Một số bài tập về hệ phương trình và phương pháp thế
lượt xem 12
download
Nhằm giúp các bạn làm tốt các bài tập môn Toán đồng thời các bạn sẽ không bị bỡ ngỡ với các dạng bài về hệ phương trình chưa từng gặp, hãy tham khảo một số bài tập về hệ phương trình và phương pháp thế.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Một số bài tập về hệ phương trình và phương pháp thế
- MỘT SỐ BÀI TẬP VỀ HỆ PHƯƠNG TRÌNH VÀ PHƯƠNG PHÁP THẾ
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net Trong các ph n trư c chúng ta ñã ñi xét m t s d ng h mà có ñư ng l i gi i t ng quát. Trong ph n này chúng ta ñi xét m t s h mà không có ñư ng l i gi i t ng quát. ð tìm l i gi i c a nh ng h này 1. Phương pháp th : N i dung c a phương pháp này t m t phương trình ho c k t h p hai phương trình c a h ta bi u di n n này qua n kia ho c m t bi u th c này qua bi u th c khác và th vào phương trình còn l i chuy n v phương trình m t n (có th là n ph ). M c ñích c a vi c làm này là gi m s n. Tùy thu c vào ñ c ñi m c a bài toán mà ta có nh ng cách bi n ñ i phù h p. Trong phương pháp này ta c n lưu ý m t s d u hi u sau. • N u trong h phương trình có m t phương trình b c nh t ñ i v i m t n thì ta rút n ñó qua n kia th vào phương trình còn l i và chuy n v gi i phương trình m t n. • V i hai s th c b t kì x ≠ 0; y ta luôn có y = tx (t là s th c c n tìm). V i cách làm này ta s ñư c h v phương trình m t n t. • Phương trình f (x; y) = f (y;x) luôn có m t c p nghi m x = y (các b n th gi i thích vì sao?), do ñó ta luôn phân tích phương trình ñã cho v d ng: (x − y)g(x; y) = 0 . • Trong h phương trình n u bi u th c u(x) xu t hi n hai phương trình thì ta có th ñ t t = u(x) ñ làm ñơn gi n hình th c bài toán. x 3 y = 16 (1) Ví d 1: Gi i h phương trình: . 3x + y = 8 (2) Gi i : Ta th y (2) là m t phương trình b c nh t hai n nên ta rút n này qua n kia. T phương trình (2) ⇒ y = 8 − 3x thay vào phương trình (1) ta ñư c: x 3 (8 − 3x) = 16 ⇔ 3x 4 − 8x 3 + 16 = 0 ⇔ (x − 2)2 (3x 2 + 4x + 4) = 0 ⇔ x = 2 V y h có nghi m là x = y = 2 . Chú ý : cách gi i trên ta th y h có nghi m duy nh t x = y = 2 , ñ ng th i t hai phương trình ta có nh n xét x, y > 0 và phương trình (2) VT là 3x + y , phương trình (1) có tích x 3 y . ði u này g i cho chúng ta liên tư ng ñ n BðT Cauchy. Ta có cách gi i khác như sau: Ta th y n u h có nghi m (x;y) thì x, y > 0 . Áp d ng bñt Cauchy ta có: 3x + y = x + x + x + y ≥ 4 4 x 3 y = 8 . ð ng th c x y ra ⇔ x = y = 2 . Th l i ta th y th a mãn. Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 1
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net Ví d 2:Gi i h phương trình: ( y(1 + x 2 ) = x 1 + y 2 ) (1) . x 2 + 3y 2 = 1 (2) Gi i: D th y phương trình (1) có c p nghi m x = y , do ñó ta bi n ñ i phương trình (1) c a h ra th a s (x − y) . x = y Ta có: (1) ⇔ x − y + xy(y − x) = 0 ⇔ (x − y)(1 − xy) = 0 ⇔ . xy = 1 1 * x = y ⇒ 4x 2 = 1 ⇔ x = ± . 2 1 * x = ⇒ 3y 4 − y 2 + 1 = 0 phương trình vô nghi m. y 1 V y nghi m c a h là: x = y = ± . 2 1 1 x − x = y − y (1) Ví d 3: Gi i h phương trình: . 2y = x 3 + 1 (2) Gi i: xy ≠ 0 x = y x−y 1 Ta có (1) ⇔ x − y + = 0 ⇔ (x − y)(1 + ) = 0 ⇔ . xy xy y = − 1 x * x = y thay vào (2), ta ñư c: −1 ± 5 x 3 − 2x + 1 = 0 ⇔ (x − 1)(x 2 + x − 1) = 0 ⇔ x = 1;x = . 2 1 1 1 3 * y = − thay vào (2), ta ñư c: x 4 + x + 2 = 0 ⇔ (x 2 − ) + (x + ) 2 + = 0 vô x 2 2 2 nghi m. −1 ± 5 V y h ñã cho có ba c p nghi m: x = y = 1;x = y = . 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 2
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net x+y=3x+y Ví d 4: Gi i các h phương trình sau: . x−y= 3 x − y − 12 x + y ≥ 0 Gi i: ðK: . x−y≥0 Ta th y m i phương trình c a h là phương trình m t n x + y và x − y . Do ñó ñi u mà chúng ta nghĩ t i là ñi gi i t ng phương trình tìm x + y và x − y , khi ñó ta có ñư c h phương trình m i ñơn gi n hơn nhi u. ð ñơn gi n v m t hình th c ta ñ t a = x + y, b = x − y ⇒ a, b ≥ 0 ta có h : a =3a 3 a = a 2 a = 0 V a = 1 ⇔ ⇔ . b = b − 12 3 b = (b − 12) 3 2 b=4 a = 0 x + y = 0 x = 2 *V i ⇔ ⇔ b = 4 x − y = 4 y = −2 5 x= a = 1 x + y = 1 2 *V i ⇔ ⇔ b = 4 x − y = 4 y = − 3 2 5 3 V y nghi m c a h là: (x; y) = (2; −2), ( ; − ) . 2 2 x+y − x−y=2 (1) Ví d 4: Gi i h phương trình: . x 2 + y2 + x 2 − y2 = 4 (2) Gi i: ðK : x ≥| y | Vì (1) trong căn ch ch a lũy th a b c 1 ñ i v i x,y còn (2) thì trong căn ch a lũy th a b c 2 ñ i v i x,y nên suy nghĩ ñ u tiên là ta s bình phương hai v phương trình (1) ñ ñưa v hai phương trình ñ ng b c. T (1) ⇒ x + y > x − y ⇒ y > 0 . 2≤x≤6 x − x 2 − y2 = 2 x 2 − y2 = x − 2 2 H ⇔ ⇔ ⇔ x − y 2 = (2 − x)2 x 2 + y2 = 4 − x 2 − y2 x 2 + y2 = 6 − x 2 x + y = (6 − x) 2 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 3
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net 2 ≤ x ≤ 6 2 ≤ x ≤ 6 5 2 2 x = ⇔ 2x = (2 − x) + (6 − x) ⇔ 2x = 40 − 16x + 2x ⇔ 2 2 2 2 . 2 2 y = 6 x + y = (6 − x) y = 36 − 12x 2 2 5 V y nghi m c a h ñã cho là: ( ; 6) . 2 x 2 + 1 + y(y + x) = 4y (1) Ví d 6: Gi i h phương trình: . (x + 1)(y + x − 2) = y 2 (2) Gi i: ð t a = x + y t (1) ⇒ x 2 + 1 = y(4 − a) th vào (2), ta có: y(4 − a)(a − 2) = y ⇔ y(a 2 − 6a + 9) = 0 ⇔ y = 0; a = 3 * V i y = 0 thay vào (1) ta th y h vô nghi m. * V i a = 3 ⇔ x + y = 3 thay vào h ta có: x = 1 ⇒ y = 2 x2 + 1 = y = 3 − x ⇔ x2 + x − 2 = 0 ⇔ . x = −2 ⇒ y = 5 V y h ñã cho có hai c p nghi m: (x; y) = (1;2), (−2;5) . x 3 − 8x = y3 + 2y (1) Ví d 7: Gi i h phương trình: . x − 3 = 3(y + 1) 2 2 (2) Gi i: Cách 1: T (2) ⇒ x 2 = 3(y 2 + 2) (3) thay vào (1) ta ñư c : x = 0 x2 x − 8x = y(y + 2) = y 3 2 ⇔ x(3x − xy − 24) = 0 ⇔ 2 y = 3x − 24 2 . 3 x * V i x = 0 thay vào (3) ta có: y + 2 = 0 vô nghi m. 2 2 3x 2 − 24 3x 2 − 24 *V i y= thay vào (3) ta ñư c: x = 3 2 +6 x x x2 = 9 x = ±3 ⇒ y = ±1 ⇔ 13x 4 − 213x 2 + 864 = 0 ⇔ 2 96 ⇔ . x = x = ± 96 ⇒ y = ∓ 78 13 13 13 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 4
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net 96 78 V y h có b n c p nghi m: (x; y) = (±3; ±1), (± ;∓ ). 14 13 Cách 2: Ta th y x = 0 không là nghi m c a h nên ta ñ t y = tx . Khi ñó h tr thành x 3 − 8x = t 3 x 3 + 2tx x 2 (1 − t 3 ) = 2t + 8 1 − t3 t + 4 2 ⇔ ⇒ = x − 3 = 3(t 2 x 2 + 1) x 2 (1 − 3t 2 ) = 6 1 − 3t 2 3 1 t = 3 ⇔ 3(1 − t ) = (t + 4)(1 − 3t ) ⇔ 12t − t − 1 = 0 ⇔ 3 2 2 . t = − 1 4 x (1 − 3t ) = 6 2 2 1 x = ±3 * t= ⇒ x ⇔ . 3 y = y = ±1 3 4 78 1 x = ± 13 * t=− ⇒ . 4 78 y = ∓ 13 | x 2 − 2x | + y = 1 (1) Ví d 8: Gi i h phương trình: . x + | y |= 1 2 (2) Gi i: T (2) ⇒ −1 ≤ x, y ≤ 1 . Ta xét các trư ng h p sau * y ≥ 0 ⇒ (1) ⇔ x 2 + y = 1 ⇔ y = 1 − x 2 thay vào (2) ta ñư c: | x 2 − 2x | +1 − x 2 = 1 ⇔| x 2 − 2x |= x 2 ⇔ x 2 (x − 2)2 = x 4 ⇔ x 2 (−4x + 4) = 0 x = 0 ⇒ y = 1 ⇔ x = 1 ⇒ y = 0 * y < 0 ⇒ (1) ⇔ y = x 2 − 1 thay vào (2) ta có: | x 2 − 2x | + x 2 − 1 = 1 ⇔| x 2 − 2x |= 2 − x 2 ⇔ x 3 − 2x 2 + 1 = 0 ⇔ (x − 1)(x 2 − x − 1) = 0 x = 1 ⇔ x = 1 − 5 ⇒ y = 1 − 5 . 2 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 5
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net 1− 5 1− 5 V y h có ba c p nghi m (x; y) = (0;1), (1;0), ( ; ). 2 2 2 2xy x + y + x + y = 1 2 (1) Ví d 9: Gi i h phương trình: . x + y = x2 − y (2) Gi i: ðK : x + y > 0 (x + y)2 − (x 2 + y 2 ) Ta có: (1) ⇔ x 2 + y 2 + −1= 0 . x+y (x 2 + y 2 )(x + y) − (x 2 + y 2 ) x 2 + y2 ⇔ + x + y − 1 = 0 ⇔ (x + y − 1)( + 1) = 0 . x+y x+y x 2 + y2 ⇔ x + y − 1 = 0 ⇔ y = 1 − x ( Do > 0 ) Thay vào (2), ta ñư c: x+y x = 1 ⇒ y = 0 x 2 − (1 − x) = 1 ⇔ x 2 + x − 2 = 0 ⇔ . x = −2 ⇒ y = 3 V y h có hai c p nghi m: (x; y) = (1;0), (−2;3) . 7x + y + 2x + y = 5 Ví d 10: Gi i h phương trình: (HSG Qu c Gia – 2001). 2x + y + x − y = 2 Gi i: 8x + t = (3 − t) 2 7x + y = 3 − t Cách 1: ð t t = y − x ⇔ y = x + t ta có h : ⇔ 3x + t = (2 + t) 2 2x + y = 2 + t −2 ≤ t ≤ 3 3t − 8t = 3(3 − t) − 8(2 + t) 2 2 t + 9t + 1 = 0 2 −9 + 77 ⇒ ⇔ ⇔t= . −2 ≤ t ≤ 3 −2 ≤ t ≤ 3 2 (t + 2) 2 − t x= = 10 − 77 3 ⇒ là nghi m c a h ñã cho. y = t + x = 11 − 77 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 6
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net u + v = 5 Cách 2: ð t u = 7x + y, v = 2x + y . H tr thành: . v=2+ y−x 5−x M t khác u 2 − v 2 = 5x ⇒ (u − v)(u + v) = 5x ⇒ u − v = x ⇒ v = (Do u + v = 5 ). 2 5−x 1+ x 1+ x 5 − x T ñó ⇒ =2+ y−x⇒y= thay vào h ta có ñư c: 2x + = 2 2 2 2 x ≤ 5 x ≤ 5 11 − 77 ⇔ ⇔ 2 ⇔ x = 10 − 77 ⇒ y = . 10x + 2 = (5 − x) x − 20x + 23 = 0 2 2 x = 10 − 77 Thay vào h ta th y th a mãn. V y h ñã cho có nghi m 11 − 77 . y= 2 1 3x (1 + )=2 x+y Ví d 11: Gi i h phương trình: (HSG Qu c Gia – 1996 ). 7y(1 − 1 )=4 2 x+y Gi i: ðK : x, y ≥ 0 . Vì x=0 hay y=0 không là nghi m c a h nên ta có: 1 2 1 2 2 x+y= 1+ 3x 1 = + (1) 3x 7y H ⇔ ⇔ . Nhân (1) v i (2) ta ñư c: 1 − 1 = 4 2 1 = 1 −2 2 (2) x+y 7y x + y 3x 7y 1 1 2 2 1 2 2 1 8 =( − )( − )= − ⇔ 21xy = (x + y)(7y − 24x) x+y 3x 7y 3x 7y 3x 7y ⇔ 24x 2 + 38xy − 7y 2 = 0 ⇔ (6x − y)(4x + 7y) = 0 ⇔ y = 6x (Do x, y > 0 ) 1 2 11 + 4 7 22 + 8 7 Thay vào (1) ta có: 1 = + ⇔x= ⇒ y = 6x = 3x 7x 21 7 Th l i h ta th y th a mãn. 11 + 4 7 x = 21 V y h có c p nghi m duy nh t . y = 22 + 8 7 7 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 7
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net x 3 + 3xy 2 = −49 (1) Ví d 12: Gi i h phương trình: (HSG QG – 2004 ) . x − 8xy + y = 8y − 17x 2 2 (2) Gi i: Cách 1: Ta th y x = 0 không ph i là nghi m c a h nên x 3 + 49 T (1) ⇒ y = − 2 (*) th vào phương trình (2) ta ñư c: 3x x 3 + 49 x − 8xy − 2 = 8y − 17 ⇔ 24y(x 2 + x) = 2x 3 + 51x 2 − 49 3x x = −1 ⇔ 24xy(x + 1) = (x + 1)(2x + 49x − 49) ⇔ 2 y = 2x + 49x − 49 2 24x * x = −1 th vào (*) ⇒ y = ±4 . 2x 2 + 49x − 49 * y= th vào (*), ta có: 24x 2 x 3 + 49 2x 2 + 49x − 49 − = ⇔ −192x(x + 49) = (2x + 49x − 49) 3 2 2 3x 24x Bi n ñ i rút g n ta ñư c: 4x 4 + 4x 3 + 45x 2 + 94x + 49 = 0 ⇔ (x + 1)2 (4x 2 − 4x + 49) = 0 ⇔ x = −1 . V y h có hai c p nghi m: (x; y) = (−1; ±4) . Cách 2: Nhân phương trình (2) v i 3 r i c ng v i (1) theo t ng v ta ñư c: x 3 + 3x 2 + 3xy 2 − 24xy + 3y 2 = 24y − 51x − 49 ⇔ x 3 + 3x 2 + 3x + 1 + 3y 2 (x + 1) − 24y(x + 1) + 48(x + 1) = 0 ( ) ⇔ (x + 1) (x + 1) 2 + 3y 2 − 24y + 48 = 0 ⇔ x = −1. Th x = −1 vào phương trình (1) ta có: y 2 = 16 ⇔ y = ±4 . V y h có hai c p nghi m (x; y) = (−1; ±2) . Cách 3: Vì x = 0 không là nghi m c a h nên ta ñ t y = tx . Khi ñó h tr thành: Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 8
- Nguy n T t Thu 0918927276 or 01699257507 http://www.toanthpt.net 3 −49 −49 −49 x (1 + 3t ) = −49 3 2 x = 1 + 3t 2 = 49 + 3(t 2 − 16) = 49 + 3a 2 ⇔ x (1 − 8t + t ) = x(8t − 17) x = 8t − 17 = 8t − 17 2 b = t 2 − 8t + 1 (t 2 − 16) − (8t − 17) a − b (Trong ñó ta ñã ñ t: a = t 2 − 16; b = 8t − 17 ). ⇒ −49 = b3 49 + 3a (a − b) 3 ( ) ⇔ 49 b3 + (a − b)3 + 3a = 0 ( ) ⇔ a 49 b 2 − b(a − b) + (a − b) 2 + 3 = 0 ⇔ a = 0 ⇔ t 2 = 16 . Th t = 16 vào h ⇒ x = −1 ⇒ y = ±4 . 2 Bài t p: Gi i các h phương trình sau: 3 x − y = x − y 3 x − y = x − y 2x + y + 1 − x + y = 1 1) 2) 3) x + y = x + y + 2 x + 4 − 1 − y = 1 − 2x 3x + 2y = 4 1 1 x 2 x 3 x 3 y = 16 x − x = y − y ( y ) + ( y ) = 12 5) 6) 7) 3x + y = 8 2y = x 3 + 1 (xy)2 + xy = 6 2 1 x 2x + 2y =3 x + y2 + y = 3 x+ y + x− y =2 8) y x 9) 10) x − y + xy = 3 x + x + 1 = 3 y + x − y − x =1 y y 3 85 4xy + 4(x + y ) + (x + y) 2 = 3 2 2 x − xy + y = 3(x − y) 2 2 11) 12) x + xy + y = 7(x − y) 2 2 2 2x + 1 = 13 x+y 3 x 2 + y2 = 1 x 2 + y 2 + xy = 1 x 3 + y3 − xy 2 = 1 13) 3 1 14) 15) 3x − y = x + y 3 x + y = x + 3y 4x + y = 4x + y 3 3 4 4 x 2 + y2 + x + y − 4 = 0 16) 2x + xy − y − 5x + y + 2 = 0 2 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 9
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập về CO2 và SO2
2 p | 894 | 427
-
Giáo trình toán học - hệ phương trình chứa căn thức - mũ và lôgarit
1 p | 954 | 177
-
Bài giảng Đại số 7 chương 2 bài 2: Một số bài toán về đại lượng tỉ lệ thuận
19 p | 424 | 72
-
Đề tài: Hướng dẫn học sinh THCS giải một số bài tập Vật lý liên quan đến lực đẩy Ácsimét - Phạm Xuân Thắng
34 p | 493 | 71
-
Tiết 24: Bài Tập Về Chuyển Động Ném Ngang
6 p | 343 | 38
-
Một số phương pháp giải hệ phương trình - Nguyễn Minh Hiền
3 p | 213 | 36
-
Một số bài toán về hệ phương trình – THCS Thái Thịnh
13 p | 244 | 35
-
Khám phá cách giải một số bài tập hình học giải tích trong mặt phẳng - Hoàng Ngọc Thế
52 p | 123 | 17
-
Phương pháp giải các bài toán về quan hệ bằng nhau trong tam giác thường
14 p | 126 | 12
-
Một số bài toán về hệ có cấu trúc đặc biệt
14 p | 58 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán về GTLN, GTNN tiếp theo (Tài liệu bài giảng)
1 p | 119 | 8
-
Chuyên đề: Chuyên đề muối và một số bài tập trắc nghiệm về muối
23 p | 24 | 5
-
Sáng kiến kinh nghiệm THPT: Một số bài toán về đa thức và áp dụng
47 p | 12 | 5
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán về GTLN, GTNN_P2 (Bài tập tự luyện)
0 p | 81 | 4
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán về GTLN, GTNN_P1 (Tài liệu bài giảng)
0 p | 90 | 4
-
Sáng kiến kinh nghiệm Tiểu học: Một số bài tập nâng cao thành tích bật xa cho học sinh Tiểu học tham gia câu lạc bộ TDTT
38 p | 20 | 4
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán về GTLN, GTNN_P2 (Đáp án bài tập tự luyện)
0 p | 100 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn