LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 15
lượt xem 7
download
Tham khảo tài liệu 'luyện thi đại học môn toán - đề 15', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 15
- TDT ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) Đề số 16 I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số y = x 3 + 3 x 2 + mx + 1 có đồ thị là (Cm); ( m là tham số). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 3. 2) Xác định m để (Cm) cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau. Câu II (2 điểm): cos 2 x + cos 3 x - 1 cos 2 x - tan x = 2 1) Giải phương trình: cos 2 x ì x 2 + y 2 + xy + 1 = 4 y í 2) Giải hệ phương trình: î y ( x + y) = 2 x + 7 y + 2 2 2 e log3 x òx I= I = 2 dx Câu III (1 điểm): Tính tích phân: 1 + 3ln 2 x 1 a3 và góc BAD = 600. Gọi M Câu IV (1 điểm): Cho hình hộp đứng ABCD.A'B'C'D' có các cạ nh AB = AD = a, AA' = 2 và N lần lượt là trung điểm của các cạ nh A'D' và A'B'. Chứng minh AC ' vuông góc với mặt phẳng (BDMN). Tính thể tích khối chóp A.BDMN. Câu V (1 điểm): Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 1 . Chứng minh rằng: 7 ab + bc + ca - 2abc £ 27 II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2) Trong không gian với hệ toạ độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(–1; 0; 1), B(1; 2; –1), C(–1; 2; 3). Câu VII.a (1 điểm): Cho z1 , z2 là các nghiệm phức của phương trình 2 z 2 - 4 z + 11 = 0 . Tính giá trị của biểu thức : 2 2 z1 + z2 . ( z1 + z2 )2 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hai đường thẳng D : x + 3 y + 8 = 0 , D ' :3x - 4 y + 10 = 0 và điểm A(–2; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng D , đi qua điểm A và tiếp xúc với đường thẳng D ’ 2) Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(0; 1; 2), B(2; –2; 1), C(–2; 0; 1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng (P): 2 x + 2 y + z – 3 = 0 sao cho MA = MB = MC . ì2log1- x (- xy - 2 x + y + 2) + log 2 + y ( x 2 - 2 x + 1) = 6 ï Câu VII.b (1 điểm): Giải hệ phương trình: í ïlog1- x ( y + 5) - log 2 + y ( x + 4) =1 î ============================ Trần Sĩ Tùng
- Hướng dẫn: I. PHẦN CHUNG éx = 0 Câu I: 2) PT hoành độ giao điểm: x 3 + 3 x 2 + mx + 1 = 1 Û x ( x 2 + 3 x + m ) = 0 Û ê 2 ë f ( x) = x + 3x + m = 0 Đê thỏa mãn YCBT thì PT f ( x ) = 0 có 2 nghiệm phân biệt x , x khác 0 và y¢ ( x ) .y¢ ( x ) = -1 . 1 2 1 2 ì9 - 4m > 0, f (0) = m ¹ 0 Ûí 2 î(3x1 + 6 x1 + m)(3x2 + 6 x2 + m) = -1. 2 9 ì 9 ì ïm < , m ¹ 0 ïm < , m ¹ 0 Ûí Ûí 4 4 2 2 2 2 ï9( x x ) + 18 x x ( x + x ) + 3m( x + x ) + 36 x x + 6m( x + x ) + m = -1 î4m 2 - 9m + 1 = 0 ï î 12 12 1 2 1 2 12 1 2 9 ± 65 Û m= 8 Câu II: 1) Điều kiện: cos x ¹ 0 . é cos x = 1 é x = k 2p PT Û cos 2 x - tan 2 x = 1 + cos x - (1 + tan 2 x) Û 2cos 2 x - cos x - 1 = 0 Û ê Ûê 1 2p ê cos x = - + k 2p êx = ± 2 3 ë ë ì x2 + 1 +x+ y =4 ï ì x 2 + y 2 + xy + 1 = 4 y y ï 2) Từ hệ PT Þ y ¹ 0 . Khi đó ta có: í Ûí . y ( x + y )2 = 2 x 2 + 7 y + 2 ï x2 +1 î ( x + y )2 - 2 =7 ï y î ì u+v = 4 ì u = 4-v é v = 3, u = 1 x2 + 1 Đặt u = , v = x + y ta có hệ: í 2 Ûí 2 Ûê îv - 2u = 7 îv + 2v - 15 = 0 ëv = -5, u = 9 y é x = 1, y = 2 ìx2 + 1 = y ì x2 + 1 = y ì x2 + x - 2 = 0 · Với v = 3, u = 1 ta có hệ: í Ûí Ûí Ûê . ë x = -2, y = 5 x+ y =3 y = 3- x y = 3- x î î î ìx2 + 1 = 9 y ìx2 +1 = 9 y ì x 2 + 9 x + 46 = 0 · Với v = -5, u = 9 ta có hệ: í Ûí Ûí , hệ này vô nghiệm. î x + y = -5 î y = -5 - x î y = -5 - x Kết luậ n: Hệ đã cho có hai nghiệm: (1; 2), (-2; 5) . 3 æ ln x ö ç ÷ e e e 3 ln 2 x. log 2 x 1 ln xdx ln 2 ø dx = ò è Câu III: I = ò dx = 3 ò . ln 2 1 1 + 3ln 2 x x 1 x 1 + 3ln x 1 x 1 + 3ln x 2 2 1 dx 1 Đặt 1 + 3ln 2 x = t Þ ln 2 x = (t 2 - 1) Þ ln x. = tdt . 3 x3 12 (t - 1) 1 2 e 2 2 3 1 æ1 3 ö log 2 x 1 1 4 ò (t - 1) dt = 9ln3 2 ç 3 t - t ÷ 1 = 27 ln3 2 3 Suy ra I = ò dx = 3 ò . tdt = 2 3 è ø ln 2 1 t 3 9ln 2 1 1 x 1 + 3ln x 2 Câu IV: Gọi P,Q là trung điểm của BD, MN. Chứng minh được: AC’ ^ PQ. Suy ra AC ¢ ^ (BDMN) 2 a 15 AC¢ = Gọi H là giao của PQ và AC’. Suy ra AH là đường cao của hình chóp A.BDMN. Tính được AH = . 5 5 3a2 15 3 a 15 a 1 3a . Suy ra: VA.BDMN = S BDMN . AH = , MN = Þ SBDMN = PQ = . 4 2 16 3 16 Câu V: · Cách 1: Ta có ab + bc + ca - 2abc = a (b + c) + (1 - 2a )bc = a (1 - a ) + (1 - 2a )bc . (b + c)2 (1 - a )2 Đặt t = bc thì ta có 0 £ t = bc £ = . 4 4 Trần Sĩ Tùng
- é (1 - a)2 ù Xét hàm số: f (t ) = a(1 - a) + (1 - 2a)t trên đoạ n ê 0; ú 4ú ê ë û 2 æ (1 - a )2 ö 7 1 ( a + 1 - a) 2 1 7 1æ 1ö 7 với "a Î [ 0;1] . Có: f (0) = a (1 - a ) £ =< ÷= - (2a + ) ç a - ÷ £ và f ç ç 4 ÷ 27 4 4 4 27 3è 3ø 27 è ø 1 7 . Dấu "=" xảy ra Û a = b = c = . Vậy: ab + bc + ca - 2abc £ 3 27 · Cách 2: Ta có a2 ³ a2 - (b - c )2 = (a + b - c)(a - b + c) = (1 - 2c)(1 - 2 b) (1) Tương tự: b2 ³ (1 - 2 a)(1 - 2c) (2), c2 ³ (1 - 2a)(1 - 2b) (3) Từ (1), (2), (3) Þ abc ³ (1 - 2a)(1 - 2b)(1 - 2c ) = 1 - 2(a + b + c ) + 4(ab + bc + ca) - 8abc 1 + 9abc 1 + abc ab + bc + ca - 2abc £ Þ ab + bc + ca £ Þ 4 4 1 1+ 1 27 = 7 . Mặt khác a + b + c ³ 3 3 abc Þ abc £ . Do đó: ab + bc + ca - 2 abc £ 27 4 27 1 Dấu "=" xảy ra Û a = b = c = . 3 II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn Câu VI.a: 1) Gọi C (c; 2c + 3) và I (m; 6 - m ) là trung điểm của BC. Suy ra: B(2m - c; 9 - 2 m - 2c ) . Vì C’ là trung điểm của AB nên: æ 2m - c + 5 11 - 2m - 2c ö æ 5 41 ö æ 2m - c + 5 ö 11 - 2m - 2c 5 ÷ Î CC ' nên 2 ç +3 = 0 Þ m = - Þ I ç- ; ÷ . C 'ç ; ÷- è 6 6ø è ø 2 2 è ø 2 2 6 Phương trình BC: 3 x – 3y + 23 = 0 . ì2 x - y + 3 = 0 æ 14 37 ö ÞCç ; ÷ Tọa độ của C là nghiệm của hệ: í î3 x - 3 y + 23 = 0 è3 3ø æ 19 4 ö Tọa độ của B ç - ; ÷. è 3 3ø uuu r uuur 2) Ta có: AB = (2; 2; -2), AC = (0; 2; 2). Suy ra phương trình mặt phẳng trung trực của AB, AC là: x + y - z - 1 = 0, y + z - 3 = 0. uuu uuur r r Vectơ pháp tuyến của mp(ABC) là n = é AB, AC ù = (8; -4; 4). Suy ra (ABC): 2 x - y + z + 1 = 0 . ë û ì x + y - z -1 = 0 ìx = 0 ï ï Giải hệ: í y + z - 3 = 0 Þ í y = 2 . Suy ra tâm đường tròn là I (0; 2; 1). ï2 x - y + z + 1 = 0 ï z = 1 î î Bán kính là R = IA = (-1 - 0) 2 + (0 - 2)2 + (1 - 1)2 = 5. 32 32 Câu VII.a: Giải PT đã cho ta được các nghiệm: z1 = 1 - i, z2 = 1 + i 2 2 2 2 2 z + z2 æ3 2 ö 11 22 ; z1 + z2 = 2 . Do đó: 1 =. Suy ra | z1 |=| z2 |= 1 + ç ÷= 2 ç2÷ ( z1 + z2 )2 4 2 è ø 2. Theo chương trình nâng cao Câu VI.b: 1) Giả sử tâm I (-3t – 8; t ) Î D. 3(-3t - 8) - 4t + 10 Ta có: d ( I , D¢ ) = IA Û = (-3t - 8 + 2)2 + (t - 1) 2 Û t = -3 Þ I (1; -3), R = 5 3 +4 2 2 PT đường tròn cần tìm: ( x –1) + ( y + 3)2 = 25 . 2 uuu r uuur uuu uuur r r 2) Ta có AB = (2; -3; -1), AC = (-2; -1; -1) Þ n = é AB , AC ù = (2; 4; -8) là 1 VTPT của (ABC) ë û Trần Sĩ Tùng
- ( x – 0 ) + 2 ( y –1) – 4 ( z – 2 ) = 0 Û x + 2 y – 4 z + 6 = 0 . Suy ra phương trình (ABC): Giả sử M(x; y; z). ì x 2 + ( y - 1)2 + ( z - 2)2 = ( x - 2)2 + ( y + 2)2 + ( z - 1)2 ìx = 2 ï ï ì MA = MB = MC Û í x 2 + ( y - 1)2 + ( z - 2)2 = ( x + 2)2 + y 2 + (z - 1)2 Û í y = 3 Þ M (2;3; -7) Ta có: í î M Î (P) ï2 x + 2 y + z - 3 = 0 ïz = -7 î î ì- xy - 2 x + y + 2 > 0, x - 2 x + 1 > 0, y + 5 > 0, x + 4 > 0 2 (*) Câu VII.b: Điều kiện: í î0 < 1 - x ¹ 1, 0 < 2 + y ¹ 1 ì2log1- x [(1 - x)( y + 2)] + 2log 2+ y (1 - x) = 6 ìlog1- x ( y + 2) + log 2 + y (1 - x) - 2 = 0 (1) ï ï Hệ PT Û í Ûí ïlog1- x ( y + 5) - log 2+ y ( x + 4) = 1 ïlog1- x ( y + 5) - log 2 + y ( x + 4) =1 (2) î î 1 Đặt log 2 + y (1 - x) = t thì (1) trở thành: t + - 2 = 0 Û (t - 1) 2 = 0 Û t = 1. t Với t = 1 ta có: 1 - x = y + 2 Û y = - x - 1 (3) . Thế vào (2) ta có: é x=0 -x + 4 -x + 4 log1- x (- x + 4) - log1- x ( x + 4) = 1 Û log1- x =1Û = 1 - x Û x2 + 2x = 0 Û ê x+4 x+4 ë x = -2 · Với x = 0 Þ y = -1 (không thoả (*)). · Với x = -2 Þ y = 1 (thoả (*)). Vậy hệ có nghiệm duy nhất x = -2, y = 1 . ===================== Trần Sĩ Tùng
CÓ THỂ BẠN MUỐN DOWNLOAD
-
50 đề luyện thi đại học môn Toán
41 p | 1522 | 926
-
Luyện thi đại học môn toán
24 p | 491 | 124
-
Bộ đề thi luyện thi đại học môn toán
0 p | 158 | 52
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 2
0 p | 173 | 35
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 4
1 p | 158 | 24
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 6
0 p | 151 | 23
-
Đề tự luyện thi đại học môn toán số 11
0 p | 179 | 21
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 9
0 p | 149 | 20
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 8
0 p | 142 | 20
-
Tổng ôn tập luyện thi Đại học môn Toán - Đại số: Phần 1
137 p | 114 | 19
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 7
0 p | 168 | 18
-
Tổng ôn tập luyện thi Đại học môn Toán - Đại số: Phần 2
136 p | 118 | 17
-
Đề tự luyện thi đại học môn toán số 2
1 p | 128 | 16
-
Đề tự luyện thi đại học môn toán số 3
1 p | 116 | 16
-
Đề tự luyện thi đại học môn toán số 4
6 p | 137 | 15
-
Giải đề tự luyện thi đại học môn toán số 1
3 p | 113 | 13
-
Đề tự luyện thi đại học môn toán số 5
3 p | 125 | 12
-
Giải đề tự luyện thi đại học môn toán số 2
3 p | 104 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn