minh: a b - 1 + b a - 1 £ ab. www.mathvn.com 1
- www.MATHVN.com (b - 1) + 1 ab Giải: Theo BĐT (I) ta có: a b - 1 = a (b - 1).1 £ a. = ; tương tự ta 2 2 cũng có: ab b a -1 £ . Cộng các vế của các BĐT này lại ta sẽ được đpcm. Dấu bằng xảy ra 2 khi a = b = 2. Bài 2’: a,b,c là ba số không âm có tổng bằng 1. Chứng minh: ab + bc + ca - abc £ 8 / 27 . (1 - a ) + (1 - b) + (1 - c) 2 (1 - a )(1 - b)(1 - c) £ = Giải: Theo BĐT (I) ta có: 3 3 3 Û 1 - a - b - c + ab + bc + ca - abc = ab + bc + ca - abc £ 8 / 27 (đpcm). Dấu bằng xảy ra khi a = b = c =1/3. Bài 3: Cho ba số không âm a,b,c. Chứng minh: a 3 + b3 + c 3 ³ a 2 bc + b 2 ca + c 2 ab . () 34 Giải: Theo BĐT (I) ta có: 4a + b + c ³ 6 6 a b3c 3 = 6a 2 bc ; tương tự ta 3 3 3 cũng có: 4b3 + c 3 + a 3 ³ 6b 2 ca ;4c 3 + a 3 + b3 ³ 6c 2 ab cộng các vế của các BĐT này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. Bài 3’: Cho ba số dương x,y,z. Chứng minh: ( x + y + z )6 / xy 2 z 3 ³ 432 . Bài 4: Tìm GTNN của biểu thức P = ( x + y )9 / x 3 y 6 trong đó x,y là các số dương. Giải: Theo BĐT (I) ta có: ( x + y )9 3 6 æxö æ yö 99 39 x y x + y = 3. + 6. ³ 9. ç ÷ ç ÷ Û P = 3 6 ³ 3 6 = 6 9 è3ø è6ø 3 6 xy 36 2 9 6 Vậy GTNN của P bằng 3 / 2 khi y = 2x. Bài 5: Ba số thực a,b,c thỏa mãn hệ thức: a 6 + b6 + c 6 = 3 . Hãy tìm GTLN của biểu thức S = a + b + c 2 2 2 Giải: Theo BĐT (I) ta có: a 6 + 1 + 1 ³ 3a 2 ; b 6 + 1 + 1 ³ 3b 2 ; c 6 + 1 + 1 ³ 3c 2 Þ 9 ³ 3S Û 3 ³ S Vậy GTLN của S bằng 3 khi a = b = c = 1. Bài 6: x,y là các số thực thỏa mãn các điều kiện: 0 £ x £ 3;0 £ y £ 4 . Tìm GTLN của biểu thức: www.mathvn.com 2
- www.MATHVN.com A = (3 - x)(4 - y )(2 x + 3 y ) . Giải: Theo BĐT (I) ta có: (6 - 2 x) + (12 - 3 y ) + (2 x + 3 y ) 2(3 - x).3(4 - y ).(2 x + 3 y ) £ =6 3 3 Û 6 A £ 63 Û A £ 36 . Vậy GTLN của A bằng 36 khi x = 0 và y = 2. Bài 7: x,y,z là các số không âm có tổng bằng 1. Tìm GTLN của biểu thức: P = xyz ( x + y )( y + z )( z + x) . Bài 8: a,b,c là các số dương. Chứng minh: a m + n b m+ n c m + n + m + m ³ a n + b n + c n ( m, n Î N * ) m b c a n æ a m+ n ö n m a m+ n Giải: Theo BĐT (I) ta có: n m + mb ³ ( m + n) ç m ÷ (b ) = ( m + n)a . n n m+ n èb ø b Tương tự b m+ n c m+n ta cũng có: n m + mc ³ ( m + n)b ; n m + ma ³ (m + n)c . Cộng các BĐT n n n n c a này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. a 2 b2 c2 + + ³ a + b + c. Chú ý: Nếu m = n = 1 thì ta được BĐT: b c a Bài 9: Cho 3 số thực dương a,b,c. Chứng minh: a+b+c a3 b3 c3 + + ³ . b(c + a ) c(a + b) a (b + c) 2 b c+a a 3 b c + a 3a a3 ++ ³ 33 = Giải: Theo BĐT (I) ta có: . b(c + a ) 2 b (c + a ) 2 4 4 2 Tương tự ta cũng có: c a + b 3b a b + c 3c b3 c3 ++ ³; ++ ³ . Cộng các vế của các BĐT c ( a + b) 2 2 a (b + c) 2 4 4 2 này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. Bài 10: Các số thực dương x,y,z thỏa mãn điều kiện: x + y + z ³ 6 . Tìm GTNN của biểu thức: x3 y3 z3 S= + + . y+z x+z y+x www.mathvn.com 3
- www.MATHVN.com Bài 11: Cho ba số thực dương a,b,c thỏa mãn hệ thức: a + b + c = 6 . Tìm GTNN của biểu thức: 1 1 1 P = (1 + )(1 + 3 )(1 + 3 ) . a3 b c Bài 12: Cho x,y,z là ba số thực thoả mãn hệ thức: x + y + z = 0 . Chứng minh: S = 3 + 4x + 3 + 4 y + 3 + 4z ³ 6 3 + 4 x = 1 + 1 + 1 + 4 x ³ 4 4 4 x = 2.2 x / 4 . Tương tự Giải: Theo BĐT (I) ta có: ta cũng có: 3 + 4 y ³ 2.2 y / 4 ; 3 + 4 z ³ 2.2 z / 4 Þ S ³ 2(2 x / 4 + 2 y / 4 + 2 z / 4 ) ³ 2.3 3 2( x+ y + z ) / 4 = 6 (đpcm) Dấu bằng xảy ra khi x = y = z = 0 . Bài 13: Cho hai số thực dương x,y có tổng bằng 1. Tìm GTNN của biểu thức: x y S= + . 1- y 1- x Giải: Dễ thấy S dương. Theo BĐT (I) ta có: x2 y2 S +x+ y³ + 2 xy + + 2 xy ³ 2 y x x2 y2 xy = 3( x + y ) Þ S 2 ³ 2 Û S ³ 2 . Vậy MinS = 2 khi x = xy + 3. 3. 3 3 y x y = 1/2. Bài 14: Cho ba số dương a,b,c thỏa mãn điều kiện: a + b + c ³ 3 . Tìm GTNN của biểu thức: a b c S= + + . b c a Bài 15: Cho 3 số dương a,b,c thỏa mãn hệ thức: a 2 + b 2 + c 2 = 1. Chứng minh: ab bc ca S= ++ ³ 3. c a b Bài 16: Cho 3 số dương x,y,z có tổng bằng 1. Chứng minh BĐT: xy yz zx 3 + + £. xy + z yz + x zx + y 2 www.mathvn.com 4
- www.MATHVN.com Giải: Do xy + z = xy + z ( x + y + z ) = ( x + z )( y + z ) nên theo BĐT (I) ta có: 1æ x yö xy x y = £ç + ÷ . Tương tự ta cũng có: . xy + z x + z y + z 2è x + z y + z ø 1æ y zö 1æ x zö yz xz £ç + £ç + ÷ ÷ ; yz + x 2 è x + y x + z ø xz + y 2 è x + y y + z ø Cộng các BĐT trên ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi x = y = z = 1/ 3. Bài 17: Cho hai số thực dương x,y thỏa mãn điều kiện: x + y ³ 6 . Tìm GTNN của biểu thức: 68 P = 3x + 2 y + +. xy Giải: Theo BĐT (I) ta có: 3x 6 y 8 3x 3 y 3x 6 y8 3 P= ++++ + ³ 2. . + 2. . + .6 2x2y2 2 2x 2y 2 = 6 + 4 + 9 = 19 . Vậy MinP = 19 khi x = 2 và y = 4. Bài 18: Cho 3 số thực dương x,y,z thỏa mãn điều kiện: 2 xy + xz = 1. Tìm GTNN của biểu thức: 3 yz 4 xz 5 xy S= + + . x y z Giải: Theo BĐT (I) ta có: æ yz xz ö æ yz xy ö æ xy xz ö S = ç + ÷ + 2 ç + ÷ + 3ç + ÷ ³ 2 z + 4 y + 6 x = èx zø èz èx yø yø 2( x + z ) + 4( x + y ) ³ 4 xz + 8 xy = 4 . Vậy MinS = 4 khi x = y = z = 1/3. Bài 19: Cho hai số thực không âm x,y thỏa mãn các điều kiện: x + y £ 4;3 x + y £ 6 . Tìm GTLN của biểu thức: P = 9. 3 x + 4 y . 2 2 Giải: Theo BĐT (I) ta có: P = 3.3 3 x.1.1 + .2 y.3 £ 3( x + 2) + ( y + 3) 3 3 www.mathvn.com 5
- www.MATHVN.com 2 3 -3 9-2 3 = a ( x + y ) + b(3 x + y ) + 6 + 2 3 £ 4a + 6b + 6 + 2 3 = 4. + 6. +6+2 3 2 6 = 9 + 4 3 . ( Do a + 3b = 3 & a + b = 2 / 3 Þ a = (2 3 - 3) / 2 & b = (9 - 2 3) / 6 ). Vậy MaxP = 9 + 4 3 khi x = 1 & y = 3 . Bài 20: Cho 3 số dương a,b,c. Chứng minh BĐT: 1æ 1 1 1ö 1 1 1 + + £ ç + + ÷. 2a + b + c a + 2b + c a + b + 2c 4 è a b c ø Giải: Theo BĐT (IV) ưng với n =2 ta có: 1æ 1 1ö 1 1 = £ç + ÷ 2a + b + c ( a + b) + ( a + c ) 4 è a + b a + c ø 1 é 1 æ 1 1 ö 1 æ 1 1 öù 1 æ 2 1 1 ö £ ê ç + ÷ + ç + ÷ ú = ç + + ÷ . Tương tự ta cũng có: 4 ë 4 è a b ø 4 è a c ø û 16 è a b c ø 1 æ1 2 1ö 1 æ1 1 2ö 1 1 £ ç + + ÷; £ ç + + ÷ .Cộng các vế của các a + 2b + c 16 è a b c ø a + b + 2c 16 è a b c ø BĐT này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. Bài 21: Cho hai số dương a,b có tổng bằng 1. Chứng minh các BĐT sau: 1 1 2 3 +2 ³ 6; b / +2 ³ 14. a/ ab a + b ab a + b 2 2 Giải: a/ Theo BĐT (IV) ứng với n =2 ta có: 1 1 1 1 1 +2 = + +2 ³ ab a + b 2 2ab 2ab a + b 2 2 4 + = 2 + 4 = 6 (đpcm). Dấu bằng xảy ra khi a = b = 1 / 2. (a + b) 2 2ab + a 2 + b 2 a = b = 1 / 2. Bài 22: Cho a,b,c là các số thực dương thỏa mãn điều kiện: a + b + c £ 3 / 2. Chứng minh: a + b + c + 1 / a + 1/ b + 1/ c ³ 15 / 2. Bài 23: Ba số dương x,y,z có tích bằng 1. Chứng minh: x 2 + y 2 + z 2 ³ x + y + z . www.mathvn.com 6
- www.MATHVN.com Giải: Áp dụng BĐT (II) và (I) ứng với n = 3 ta có: ( x + y + z )2 x +y +z ³ = ( x + y + z ). 2 2 2 3 x+ y+z ³ ( x + y + z ). 3 xyz = x + y + z (đpcm). Dấu bằng xảy ra khi 3 x = y = z = 1. a 2 b2 c2 a b c Chú ý: Từ BĐT trên ta suy ra BĐT: 2 + 2 + 2 ³ + + với a,b,c là các số b c a bca dương. Bài 24: Cho a > c > 0; b > c > 0 . Chứng minh: c(b - c) + c( a - c) £ ab . Giải: Áp dụng BĐT (II) cho hai bộ số ( c ; a - c ) & ( b - c ; c ) ta được: ( c(b - c) + c(a - c)) 2 £ (c + a - c)(b - c + c) = ab từ đó suy ra BĐT ccm. Dấu bằng xảy ra khi ab = c(a + b) Bài 25: Cho 4 số dương x,y,a,b thỏa man các điều kiện: a > x; a + b > x + y . Chứng minh: (a - x)2 x2 a2 + ³ . x+ y a+b- x- y a+b Giải: Áp dụng BĐT (II) cho hai bộ số æx ö a-x & ( x + y ; a + b - x - y ) ta ç ç x+ y a+b- x- y ÷ ; ÷ è ø æ x2 (a - x) 2 ö + ÷ ( x + y + a + b - x - y ) ³ ( x + a - x) từ đó suy ra 2 được: ç è x+ y a+b- x- y ø BĐT ccm. Dấu bằng xảy ra khi bx = ay. Bài 26: Bốn số thực a,b,c,d thỏa mãn hệ thức: a 2 + b 2 + c 2 + d 2 = 1; x là số thực bất kì. Chứng minh: ( x 2 + ax + b)2 + ( x 2 + cx + d )2 £ (2 x 2 + 1) 2 Giải: Áp dụng BĐT (II) ứng với n = 3 ta có: ( x 2 + ax + b) 2 £ ( x 2 + x 2 + 12 )( x 2 + a 2 + b 2 ); www.mathvn.com 7
- www.MATHVN.com ( x 2 + cx + d ) 2 £ ( x 2 + x 2 + 12 )( x 2 + c 2 + d 2 ) Þ ( x 2 + ax + b)2 + ( x 2 + cx + d )2 £ (2 x 2 + 1)( x 2 + a 2 + b 2 + x 2 + c 2 + d 2 ) = (2 x 2 + 1)2 (đpcm). Dấu bằng xảy ra khi b=d=1&x=a=c. Bài 27: Cho 5 số dương x,y,z,p,q bất kì. Chứng minh: x y z 3 + + ³ . py + qz pz + qx px + qy p + q Giải: Theo BĐT (III) ta có: x( py + qz ) + y ( pz + qx) + z ( px + qy ) = ( p + q)( xy + yz + zx) £ ( p + q )( x + y + z )2 / 3 (*). Áp dụng BĐT (II) cho hai bộ số æ ö x y z ç ÷ và ; ; py + qz pz + qx px + qy ø è ( x( py + qz ); y ( pz + qx); z ( px + qy )) ta được: æx zö y ÷ [ x( py + qz ) + y ( pz + qx) + z ( px + qy ) ] ³ ( x + y + z ) + + 2 ç è py + qz pz + qx px + qy ø Kết hợp với BĐT (*) ta sẽ được BĐT ccm. Dấu bằng xảy ra khi; py + qz = pz + qx = px + qy . Bằng cách giải tương tự ta sẽ chứng minh được các BĐT sau: a b c 3 + + ³ với a,b,c là các số dương bất kì. 1/ b+c a+c b+a 2 a b c d + + + ³ 2 với a,b,c,d là các số dương bất kì. 2/ b+c d +c d +a a+b a+b+c a2 b2 c2 + + ³ với a,b,c là các số dương bất kì. 3/ b+c a+c b+a 2 a2 b2 c2 + + ³ a + b + c với a,b,c là độ dài ba cạnh của một 4/ b+c-a a +c-b b+ a -c tam giác. www.mathvn.com 8
- www.MATHVN.com a b c + + ³ 3 với a,b,c là độ dài ba cạnh của một tam 5/ b+c-a a +c-b b+ a -c giác. Bài 28: Cho các số thực x,y,u,v thỏa mãn điều kiện: x 2 + y 2 = u 2 + y 2 = 1. Chứng minh: u ( x - y ) + v( x + y ) £ 2 Giải: Theo BĐT (II) : [u ( x - y ) + v( x + y ) ] £ (u 2 + v 2 ) é( x - y )2 + ( x + y )2 ù = 2( x 2 + y 2 ) = 2 2 ë û Từ đó suy ra BĐT cần chứng minh. Dấu bằng xảy ra khi u ( x + y ) = v ( x - y ). Bài 29: Cho a,b,c là 3 số dương thỏa mãn điều kiện: a 2 + b 2 + c 2 ³ 1. Chứng minh: a3 b3 c3 1 + + ³ b+c a+c b+a 2 Giải: Theo BĐT (II) ta có: æa cö 3 3 3 b ÷ [ a (b + c) + b(a + c) + c(b + a )] ³ + + ç b+c a+c b+aø è (a 2 + b 2 + c 2 ) 2 ³ (a 2 + b 2 + c 2 ) ³ ab + bc + ca . Từ đó ta suy ra BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c = 3 / 3 . Bài 30: Ba số x,y,z thỏa mãn điều kiện: x( x - 1) + y ( y - 1) + z ( z - 1) £ 4 / 3. Chứng minh: -1 £ x + y + z £ 4 . Giải: Từ điều kiện ta suy ra: ( x - 1/ 2) + ( y - 1/ 2) + ( z - 1/ 2) £ 25/12 . Áp 2 2 2 dụng BĐT (II) ta được: [1.( x - 1/ 2) + 1.( y - 1/ 2) + 1.( z - 1/ 2)] £ 3 é( x - 1/ 2) 2 + ( y - 1/ 2) 2 + ( z - 1/ 2) 2 ù £ 25/ 2 ë û Þ x + y + z - 3 / 2 £ 5/ 2 Û -5 / 2 £ x + y + z - 3/ 2 £ 5/ 2 Û -1 £ x + y + z £ 4 (đpcm). Dấu bằng xảy ra khi x = y = z = 4 / 3 . Bài 31: Hai số a,b thỏa mãn điều kiện: a 2 + b 2 + 16 = 8a + 6b . Chứng minh: a / 10 £ 4a + 3b £ 40; b / 7b £ 24a Giải: a/ Từ điều kiện ta suy ra: ( a - 4) + (b - 3) = 9 . Áp dụng BĐT (II) ta được: 2 2 www.mathvn.com 9
- www.MATHVN.com [ 4(a - 4) + 3(b - 3)] £ é(a - 4)2 + (b - 3) 2 ù (42 + 32 ) = 9.25 Û 4a + 3b - 25 £ 15 2 ë û Û -15 £ 4a + 3b - 25 £ 15 Û 10 £ 4a + 3b £ 40 (đpcm). Dấu bằng xảy ra khi a = 24/5,b = 24/3 hoặc a = 16/5, b = 6/5. Bài 32: Ba số x,y,z thỏa mãn điều kiện: x 2 + y 2 + z 2 - 4 x + 2 z £ 0. Tìm GTNN và GTLN của biểu thức: S = 2 x + 3 y - 2 z. Bài 33: Cho a,b,c là ba số không âm thỏa mãn hệ thức: a + b + c = 3. Tìm GTNN của biểu thức: S = a 2 + ab + b 2 + c 2 + cb + b 2 + a 2 + ac + c 2 . Giải: Theo BĐT (II) ta có: 4 éæ b ö æ 3b ö ù é 2 æ 1 ö ù æ 2 2 2 2 b bö (a + ab + b ). = êç a + ÷ + ç ÷ ú ê1 + ç ÷ ú ³ ç a + 2 + 2 ÷ = (a + b) 2 2 2 3 êè 2ø è 2 ø úê è 3ø ú è ø ûë û ë Þ a 2 + ab + b 2 ³ 3(a + b) / 2 . Tương tự ta cũng có: c 2 + cb + b 2 ³ 3(c + b) / 2 ; c 2 + ca + a 2 ³ 3(c + a) / 2 Þ S ³ 3(a + b + c) = 3 . Vậy MinS = 3 khi a = b = c = 3 / 3. II.Sử dụng phương pháp đánh giá: Bài 34: Cho 3 số dương a,b,c. Chứng minh các BĐT sau: 1 1 1 1 +3 +3 3 £ a/ 3 ; a + b3 + abc c + b3 + abc a + c + abc abc a+b+c 1 1 1 +2 +2 £ b/ 2 . a + bc b + ac c + ab 2abc Giải:a/Ta có: a 3 + b3 + abc = (a + b)(a 2 - ab + b 2 ) + abc ³ (a + b)ab + abc = ab(a + b + c) > 0 www.mathvn.com 10
- www.MATHVN.com 1 1 c Þ £ = . Tương tự ta cũng có các a 3 + b3 + abc ab(a + b + c) abc(a + b + c) BĐT: 1 a 1 b £ £ . Cộng các vế của ;3 c 3 + b3 + abc abc(a + b + c) c + a 3 + abc abc(a + b + c) các BĐT này lại rồi giản ước ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. b/ Theo BĐT (I) ta có: bc b + c 1 1 a 2 + bc ³ 2a bc > 0 Þ £ = £ . a + bc 2a bc 2abc 4abc 2 a+c b+a 1 1 £ £ Tương tự ta cũng có: 2 . Cộng các vế của các BĐT ;2 b + ac 4abc c + ab 4abc này lại rồi đơn giản ta sẽ được BĐT cần chứng minh. Dấu bằng xảy ra khi a = b = c. Bài 35: Cho 3 số dương x,y,z thỏa mãn điều kiện: x 2 + y 2 + z 2 £ 3. Tìm GTNN của biểu thức: 1 1 1 P= + + . 1 + xy 1 + zy 1 + zx Bài 36: Cho 3 số dương a,b,c có tổng bằng 2. Chứng minh: ab cb ac S= + + £ 1. 2-c 2-a 2-b Bài 37: Cho 3 số dương a,b,c thỏa mãn điều kiện: 1 / a + 1/ b + 1/ c = 3. Tìm GTLN của biểu thức: ab cb ac S= +3 + 3 3. a 3 + b3 c + b3 a + c Bài 38: Cho ba số dương x,y,z có tích bằng 8. Tìm GTNN của biểu thức: S = log 2 x + 1 + log 2 y + 1 + log 2 z + 1. 2 2 2 Giải: Ta có: (log 2 x + 1)2 (log 2 x + 1) 2 (log 2 x + 1)2 1 S³ + + = ( log 2 x + 1 + log 2 y + 1 + lo 2 2 2 2 1 6 = 3 2. Vậy MinS = 3 2 khi x = y = z = 2. ³ 3 + log 2 xyz = 2 2 www.mathvn.com 11
- www.MATHVN.com Bài 39: Cho 3 số thực x,y,z có tổng bằng 1. Tìm GTNN của biểu thức: S = x 4 + y 4 + z 4 - xyz. Giải: Theo BĐT (II) ta có: 2 1 é1 ù 1 1 x 4 + y 4 + z 4 ³ ( x 2 + y 2 + z 2 )2 ³ ê ( x + y + z )2 ú = . Áp dụng 3 ë3 û 3 27 BĐT (I) ta được: x +y +z 3æ 1ö 4 4 4 1/ 27 3 xyz 1 S= + ç x4 + y 4 + z 4 + 4 ÷ - - xyz ³ + .4 4è 3 ø 4.27 4 4 4 3 1 - xyz = xyz - xyz ³ 0. Vậy MinS = 0 khi x = y = z = 1 / 3. - 4.27 Bài 40: Cho 3 số dương x,y,z bất kì.Tìm GTNN của biểuthức: x2 y2 z2 S= 2 + + . x + 2 yz y 2 + 2 yx z 2 + 2 yx Bài 41: Cho 3 số dương x,y,z bất kì. Chứng 2x 2y 2z 1 1 1 minh: S = 4 +4 +4 £ 4 + 4 + 4. y + z 6 z + x6 x + y 6 x y z III.Chứng minh BĐT hoặctìm cực trị bằng phương pháp đổi biến: Bài 42: Cho các số thực dương a,b,c thỏa mãn hệ thức: ab + bc + ca = abc. Chứng minh BĐT: b 2 + 2a 2 c 2 + 2b 2 a 2 + 2c 2 S= + + ³ 3. ab cb ac Giải: Đặt x = 1/a, y = 1/b, z = 1/c thì điều kiện trở thành: x + y + z = 1 và BĐT trở thành: S = x 2 + 2 y 2 + y 2 + 2 z 2 + z 2 + 2 x 2 ³ 3 . Theo BĐT (II) ta có: S ³ ( x + 2 y ) 2 / 3 + ( y + 2 z ) 2 / 3 + ( z + 2 x)2 / 3 = 3( x + y + z ) / 3 = 3 (đpcm). Dấu bằng xảy ra khi x = y = z = 1 / 3 hay a = b = c = 3. www.mathvn.com 12
- www.MATHVN.com Bài 43: Cho 3 số thực dương x,y,z có tích bằng 1. Chứng minh BĐT: 1 1 1 3 S= 3 +3 +3 ³. x ( y + z ) y ( x + z ) z ( y + x) 2 Giải: Đặt x = 1/a, y = 1/b, z = 1/c thì điều kiện trở thành: abc = 1 và BĐT trở thành: a2 b2 c2 3 S= + + ³ .Áp dụng BĐT (II)&(I) ta có b+c a+c b+a 2 ( a + b + c) 2 a + b + c 3 ngay: S ³ = ³ 2( a + b + c) 2 2 Dấu bằng xảy ra khi a = b = c = 1 hay x = y = z = 1. Bài 44: Cho 3 số dương x,y,z thỏa mãn điều kiện: 1 / x + 1/ y + 1/ z = 1. Chứng minh BĐT: x + yz + y + xz + z + yx ³ xyz + x + y + z . Giải: Đặt x = 1/a, y = 1/b, z = 1/c thì điều kiện trở thành: a + b + c = 1 và BĐT trở thành: a + bc + b + ac + c + ab ³ 1 + ab + bc + ca . Ta có: a + bc = a (a + b + c) + bc ³ a 2 + 2a bc + bc = (a + bc )2 = a + bc . Tương tự ta cũng có: b + ac ³ b + ac ; c + ab ³ c + ab . Cộng các BĐT này lại ta sẽ được BĐT ccm. Dấu bằng xảy ra khi a = b = c = 1 / 3 hay x = y = z = 3. Bài 45: Cho hai số thực x,y khác 0 và thỏa mãn điều kiện: x 2 + y 2 = 2 x 2 y + y 2 x . Tìm GTNN và GTLN của biểu thức: S = 2 / x + 1/ y. Giải: Đặt u = 1 / x & v = 1/ y thì điều kiện trở thành: u 2 + v 2 = u + 2v Û (u - 1/ 2) 2 + (v - 1) 2 = 5/ 4 . Theo BĐT (II) ta có: ( S - 2) 2 = [ 2(u - 1/ 2) + v - 1] £ (22 + 12 ) é (u - 1/ 2) 2 + (v - 1) 2 ù £ 25 / 4 Þ -5 / 2 £ S - 2 ë û Þ -0,5 £ S £ 4,5 . Vậy MinS = - 0,5 khi x = - 2; y = 2. MaxS = 4,5 khi x = y = 2/3. Bài 46: Hai số thực x,y thỏa mãn các điều kiện: y £ 0 & x 2 + x = y + 12. Tìm GTNN và GTLN của biểu thức: A = xy + x + 2 y + 17. Giải: Từ điều kiện ta suy ra: y = x + x - 12 £ 0 Þ -4 £ x £ 3 ; 2 www.mathvn.com 13
- www.MATHVN.com đồng thời A = f ( x) = x + 3 x - 9 x - 7 3 2 Từ BBT của hàm số ta suy ra: x -4 -3 1 3 f’(x) + 0 - 0 + MaxA = Maxf ( x) = f (-3) = f (3) = 20 20 20 f(x) [ -4;3] 13 -12 MinA = Minf ( x) = f (1) = -12 [ -4;3] Bài 47: Cho hai số dương x,y thỏa mãn điều kiện: x 2 + y 2 = 1. Tìm GTNN của biểu thức: S = ( x + 1)(1 + 1/ y ) + ( y + 1)(1 + 1/ x) Bài 48: Cho các số thực x,y thỏa mãn điều kiện: x 2 + y 2 = 1. Tìm GTNN và GTLN 4 x 2 + 2 xy - 1 của biểu thức: T = 2 xy - 2 y 2 + 3 3 x 2 + 2 xy - y 2 . Nếu y = 0 Þ x = 1 Þ T = 1. Giải: Từ điều kiện ta suy ra: T = 2 2 3 x + 2 xy + y 2 Nếu y ¹ 0 đặt 3t 2 + 2t - 1 t = x/ y ÞT = 2 Û (3T - 3)t 2 + 2(T - 1)t + T + 1 = 0(*) . (*) không có 3t + 2t + 1 nghiệm khi T=1 Với T ¹ 1,(*) có D ' = (T - 1)(-2T - 4) ³ 0 khi -2 £ T < 1 . Kết hợp với trên ta có: MinT=-2 khi x = ± 10 /10; y = m3 10 /10 . MaxT=1 khi x = ±1 và y = 0. Bài 49: Cho hai số dương x,y thỏa mãn điều kiện: x + y = 5 / 4 . Tìm GTNN của biểu thức: S = 4 / x + 1/ 4 y. Bài 50: Cho hai số không âm x,y có tổng bằng 1. Tìm GTNN và GTLN của biểu thức: S = 1 + x 2008 + 1 + y 2008 . www.mathvn.com 14
- www.MATHVN.com Giải: Ta có: 1004(1 - x) 2007 1004 x 2007 S = f ( x) = 1 + x + 1 + (1 - x) . f '( x) = - 2008 2008 1 + x 2008 1 + (1 - x) 2008 f '( x) = 0 Û x 2007 1 + (1 - x) 2008 = (1 - x) 2007 1 + x 2008 Û x 4014 é1 + (1 - x) 2008 ù = ë û (1 - x) 4014 (1 + x 2008 ) Û é x 4014 - (1 - x) 4014 ù + x 2008 (1 - x) 2008 é x 2006 - (1 - x) 2006 ù = 0 ë û ë û Û (2 x - 1) P ( x) + x 2008 (1 - x) 2008 (2 x - 1) P2 ( x) = 0 Û 2 x - 1 = 0 Û x = 1/ 2 . 1 ( Vì x và 1 - x không đồng thời bằng 0 nên P ( x) > 0; P2 ( x) > 0 ) 1 Do f (0) = f (1) = 1 + 2; f (1/ 2) = 2 1 + 1/ 22008 Þ MaxS = 1 + 2; MinS = 2 1 + 1/ 22008 www.mathvn.com 15
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề luyện thi đại học: Phương trình - bất phương trình - hệ phương trình đại số
5 p | 4120 | 1701
-
Tài liệu về các dạng bài tập bất đẳng thức
9 p | 800 | 174
-
22 bài giảng luyện thi đại học môn toán-bài 7
36 p | 301 | 156
-
BẤT ĐẲNG THỨC VÀ CỰC TRỊ
0 p | 477 | 150
-
Trắc nghiệm Hóa học luyện thi đại học
252 p | 270 | 133
-
Bất đẳng thức luyện thi đại học
9 p | 366 | 122
-
Bài giảng điện tử Bất đẳng thức cauchy
41 p | 471 | 105
-
Các chuyên đề luyện thi Đại học môn Hóa: Phương pháp 6 - Phương pháp sử dụng Ion thu gọn - GV. Nguyễn Văn Nghĩa
8 p | 353 | 76
-
Chuyên đề luyện thi Đại học: Bất đẳng thức
234 p | 213 | 62
-
Các chuyên đề luyện thi Đại học - Trần Anh Tuấn
145 p | 221 | 35
-
Chuyên đề bất đẳng thức luyện thi đại học năm 2015 - GV. Lê Xuân Đại
52 p | 219 | 26
-
Tổng hợp bất đẳng thức và cực trị
123 p | 293 | 26
-
Cẩm nang hướng dẫn luyện thi Đại học - Đại số sơ cấp: Phần 2
303 p | 122 | 19
-
Tổng ôn tập luyện thi Đại học môn Toán - Đại số: Phần 2
136 p | 118 | 17
-
Chuyên đề luyện thi ĐH: Bất đẳng thức - Huỳnh Chí Hào
7 p | 116 | 11
-
Luyện thi Đại học môn Toán 2015: Bất phương trình sơ cấp - Thầy Đặng Việt Hùng
2 p | 112 | 8
-
Ôn thi Đại học - Cao đẳng môn Toán
167 p | 75 | 6
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn