LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 18
lượt xem 4
download
Tham khảo tài liệu 'luyện thi đại học môn toán - đề 18', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 18
- TRƯỜNG THPT CHUYÊN – ĐHSP ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 HÀ NỘI Môn thi: TOÁN Thời gian: 180 phút (không kể thời gian phát đề) Đề số 19 I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số y = x 4 + 2 m2 x 2 + 1 (1). 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1. 2) Chứng minh rằng đường thẳng y = x + 1 luôn cắt đồ thị hàm số (1) tại hai điểm phân biệt với mọi giá trị của m. Câu II (2 điểm): æ pö 2sin 2 ç x - ÷ = 2 sin 2 x - tan x 1) Giải phương trình: 4ø è 2 log3 ( x 2 – 4 ) + 3 log3 ( x + 2)2 - log3 ( x – 2)2 = 4 2) Giải hệ phương trình: p 3 sin x dx ò Câu III (1 điểm): Tính tích phân: I= 2 cos x 3 + sin x 0 Câu IV (1 điểm): Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳ ng d đi qua A và vuông góc mặt phẳng (ABC) lấ y điểm S sao cho mp(SBC) tạo với mp(ABC) một góc bằng 600. Tính diện tích mặt cầu ngoại tiếp tứ diện SABC. x 4 - 4 x3 + 8 x2 - 8x + 5 Câu V (1 điểm): Tìm giá trị nhỏ nhất của hàm số: f ( x ) = x2 - 2 x + 2 II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): (- 3; 0 ) và đi qua điểm 1) Trong mặt phẳ ng với hệ toạ độ Oxy, cho elíp (E) có tiêu điểm thứ nhất là æ 4 33 ö M ç 1; ÷ . Hãy xác định tọa độ các đỉnh của (E). 5ø è ìx = 1 - t ï 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(0; 1; 3) và đường thẳng d: í y = 2 + 2t . Hãy tìm trên đường ïz = 3 î thẳng d các điểm B và C sao cho tam giác ABC đều. 21 22 23 2n 2 n -2 Câu VII.a (1 điểm): Chứng minh: 1 Cn + 2 Cn + 3 Cn + ... + n Cn = (n + n ).2 , trong đó n là số tự nhiên, n ≥ 1 và k Cn là số tổ hợp chập k của n. 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có A(2; 7) và đường thẳ ng AB cắt trục Oy tại E sao cho uuu r uuu r æ 13 ö AE = 2 EB . Biết rằng tam giác AEC cân tại A và có trọng tâm là G ç 2; ÷ . Viết phương trình cạnh BC. è 3ø x -1 y +1 z = = và mặt phẳng (P): 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d: 3 1 1 2 x + y - 2 z + 2 = 0 . Lập phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1; –1; 1). ì x 3 + 4 y = y 3 + 16 x ï í Câu VII.b (1 điểm): Giải hệ phương trình: . 2 2 ï1 + y = 5(1 + x ) î ============================ Trần Sĩ Tùng
- Hướng dẫn: I. PHẦN CHUNG Câu I: 2) Xét PT hoành độ giao điểm: x 4 + 2 m2 x 2 + 1 = x + 1 Û x 4 + 2 m2 x 2 - x = 0 Û x ( x 3 + 2 m2 x - 1) = 0 éx = 0 Ûê 3 2 ë g( x ) = x + 2m x - 1 = 0 (*) Ta có: g¢ ( x ) = 3 x 2 + 2m 2 ³ 0 (với mọi x và mọi m ) Þ Hàm số g(x) luôn đồng biến với mọi giá trị của m. Mặt khác g(0) = –1 ¹ 0. Do đó phương trình (*) có nghiệm duy nhất khác 0. Vậy đường thẳng y = x + 1 luôn cắt đồ thị hàm số (1) tại hai điểm phân biệt với mọi giá trị của m. p Câu II: 1) Điều kiện: cos x ¹ 0 Û x ¹ + k.p (*). 2 æ pö ésin 2 x = 1 2 PT Û 1– cos ç 2 x - ÷ = 2sin x – tan x Û 1– sin 2 x = tan x (sin 2 x – 1) Û ê ë tan x = -1 2ø è é é p p ê 2 x = 2 + k .2p ê x = 4 + k.p p p Û x = + k . . (Thỏa mãn điều kiện (*) ). Ûê Ûê ê x = - p + l.p ê x = - p + l.p 4 2 4 4 ë ë ì x2 - 4 > 0 ì ï x2 - 4 > 0 éx > 2 ï Ûí Ûê 2) Điều kiện: í (**) ë x £ -3 2 2 îlog3 ( x + 2) ³ 0 ï( x + 2) ³ 1 ï î 2 PT Û log3 ( x – 4 ) + 3 log3 ( x + 2) - log3 ( x – 2) = 4 Û log3 ( x + 2)2 + 3 log3 ( x + 2)2 - 4 = 0 2 2 2 ( )( ) log3 ( x + 2)2 = 1 Û ( x + 2)2 = 3 Û x = -2 ± 3 log3 ( x + 2)2 + 4 log3 ( x + 2)2 - 1 = 0 Û Û Kiểm tra điều kiện (**) chỉ có x = -2 - 3 thỏa mãn. Vậy phương trình có nghiệm duy nhất là: x = -2 - 3 sin x cos x 4 - cos2 x . Ta có: cos2 x = 4 – t2 và dt = Câu III: Đặt t = 3 + sin 2 x = dx . 2 3 + sin x 15 15 p p 15 3 3 2 2æ sin x sin x.cos x 1 t+2 1 1 1ö dt 2 .dx = ÷dt = ln dx = ò ò ò ò - ç I= = 4 èt+2 t-2ø 4 t-2 2 4-t cos x 3 + sin 2 x cos2 x 3 + sin 2 x 0 0 3 3 3 1æ 3+2 ö 1 ( ) 15 + 4 ln ( 15 + 4 ) - ln ( 3 + 2 ) . ç ln - ln ÷= = 4ç ÷2 15 - 4 3 -2 ø è Câu IV: Ta có SA ^ (ABC) Þ SA ^ AB; SA ^ AC.. Tam giác ABC vuông cân cạnh huyền AB Þ BC ^ AC Þ BC ^ SC. Hai điểm A,C cùng nhìn đoạn SB dưới góc vuông nên mặt cầu đường kính SB đi qua A,C. Vậy mặt cầu ngoại tiếp tứ diện SABC cũng chính là mặt cầu đường 2 ; · = 60 0 là góc giữa mp(SBC) và mp(ABC). SCA kính SB. Ta có CA = CB = AB sin 450 = a SA = AC.tan600 = a 6 . Từ đó SB2 = SA2 + AB 2 = 10a2 . Vậy diện tích mặt cầu ngoại tiếp tứ diện SABC là: S = p d 2 = p .SB2 = 10p a2 . Câu V: Tập xác định: D = R . 1 ³ 2 ( BĐT Cô–si). Dấu "=" xảy ra Û x 2 – 2 x + 2 = 1 Û x = 1 . 2 Ta có: f ( x ) = x - 2 x + 2 + 2 x - 2x + 2 Vậy: min f(x) = 2 đạt được khi x = 1. II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn ( ) ( 3; 0 ) là hai tiêu điểm của (E). Câu VI.a: 1) Ta có F - 3; 0 , F2 1 Trần Sĩ Tùng
- 2 2 æ 4 33 ö æ 4 33 ö 2 2 (1 + 3 ) (1 - 3 ) Theo định nghĩa của (E) suy ra : 2a = MF + MF2 = +ç +ç ÷+ ÷ = 10 1 è5ø è5ø 3 và a2 – b2 = c2 Þ b2 = a2 - c2 = 22 Þ a = 5. Mặt khác: c = Vậy tọa độ các đỉnh của (E) là: A1( –5; 0) ; A2( 5; 0) ; B1( 0; – 22 ) ; B2 ( 0; 22 ). r 2) d có VTCP ud = (-1;2; 0) . Gọi H là hình chiếu vuông góc của A trên d. uuuu r Giả sử H (1 – t; 2 + 2t;3 ) Þ AH = (1 - t;1 + 2t;0 ) uuur r 1 35 æ6 8 ö Mà AH ^ d nên AH ^ ud Þ - 1 (1 - t ) + 2 (1 + 2 t ) = 0 Û t = - Þ H ç ; ;3 ÷ Þ AH = . 5 è5 5 ø 5 15 2 AH 2 15 = Mà DABC đều nên BC = hay BH = . 5 5 3 2 2 æ 1 ö æ2 15 -1 ± 3 ö Û 25s2 + 10 s – 2 = 0 Û s = Giả sử B(1 - s;2 + 2 s;3) thì ç - - s ÷ + ç + 2 s ÷ = è 5 ø è5 25 5 ø æ 6- 3 8+2 3 ö æ 6+ 3 8-2 3 ö ; ;3 ÷ và C ç ; ;3 ÷ Vậy: B ç è5 5 è5 5 ø ø æ 6+ 3 8-2 3 ö æ 6- 3 8+2 3 ö ; ;3 ÷ và C ç ; ;3 ÷ hoặc B ç è5 5 è5 5 ø ø 0 1 22 33 n nn Câu VII.a: Xét khai triển: (1 + x ) = Cn + xCn + x Cn + x Cn + ... + x Cn n-1 = C1 + 2 xCn + 3 x 2Cn + ... + nx n-1Cn 2 3 n Lấy đạo hàm 2 vế ta được: n(1 + x ) n Nhân 2 vế cho x, rồi lấy đạo hàm lần nữa, ta được: n é(1 + x )n-1 + x(n - 1)(1 + x )n-2 ù = 12 C1 + 2 2 xCn + 32 x 2Cn + ... + n2 x n-1Cn 2 3 n ë û n Cho x = 1 ta được đpcm. 2. Theo chương trình nâng cao uuu r 2 uuur Câu VI.b: 1) Gọi M là trung điểm của BC. Ta có AG = AM Þ M(2; 3). Đường thẳng EC qua M và có VTPT 3 uuu æ r uuu r uuu r 8ö AG = ç 0; - ÷ nên có PT: y = 3 Þ E(0; 3) Þ C(4; 3). Mà AE = 2 EB nên B(–1; 1). 3ø è Þ Phương trình BC: 2 x - 5y + 7 = 0 . 11t 2 - 2t + 1 . 2) Gọi I là tâm của (S). I Î d Þ I (1 + 3t; -1 + t; t ) . Bán kính R = IA = ét = 0 Þ R = 1 5t + 3 2 = R Û 37t - 24t = 0 Û ê 24 Mặt phẳng (P) tiếp xúc với (S) nên: d (I ,( P)) = 77 . êt = ÞR= 3 ë 37 37 Vì (S) có bán kính nhỏ nhất nên chọn t = 0, R = 1. Suy ra I(1; –1; 0). Vậy phương trình mặt cầu (S): ( x - 1)2 + ( y + 1)2 + z2 = 1 . ì x 3 + 4 y = y3 + 16 x (1) ï Câu VII.b: í 2 2 ï1 + y = 5(1 + x ) (2) î ( ) Từ (2) suy ra y 2 – 5 x 2 = 4 (3). Thế vào (1) được: x 3 + y 2 – 5 x 2 .y = y3 + 16 x Û x 3 – 5 x 2 y –16 x = 0 Û x = 0 hoặc x 2 – 5 xy –16 = 0 · Với x = 0 Þ y 2 = 4 Û y = ±2 . 2 æ x 2 - 16 ö x 2 - 16 2 ÷ - 5x 2 = 4 · Với x – 5 xy –16 = 0 Û y = ç (4). Thế vào (3) được: 5x è 5x ø Trần Sĩ Tùng
- é x = 1 ( y = -3) Û x 4 – 32 x 2 + 256 –125 x 4 = 100 x 2 Û 124 x 4 + 132 x 2 – 256 = 0 Û x 2 = 1 Û ê . ë x = -1 ( y = 3) Vậy hệ có 4 nghiệm: (x; y) = (0; 2) ; (0; –2); (1; –3); (–1; 3) ===================== Trần Sĩ Tùng
CÓ THỂ BẠN MUỐN DOWNLOAD
-
50 đề luyện thi đại học môn Toán
41 p | 1522 | 926
-
Luyện thi đại học môn toán
24 p | 491 | 124
-
Bộ đề thi luyện thi đại học môn toán
0 p | 158 | 52
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 2
0 p | 173 | 35
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 4
1 p | 158 | 24
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 6
0 p | 151 | 23
-
Đề tự luyện thi đại học môn toán số 11
0 p | 179 | 21
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 9
0 p | 149 | 20
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 8
0 p | 142 | 20
-
Tổng ôn tập luyện thi Đại học môn Toán - Đại số: Phần 1
137 p | 114 | 19
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 7
0 p | 168 | 18
-
Tổng ôn tập luyện thi Đại học môn Toán - Đại số: Phần 2
136 p | 118 | 17
-
Đề tự luyện thi đại học môn toán số 2
1 p | 128 | 16
-
Đề tự luyện thi đại học môn toán số 3
1 p | 116 | 16
-
Đề tự luyện thi đại học môn toán số 4
6 p | 137 | 15
-
Giải đề tự luyện thi đại học môn toán số 1
3 p | 113 | 13
-
Đề tự luyện thi đại học môn toán số 5
3 p | 125 | 12
-
Giải đề tự luyện thi đại học môn toán số 2
3 p | 104 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn