intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 25

Chia sẻ: Anh Khoa Nguyễn | Ngày: | Loại File: DOC | Số trang:4

46
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'luyện thi đại học môn toán - đề 25', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 25

  1. Trêng L¬ng thÕ Vinh –Hµ néi. §Ò thi thö §H lÇn I . M«n To¸n (180’) PhÇn b¾t buéc. 2x − 1 y= C©u 1.(2 ®iÓm) Cho hµm sè x +1 1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ (C) cña hµm sè . 2. T×m täa ®é ®iÓm M sao cho kho¶ng c¸ch tõ ®iÓm I ( −1; 2) tíi tiÕp tuyÕn cña (C) t¹i M lµ lín nhÊt . C¢U 2. (2 ®iÓm). 1. Gi¶i ph¬ng tr×nh : 2 sin 2 x − sin 2 x + sin x + cos x − 1 = 0 . 2. T×m gi¸ trÞ cña m ®Ó ph¬ng tr×nh sau ®©y cã nghiÖm duy nhÊt : log 0,5 ( m + 6 x) + log 2 (3 − 2 x − x 2 ) = 0 2 4 − x2 C¢U 3 . (1®iÓm) TÝnh tÝch ph©n: I = ∫ dx . x2 1 C¢U 4. (1 ®iÓm). Cho tø diÖn ABCD cã ba c¹nh AB, BC, CD ®«i mét vu«ng gãc víi nhau vµ AB = BC = CD = a . Gäi C’ vµ D’ lÇn lît lµ h×nh chiÕu cña ®iÓm B trªn AC vµ AD. TÝnh thÓ tÝch tÝch tø diÖn ABC’D’. C¢U 5. (1 ®iÓm) Cho tam gi¸c nhän ABC , t×m gi¸ trÞ bÐ nhÊt cña biÓu thøc: S = cos 3 A + 2 cos A + cos 2 B + cos 2C . PhÇn tù chän (thÝ sinh chØ lµm mét trong hai phÇn : A hoÆc B ) PhÇn A C¢U 6A. (2 ®iÓm). 1. Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi A(1;1) , B ( −2; 5) , ®Ønh C n»m trªn ®êng th¼ng x − 4 = 0 , vµ träng t©m G cña tam gi¸c n»m trªn ® êng th¼ng 2 x − 3 y + 6 = 0 . TÝnh diÖn tÝch tam gi¸c ABC. 2. Trong kh«ng gian víi hÖ täa ®é Oxyz cho hai ®êng th¼ng d vµ d’ lÇn lît cã ph¬ng y−2 x−2 z+5 tr×nh : d : x = = z vµ d’ : = y −3= . −1 −1 2 Chøng minh r»ng hai ®êng th¼ng ®ã vu«ng gãc víi nhau. ViÕt ph ¬ng tr×nh mÆt ph¼ng (α ) ®i qua d vµ vu«ng gãc víi d’ C¢U7A. (1 ®iÓm) TÝnh tæng : S = Cn − 2Cn + 3Cn − 4Cn + ⋅ ⋅ ⋅ + (−1) (n + 1)Cn 0 1 2 3 n n PhÇn B. C¢U 6B. (2 ®iÓm) 1. Trong mÆt ph¼ng täa ®é Oxy cho tam gi¸c ABC, víi A( 2;−1) , B (1;− 2) , träng t©m G cña tam gi¸c n»m trªn ®êng th¼ng x + y − 2 = 0 . T×m täa ®é ®Ønh C biÕt diÖn tÝch tam gi¸c ABC b»ng 13,5 . 2. Trong kh«ng gian víi hÖ täa ®é Oxyz cho hai ®êng th¼ng d vµ d’ lÇn lît cã ph¬ng y−2 x−2 z+5 tr×nh : d : x = = z vµ d’ : = y −3= . −1 −1 2 ViÕt ph¬ng tr×nh mÆt ph¼ng (α ) ®i qua d vµ t¹o víi d’ mét gãc 300 C¢U7B. (1 ®iÓm) TÝnh tæng : S = Cn + 2Cn + 3Cn + ⋅ ⋅ ⋅ + (n + 1)Cn 0 1 2 n 1
  2. §¸p ¸n m«n To¸n. C©u 1. 1. TËp x¸c ®Þnh : x ≠ −1 . 2x − 1 3 3 , y' = y= = 2− , ( x + 1) 2 x +1 x +1 B¶ng biÕn thiªn: TiÖm cËn ®øng : x = −1 , tiÖm cËn ngang y = 2  3 2. NÕu M  x0 ; 2 −  ∈ (C ) th× tiÕp tuyÕn t¹i M cã ph¬ng tr×nh  x0 + 1    3 3 y−2+ = ( x − x0 ) hay 3( x − x0 ) − ( x0 + 1) 2 ( y − 2) − 3( x0 + 1) = 0 x0 + 1 ( x0 + 1) 2 . Kho¶ng c¸ch tõ I (−1;2) tíi tiÕp tuyÕn lµ 3(−1 − x0 ) − 3( x0 + 1) 6 x0 + 1 6 d= = = 9 + ( x0 + 1) 9 9 + ( x0 + 1) 4 4 . Theo bÊt ®¼ng thøc C«si + ( x0 + 1) 2 ( x0 + 1) 2 9 + ( x0 + 1) 2 ≥ 2 9 = 6 , v©y d ≤ 6 . Kho¶ng c¸ch d lín nhÊt b»ng 6 khi ( x0 + 1) 2 9 = ( x0 + 1) 2 ⇔ ( x0 + 1) = 3 ⇔ x0 = −1 ± 3 . 2 ( x0 + 1) 2 VËy cã hai ®iÓm M : M (−1 + 3 ;2 − 3 ) hoÆc M (−1 − 3 ;2 + 3 ) C¢U 2. 1) 2 sin 2 x − sin 2 x + sin x + cos x − 1 = 0 ⇔ 2 sin 2 x − (2 cos x − 1) sin x + cos x − 1 = 0 . ∆ = (2 cos x − 1) 2 − 8(cos x − 1) = (2 cos x − 3) 2 . VËy sin x = 0,5 hoÆc sin x = cos x − 1 . 5π π Víi sin x = 0,5 ta cã + 2 kπ + 2kπ x= x= hoÆc 6 6 π  π  2 Víi sin x = cos x − 1 ta cã sin x − cos x = −1 ⇔ sin  x − =− = sin  −  , suy ra 4 2  4  3π + 2kπ x= hoÆc x = kπ 2 2 2) log 0,5 (m + 6 x) + log 2 (3 − 2 x − x ) = 0 ⇔ log 2 (m + 6 x) = log 2 (3 − 2 x − x 2 ) ⇔ 2 − 3 < x < 1 3 − 2 x − x 2 > 0  ⇔ ⇔ m = − x − 8 x + 3 m + 6 x = 3 − 2 x − x 2 2  XÐt hµm sè f ( x ) = − x 2 − 8 x + 3 , − 3 < x < 1 ta cã f ' ( x) = −2 x − 8 , f ' ( x) < 0 khi x > −4 , do ®ã f ( x) nghÞch biÕn trong kho¶ng (−3; 1) , f ( −3) = 18 , f (1) = −6 . VËy hÖ ph¬ng tr×nh trªn cã nghiÖm duy nhÊt khi − <
  3. a2 V× tam gi¸c ABC vu«ng c©n nªn AC ' = CC ' = BC ' = . 2 Ta cã AD 2 = AB 2 + BD 2 = AB 2 + BC 2 + CD 2 = 3a 2 nªn AD = a 3 . V× BD’ lµ ®êng cao cña tam a gi¸c vu«ng ABD nªn AD '.AD = AB 2 , VËy AD ' = . Ta cã 3 a2 2 1 1 CD 1 a 2 a 3 1 ˆ dt ( AC ' D' ) = AC '.AD' sin CAD = AC '.AD'. = ⋅ = . VËy 2 2 AD 2 2 3 12 3 1 a2 2 a 2 a3 V= = 36 . 3 12 2 C¢U 5. S = cos 3 A + 2 cos A + cos 2 B + cos 2C = cos 3 A + 2 cos A + 2 cos( B + C ) cos( B − C ) . = cos 3 A + 2 cos A[1 − cos( B − C )] . V× cos A > 0 , 1 − cos( B − C ) ≥ 0 nªn S ≥ cos 3 A , dÊu b»ng xÈy ra khi cos( B − C ) = 1 hay 1800 − A . Nhng cos 3 A ≥ −1 , dÊu b»ng xÈy ra khi 3 A = 1800 hay A = 600 B=C = 2 Tãm l¹i : S cã gi¸ trÞ bÐ nhÊt b»ng -1 khi ABC lµ tam gi¸c ®Òu. PhÇn A (tù chän) C¢U 6A. 1− 2 + 4 1 + 5 + yC y 1. Ta cã C = (4; yC ) . Khi ®ã täa ®é G lµ xG = = 1, yG = = 2 + C . §iÓm G n»m trªn 3 3 3 ®êng th¼ng 2 x − 3 y + 6 = 0 nªn 2 − 6 − yC + 6 = 0 , vËy yC = 2 , tøc lµ C = (4; 2) . Ta cã AB = (−3; 4) , AC = (3;1) , vËy AB = 5 , AC = 10 , AB. AC = −5 . ( ) 1 1 2 15 DiÖn tÝch tam gi¸c ABC lµ S = AB 2 . AC 2 − AB. AC = 25.10 − 25 = 2 2 2 2.§êng th¼ng d ®i qua ®iÓm M (0;2;0) vµ cã vect¬ chØ ph¬ng u (1;−1;1) §êng th¼ng d’ ®i qua ®iÓm M ' (2;3;−5) vµ cã vect¬ chØ ph¬ng u '(2;1;−1) [] [] Ta cã MM = (2;1;−5) , u ; u ' = (0; 3; 3) , do ®ã u; u ' .MM ' = −12 ≠ 0 vËy d vµ d’ chÐo nhau. MÆt ph¼ng (α ) ®i qua ®iÓm M (0;2;0) vµ cã vect¬ ph¸p tuyÕn lµ u '(2;1;−1) nªn cã ph¬ng tr×nh: 2 x + ( y − 2) − z = 0 hay 2 x +y −z −2 =0 C¢U 7A. Ta cã (1 + x) = Cn + Cn x + Cn x + ⋅ ⋅ ⋅ + Cn x , suy ra n 0 1 22 nn x(1 + x) n = Cn x + Cn x 2 + Cn x 3 + ⋅ ⋅ ⋅ + Cnn x n +1 . 0 1 2 LÊy ®¹o hµm c¶ hai vÕ ta cã : (1 + x) n + nx(1 + x ) n −1 = Cn + 2Cn x + 3Cn x 2 + ⋅ ⋅ ⋅ + (n + 1)Cnn x n 0 1 2 Thay x = −1 vµo ®¼ng thøc trªn ta ®îc S. PhÇn B (tù chän) C¢U 6B. 1. V× G n»m trªn ®êng th¼ng x + y − 2 = 0 nªn G cã täa ®é G = (t ; 2 − t ) . Khi ®ã AG = (t − 2;3 − t ) , AB = (−1;−1) VËy diÖn tÝch tam gi¸c ABG lµ ( ) [ ] 2t − 3 1 1 2 S= AG 2 . AB 2 − AG. AB = 2 (t − 2) 2 + (3 − t ) 2 − 1 = 2 2 2 NÕu diÖn tÝch tam gi¸c ABC b»ng 13,5 th× diÖn tÝch tam gi¸c ABG b»ng 13,5 : 3 = 4,5 . VËy 2t − 3 = 4,5 , suy ra t = 6 hoÆc t = −3 . VËy cã hai ®iÓm G : G1 = (6;−4) , G 2 = (−3;−1) . V× G lµ träng 2 t©m tam gi¸c ABC nªn xC = 3 xG − ( xa + xB ) vµ yC = 3 yG − ( ya + y B ) . 3
  4. Víi G1 = (6;−4) ta cã , víi G 2 = (−3;−1) ta cã C1 =(15;− ) C2 =( − ;18) 9 12 2.§êng th¼ng d ®i qua ®iÓm M (0;2;0) vµ cã vect¬ chØ ph¬ng u (1;−1;1) §êng th¼ng d’ ®i qua ®iÓm M ' (2;3;−5) vµ cã vect¬ chØ ph¬ng u '(2; 1;−1) . 1 Mp (α ) ph¶i ®i qua ®iÓm M vµ cã vect¬ ph¸p tuyÕn n vu«ng gãc víi u vµ cos(n; u ' ) = cos 60 = 0 . Bëi 2 vËy nÕu ®Æt n = ( A; B; C ) th× ta ph¶i cã : A − B + C = 0 B = A + C B = A + C   ⇔ ⇔ 2  2A + B − C 1 = 2 A − AC − C = 0 2 2 3 A = 6 A + ( A + C ) + C 2 2 2   2  6 A + B +C 2 2 2 Ta cã 2 A2 − AC − C 2 = 0 ⇔ ( A − C )(2 A + C ) = 0 . VËy A = C hoÆc 2 A = −C . NÕu A = C ,ta cã thÓ chän A=C=1, khi ®ã B = 2 , tøc lµ n = (1;2;1) vµ mp(α ) cã ph¬ng tr×nh x + 2( y − 2) + z = 0 hay x +2 y +z −4 =0 NÕu 2 A = −C ta cã thÓ chän A = 1, C = −2 , khi ®ã B = −1 , tøc lµ n = (1;−1;−2) vµ mp(α ) cã ph¬ng tr×nh x − ( y − 2) − 2 z = 0 hay x −y − z +2 =0 2 C¢U 7B. Ta cã (1 + x) = Cn + Cn x + Cn x + ⋅ ⋅ ⋅ + Cn x , suy ra n 0 1 22 nn x(1 + x) n = Cn x + Cn x 2 + Cn x 3 + ⋅ ⋅ ⋅ + Cnn x n +1 . 0 1 2 LÊy ®¹o hµm c¶ hai vÕ ta cã : (1 + x) n + nx(1 + x ) n −1 = Cn + 2Cn x + 3Cn x 2 + ⋅ ⋅ ⋅ + (n + 1)Cnn x n 0 1 2 Thay x = 1 vµo ®¼ng thøc trªn ta ®îc S. 4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2