Lý thuyết các nguyên lý biến đổi năng lượng điện cơ
lượt xem 27
download
Tính lực hút điện từ trong các nam châm điện theo công thức Maxwell - Lực hút điện từ của nam châm điện một chiều
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lý thuyết các nguyên lý biến đổi năng lượng điện cơ
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh Chöông 2: CAÙC NGUYEÂN LYÙ BIEÁN ÑOÅI NAÊNG LÖÔÏNG ÑIEÄN CÔ I. Tính löïc huùt ñieän töø trong caùc nam chaâm ñieän theo coâng thöùc Maxwell I.1. Löïc huùt ñieän töø cuûa nam chaâm ñieän moät chieàu r Bδ I n μ0 dS N b a μFe Xeùt moät vi phaân dieän tích dS treân beà maët cöïc töø coù vectô ñôn vò phaùp tuyeán vaø r vec tô caûm öùng töø laø B δ . Löïc huùt ñieän töø treân beà maët cöïc töø ñöôïc xaùc ñònh theo coâng thöùc Maxwell: F dt = 1 ⎡ μ0 S ⎣ ( ) 1 2 ⎤ ∫ ⎢ B δ n B δ − 2 B δ n ⎥ ds ⎦ (2.1) r r Khi μFe >>μ0, beà maët cöïc töø trôû thaønh beà maët ñaúng theá, do ñoù B δ vaø n truøng phöông. Coâng thöùc (2.1) trôû thaønh: 1 Fdt = ∫ Bδ dS (2.2) 2 2μ 0 S 1 Φ lv 2 4 Φ lv 2 Bδ ñeàu vaø Φlv = BδS: Fdt = 1 2 Bδ S = = 39,8.10 [N] 2μ 0 2μ 0 S S Φ lv 2 Fdt = 4,06.10 B S = 4,06.10 4 2 δ 4 [kgf ] (1kgf = 9,8N) S I.2. Löïc huùt ñieän töø cuûa nam chaâm ñieän xoay chieàu Nam chaâm ñieän xoay chieàu hình sin (ñieàu hoøa): φlv = Φmsinωt 1 Φ lv 2 1 Φ2 Fdt = = m sin 2 ωt 1-cos2α=2sin2α 2μ 0 S 2μ 0 S 1 Φ2 1 Φ2 hay Fdt = m − m cos 2ωt (2.6) 4μ 0 S 4μ 0 S Fdt = F′ − F′ cos 2ωt (2.7) 1 Φ2 vôùi F′ = Ftb = m löïc huùt ñieän töø trung bình (2.8) 4μ 0 S Nhaän xeùt: Löïc huùt ñieän töø xoay chieàu coù daïng daâp maïch, noù qua trò soá 0 hai laàn trong moät chu kyø cuûa ñieän aùp nguoàn. Chöông 2: Caùc nguyeân lyù bieán ñoåi naêng löôïng ñieän cô 1
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh F 2F’ Fñt F’ 0 0 ωt π 2π F’cos2ωt II. Bieän phaùp giaûm rung trong caùc nam chaâm ñieän xoay chieàu moät pha Ñeå khaéc phuïc hieän töôïng rung trong NCÑ xoay r chieàu 1 pha, ta coù theå taïo ra söï leäch pha giöõa caùc töø thoâng F qua beà maët cöïc töø. Phöông phaùp thöôøng ñöôïc söû duïng ñeå taïo ra söï leäch r pha naøy laø döôøng moät voøng ngaén maïch oâm moät phaàn cöïc Fdt taïi khe hôû khoâng khí laøm vieäc nhö hình 2.5. Trong NCÑ naøy ta chæ khaûo saùt löïc huùt ñieän töø taïi beà maët cöïc töø beân phaûi öùng vôùi khe hôû khoâng khí khi laøm vieäc δ, boû qua löïc huùt N ñieän töø treân beà maët cöïc töø beân traùi. φlv φ2 φ1 φ1 φlv F’’ F’1 I N 2γ θnm 2θnm φo φ2 F’2 1 Φ1 2 1 Φ12 ′ ′ F1 = − cos 2ωt = F1 − F1 cos 2ωt 4μ 0 S1 4μ 0 S1 1 Φ1 ′ 2 F1 = 4μ 0 S1 ′ ′ F2 = F2 − F2 cos 2(ωt − θ nm ) ′ 1 Φ2 2 F2 = 4μ 0 S2 Töø thoâng φlv sinh ra löïc F = F1 + F2 Hay Fdt = F1’ +F2’ – [F1’cos2ωt + F2’cos 2(ωt - θnm)] Chöông 2: Caùc nguyeân lyù bieán ñoåi naêng löôïng ñieän cô 2
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh Fdt = F’ –F’’cos2(ωt -γ) Vôùi F’ = F1’ + F2’ löïc huùt ñieän töø trung bình = const. F’’cos 2(ωt - γ) thaønh phaàn bieán thieân theo thôøi gian vôùi taàn soá gaáp ñoâi taàn soá cuûa nguoàn ñieän. Vôùi F′′ = F1′ 2 + F1′ 2 + 2F′F2 cos 2θ nm ′ Ñoà thò löïc Fñt cuûa theo thôøi gian: Fñt Fmax F’’ F’ Fmin ωt 0 γ π+γ 2π+γ Vaø Fmax = F’ + F’’ giaù trò lôùn nhaát cuûa löïc huùt ñieän töø. Fmin = F’ – F’’ giaù trò nhoû nhaát cuûa löïc huùt ñieän töø. ⇒ Fmin > Ffl (2.13) Löïc töø F’, Fmin vaø Fmax ñöôïc xaùc ñònh töø caùc giaù trò töø thoâng Φ1, Φ2 vaø goùc θnm. Tính goùc leäch pha θnm: φlv φ1 φlv φ1 φ2 Rδ2 φ1Rδ1 j φ2Xnm Rδ1 θnm jXnm φ2 φ2Rδ2 Goùc leäch pha θnm ñöôïc xaùc ñònh töø sô ñoà thay theá cuûa maïch töø vaø giaûn ñoà vectô hình 2.9 X vaø 2.10: tg θnm = nm R δ2 vôùi Xnm= ω/rnm laø töø khaùng cuûa voøng ngaén maïch coù ñieän trôû laø rnm. Rδ2 laø töø trôû cuûa phaàn khe hôû khoâng khí coù ñaët voøng ngaén maïch. Tính φ2 töø φlv vaø goùc θnm: Chöông 2: Caùc nguyeân lyù bieán ñoåi naêng löôïng ñieän cô 3
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh φ1 1 R φ 2 R δ 2 = φ1 cos θ nm R δ 1 ⇒ = . δ2 φ 2 cos θ nm R δ1 φ1 S1 ⇒ = =C (2.15) φ 2 S 2 cos θ nm Maët khaùc töø hình 2.10 ta coù: φ lv = φ1 + φ 2 + 2φ1φ 2 cos θ nm 2 2 2 (2.16) Thay (2.15) vaøo 2.16) nhaän ñöôïc: φlv ⇒ φ2 = 1 + C 2 + 2C. cos θ nm III. Söï caân baèng naêng löôïng Naêng löôïng nhaän Cô naêng Ñoä thay ñoåi naêng Naêng löôïng bieán ñöôïc töø nguoàn ñieän = ñaàu ra + löôïng töø tröôøng döï + thaønh nhieät tröõ trong heä thoáng δ1 δ δ2 I I I x δ U U U (Xeùt moái lieân heä giöõa Fñt vaø δ) III.1. Xaùc ñònh löïc huùt ñieän töø theo phöông phaùp caân baèng naêng löôïng 1 Naêng löôïng töø tröôøng Wm döï tröõ trong nam chaâm ñieän: Wm = ψ.i 2 Wm δ=δ 1 < Wm δ=δ2 dψ u = ir + = ir + (– E) dt uidt = i rdt + idψ 2 uidt naêng löôïng maø nam chaâm ñieän 2 i rdt toån hao Joule trong cuoän daây idψ naêng löôïng töø tröôøng ôû ñoä dòch chuyeån dδ idψ = Fdt.(-dδ) + dWm Fdt.(-dδ) coâng cô hoïc ñeå dòch chuyeån vi phaân (-dδ) döôùi taùc ñoäng cuûa löïc Fdt dWnm laø ñoä thay ñoåi hay gia soá cuûa naêng löôïng töø tröôøng döï tröõ. dψ dWm ⇒ Fdt = −i + dδ dδ Chöông 2: Caùc nguyeân lyù bieán ñoåi naêng löôïng ñieän cô 4
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh III.2. Tính löïc huùt ñieän töø nam chaâm ñieän moät chieàu Giaû thieát: 1 1) Maïch töø laø tuyeán tính: ψiWm = 2 2) Naép NC ñieän chuyeån ñoäng chaäm, xem δ khoâng phuï thuoäc vaøo thôøi gian. dΨ Ldi U u = ir + = ir + ⇒ i = = I = const / ∀δ dt dt r 3) Boû qua töø trôû loõi theùp. 4) Töø thoâng roø khoâng phuï thuoäc vaøo δ dψ 1 d(ψI) 1 dψ Fdt = −i + =− I dδ 2 dδ 2 dδ 1 dφ Fdt = − IN lv 2 dt ⎛μ S⎞ d⎜ 0 ⎟ 2δ ⎠ 1 μ S = − ( NI) 2 ⎝ 1 dG δΣ 1 Φlv = INGδ∑ ⇒ Fdt = − (IN) 2 = ( NI) 2 0 2 2 dδ 2 dδ 2 2δ Nhaän xeùt: Löïc huùt ñieän töø: tyû leä vôùi bình phöông vôùi löïc töø ñoäng vaø dieän tích cöïc töø. tyû leä ngöôïc vôùi bình phöông khe hôû khoâng khí. III.3. Tính löïc huùt ñieän töø nam chaâm ñieän xoay chieàu Giaû thieát nhö treân ñoàng thôøi boû qua ñieän trôû cuoän daây, boû qua toång trôû töø loõi theùp: ⎛ gl ⎞ L = N 2 ⎜ G δΣ + ⎟ ≈ N 2 G δΣ (giaû thieát G σ
- Baøi giaûng Kyõ Thuaät Ñieän Ñaïi Cöông ©TCBinh 1 μ S ⇒ Fdt tb = ( NI) 2 0 2 (gioáng moät chieàu) 2 2δ Nhaän xeùt: Löïc huùt ñieän töø: tyû leä vôùi bình phöông vôùi löïc töø ñoäng vaø dieän tích cöïc töø. tyû leä ngöôïc vôùi bình phöông khe hôû khoâng khí. Chöông 2: Caùc nguyeân lyù bieán ñoåi naêng löôïng ñieän cô 6
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trinh lý thuyết mạch - Chương 1
10 p | 125 | 100
-
Lý Thuyết Đàn Hồi - Chương 1
20 p | 244 | 74
-
Bài giảng Phương pháp định lượng trong quản lý: Chương 3 - PGS. Nguyễn Thống
18 p | 367 | 48
-
Bài giảng Lý thuyết điều khiển tự động: Chương 1 - Võ Văn Định
35 p | 115 | 21
-
Bài giảng Máy điện - Chương 1: Cơ sở lý thuyết của máy điện
5 p | 137 | 18
-
Bài giảng Cơ sở lý thuyết trường điện từ: Chương 4 - Nguyễn Văn Huỳnh
11 p | 149 | 17
-
Đáp án Đề thi tốt nghiệp Cao đẳng nghề khóa II (2008 - 2011) nghề Công nghệ ô tô môn Lý thuyết chuyên môn nghề (Mã đề thi: DA OTO-LT22)
147 p | 98 | 11
-
Bài giảng Lý thuyết máy điện: Chương 2A - Văn Thị Kiều Nhi
24 p | 143 | 11
-
Bài giảng Lý thuyết điều khiển tự động: Chương 1 - TS. Nguyễn Thu Hà
35 p | 25 | 7
-
Bài giảng Lý thuyết mạch điện 2: Chương 1 - TS. Trần Thị Thảo
24 p | 18 | 6
-
Bài giảng Cơ sở lý thuyết trường điện từ: Chương 1 - Nguyễn Văn Huỳnh
12 p | 106 | 6
-
Đề tốt nghiệp CĐ nghề khóa 2 Điện công nghiệp (2008-2011) - Mã: ĐCN - LT 35 - Phần lý thuyết (kèm Đ.án)
7 p | 71 | 6
-
Bài thuyết trình Cấu tạo nguyên lý hoạt động của cảm biến khoảng cách và cảm biến lùi trên ô tô
7 p | 165 | 5
-
Bài giảng Cơ sở lý thuyết trường điện từ: Chương 2 - Nguyễn Văn Huỳnh
18 p | 111 | 4
-
Bài thuyết trình Trình bày cấu tạo và nguyên lý hoạt động của cảm biến ô xy
14 p | 104 | 4
-
Bài giảng Cơ học ứng dụng: Chương 4 - ThS. Nguyễn Thanh Nhã
10 p | 5 | 2
-
Bài giảng Cơ lý thuyết (Phần 1: Tĩnh học) - Chương 1
183 p | 0 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn