một số Bài Toán bất đẳng thức của thầy Cao Minh Quang
lượt xem 103
download
Tài liệu tham khảo về một số Bài Toán bất đẳng thức của thầy Cao Minh Quang...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: một số Bài Toán bất đẳng thức của thầy Cao Minh Quang
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang ♦♦♦♦♦ Vĩnh Long, Xuân M u Tý, 2008
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 500 Bài Toán B t ð ng Th c Ch n L c ♦♦♦♦♦ 1. Cho a, b, c là các s th c dương. Ch ng minh r ng 32 2 2 2 a 2 + (1− b) + b 2 + (1− c) + c 2 + (1− a ) ≥ . 2 Komal 2. [ Dinu Serbănescu ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng abc + (1− a )(1− b)(1− c) < 1 . Junior TST 2002, Romania 3. [ Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng b+c c +a a +b + + ≥ a + b + c + 3. a b c Gazeta Matematică 4. N u phương trình x 4 + ax3 + 2 x 2 + bx + 1 = 0 có ít nh t m t nghi m th c, thì a 2 + b2 ≥ 8 . Tournament of the Towns, 1993 5. Cho các s th c x, y, z th a mãn ñi u ki n x 2 + y 2 + z 2 = 1 . Hãy tìm giá tr l n nh t c a bi u th c x3 + y 3 + z 3 − 3xyz . 6. Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = 1 . Ch ng minh r ng ax + by + cz + 2 ( xy + yz + zx )(ab + bc + ca ) ≤ a + b + c . Ukraine, 2001 7. [ Darij Grinberg] Cho a, b, c là các s th c dương. Ch ng minh r ng 9 a b c + + ≥ . 4 (a + b + c) 2 2 2 (b + c) (c + a ) ( a + b) 8. [ Hojoo Lee ] Cho a, b, c ≥ 0 . Ch ng minh r ng a4 + a2b2 + b4 + b4 + b2c2 + c4 + c4 + c2a2 + a4 ≥ a 2a2 + bc + b 2b2 + ca + c 2c2 + ab . Gazeta Matematică 9. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 2 . Ch ng minh r ng a 3 + b 3 + c3 ≥ a b + c + b c + a + c a + b . JBMO 2002 Shortlist 10. [ Ioan Tomescu ] Cho x, y, z là các s th c dương. Ch ng minh r ng 1 xyz ≤ 4. (1 + 3x)( x + 8 y )( y + 9 z )( z + 6) 7 2
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang Gazeta Matematică 11. [ Mihai Piticari, Dan Popescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 5 (a 2 + b 2 + c 2 ) ≤ 6 (a 3 + b 3 + c3 ) +1 . 12. [ Mircea Lascu ] Cho x1 , x2 ,..., xn ∈ ℝ , n ≥ 2, a > 0 sao cho a2 x1 + x2 + ... + xn = a, x12 + x2 + ... + xn ≤ 2 2 . n −1 Ch ng minh r ng 2a xi ∈ 0, , i = 1, 2,..., n . n 13. [ Adrian Zahariuc ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng ba cb ac + + ≥1 . 4b c − c a 4c a − a b 4a b − b c 14. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc ≤ 1 . Ch ng minh r ng abc + + ≥ a +b+c . bca 15. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n a + x ≥ b + y ≥ c + z , a + b + c = x + y + z . Ch ng minh r ng ay + bx ≥ ac + xz . 16. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 3 6 1+ ≥ . a + b + c ab + bc + ca Junior TST 2003, Romania 17. Cho a, b, c là các s th c dương. Ch ng minh r ng a 3 b3 c 3 a 2 b 2 c 2 ++≥++. b2 c2 a 2 b c a JBMO 2002 Shortlist 18. Cho x1 , x2 ,..., xn > 0, n > 3 th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng 1 1 1 + + ... + >1. 1 + x1 + x1 x2 1 + x2 x3 1 + xn + xn x1 Russia, 2004 19. [ Marian Tetiva ] Cho x, y, z là các s th c dương th a ñi u ki n x 2 + y 2 + z 2 + 2 xyz = 1 . Ch ng minh r ng 1 a) xyz ≤ , 8 3 b) x + y + z ≤ , 2 3
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 3 c) xy + yz + zx ≤ ≤ x 2 + y 2 + z 2 , 4 1 d) xy + yz + zx ≤ + 2 xyz . 2 20. [ Marius Olteanu ] Cho x1 , x2 ,..., x5 ∈ ℝ sao cho x1 + x2 + ... + x5 = 0 . Ch ng minh r ng cos x1 + cos x2 + ... + cos x5 ≥ 1 . Gazeta Matematică 21. [ Florina Cârlan, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng xy + yz + zx ≥ 3 + x 2 + 1 + y 2 + 1 + z 2 + 1 . 22. [ Laurentiu Panaitopol ] Cho x, y, z là các s th c th a mãn ñi u ki n x, y , z > −1 . Ch ng minh r ng 1+ x2 1+ y2 1+ z 2 + + ≥2. 1+ y + z 2 1+ z + x2 1+ x + y 2 JBMO, 2003 23. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng a2 + b b2 + c c2 + a + + ≥ 2. b+c c+a a +b 24. Cho a, b, c ≥ 0 th a mãn ñi u ki n a 4 + b 4 + c 4 ≤ 2 (a 2b 2 + b 2 c 2 + c 2 a 2 ) . Ch ng minh r ng a 2 + b 2 + c 2 ≤ 2 (ab + bc + ca ) . Kvant, 1988 25. Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n 1 1 1 1 + + ... + = . x1 +1998 x2 +1998 xn +1998 1998 Ch ng minh r ng x1 x2 ...xn n ≥ 1998 . n −1 Vietnam, 1998 26. [Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x 2 + y 2 + z 2 = xyz . Ch ng minh r ng a) xyz ≥ 27, b) xy + yz + zx ≥ 27 , c) x + y + z ≥ 9 , d) xy + yz + zx ≥ 2 ( x + y + z ) + 9 . 27. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = 3 . Ch ng minh r ng x + y + z ≥ xy + yz + zx . 4
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang Russia 2002 28. [ D. Olteanu ] Cho a, b, c là các s th c dương. Ch ng minh r ng a+b b+c c+a 3 a b c + + ≥. . . . b + c 2a + b + c c + a 2b + c + a a + b 2c + a + b 4 Gazeta Matematică 29. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c c +a a+b b+c ++≥ + + . b c a c +b a +c b+a India, 2002 30. Cho a, b, c là các s th c dương. Ch ng minh r ng 3(ab + bc + ca) a3 b3 c3 +2 +2 ≥ . 2 2 2 2 b − bc + c c − ac + a a − ab + b a +b +c Proposed for the Balkan Mathematical Olympical 31. [ Adrian Zahariuc ] Cho x1 , x2 ,..., xn là các s nguyên ñôi m t phân bi t nhau. Ch ng minh r ng x12 + x2 + ... + xn ≥ x1 x2 + x2 x3 ... + xn x1 + 2n − 3 . 2 2 32. [ Murray Klamkin ] Cho x1 , x2 ,..., xn ≥ 0, n > 2 th a mãn ñi u ki n x1 + x2 + ... + xn = 1 . Hãy tìm giá tr l n nh t c a bi u th c x12 x2 + x2 x3 + ... + xn−1 xn + xn x1 . 2 2 2 Crux Mathematicorum 33. Cho x1 , x2 ,..., xn > 0 th a mãn ñi u ki n xk +1 ≥ x1 + x2 + ... + xk v i m i k. Hãy tìm giá tr l n nh t c a h ng s c sao cho x1 + x2 + ... + xn ≤ c x1 + x2 + ... + xn . IMO Shortlist, 1986 34. Cho các s th c dương a, b, c, x, y, z th a mãn ñi u ki n a + x = b + y = c + z = 1. Ch ng minh r ng 1 1 1 (abc + xyz ) + + ≥ 3. ay bz cx Russia, 2002 35. [ Viorel Vâjâitu, Alexvàru Zaharescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng 1 ab bc ca ≤ (a + b + c) . + + a + b + 2c b + c + 2a c + a + 2b 4 Gazeta Matematică 36. Cho a, b, c, d là các s th c th a mãn ñi u ki n a 2 + b 2 + c 2 + d 2 = 1 . Tìm giá tr nh nh t c a bi u th c a 3 (b + c + d ) + b3 (c + d + a) + c 3 (d + a + b) + d 3 (a + b + c) . 37. [ Walther Janous ] Cho x, y, z là các s th c dương. Ch ng minh r ng 5
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang x y z + + ≤1 . x + ( x + y )( x + z ) y + ( y + z )( y + x ) z + ( z + x)( z + y ) Crux Mathematicorum 38. Cho a1 , a2 ,..., an , n ≥ 2 là n s th c sao cho a1 < a2 < ... < an . Ch ng minh r ng a1a2 + a2 a3 + ... + an a14 ≥ a2 a14 + a3a2 + ... + a1an . 4 4 4 4 39. [ Mircea Lascu ] Cho a, b, c là các s th c dương. Ch ng minh r ng a c b+c c +a a +b b . ≥ 4 + + + + b + c c + a a + b a b c 40. Cho a1 , a2 ,..., an là các s nguyên dương l n hơn 1. T n t i ít nh t m t trong các s 3 a1 , a2 a3 ,..., an−1 an , an a1 nh hơn ho c b ng 3. a1 Adapted after a well – known problem 41. [ Mircea Lascu, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n xy + yz + zx + 2 xyz = 1 . Ch ng minh r ng 1 a) xyz ≤ , 8 3 b) x + y + z ≥ , 2 111 + + ≥ 4( x + y + z) , c) xyz 2 (2 z −1) 111 + + − 4( x + y + z) ≥ , z = max { x, y, z } . d) z (2 z +1) xyz 42. [ Manlio Marangelli ] Cho x, y, z là các s th c dương. Ch ng minh r ng 3( x 2 y + y 2 z + z 2 x )( xy 2 + yz 2 + zx 2 ) ≥ xyz ( x + y + z ) . 3 43. [ Gabriel Dospinescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n max {a, b, c} − min {a, b, c} ≤ 1 Ch ng minh r ng 1 + a 3 + b3 + c 3 + 6abc ≥ 3a 2b + 3b 2 c + 3c 2 a . 44. [ Gabriel Dospinescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng a 2 b2 c2 1 1 1 27 + 2 + 2 + 2 + ≥ 6 (a + b + c ) + + . a b c bc ca ab a2 1 45. Cho a0 = , a k+1 = ak + k . Ch ng minh r ng 2 n 1 1− < an < 1 . n TST Singapore 46. [ Călin Popa ] Cho a, b, c ∈ (0,1) th a mãn ñi u ki n ab + bc + ca = 1 . Ch ng minh r ng 6
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 3 1− a 2 1− b2 1− c 2 a b c ≥ . + + + + c 1 − a 2 1− b 2 1− c 2 4 a b 47. [ Titu Vàreescu, Gabriel Dospinescu ] Cho x, y, z ≤ 1 th a mãn ñi u ki n x + y + z = 1 . Ch ng minh r ng 1 1 1 27 + + ≤. 2 2 2 1+ x 1+ y 1+ z 10 x + y + z = 1 . Ch ng minh r ng 48. [ Gabriel Dospinescu ] Cho 2 2 2 (1− x) (1− y ) (1− z ) ≥ 215 xyz ( x + y )( y + z )( z + x) . 49. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = x + y + z +2 . Ch ng minh r ng a) xy + yz + zx ≥ 2 ( x + y + z ) , 3 x+ y+ z≤ b) xyz . 2 50. Cho x, y, z là các s th c th a mãn ñi u ki n x 2 + y 2 + z 2 = 2 . Ch ng minh r ng x + y + z ≤ xyz + 2 . IMO Shortlist, 1987 51. [ Titu Vàreescu, Gabriel Dospinescu ] Cho x1 , x2 ,..., xn ∈ (0,1) và σ là m t hoán v c a {1, 2,..., n} . Ch ng minh r ng n ∑ xi n 1 + i=1 . 1 1 n ∑ 1− x ∑ ≥ 1− x . x . n i=1 i σ(i ) i=1 i 1 n ∑ 1+ x = 1 . Ch ng minh r ng 52. Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n i=1 i 1 n n ∑ xi ≥ (n −1) ∑ . xi i=1 i=1 Vojtech Jarnik n ∑a ≥ n 53. [ Titu Vàreescu ] Cho n > 3 và a1 , a2 ,..., an là các s th c th a mãn ñi u ki n i i=1 n ∑a 2 ≥ n 2 . Ch ng minh r ng và i i=1 max {a1 , a2 ,..., an } ≥ 2 . USAMO, 1999 54. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng a −b b−c c − d d −a + + + ≥0. b+c c +d d +a a +b 55. Cho x, y là các s th c dương. Ch ng minh r ng x y + yx >1 . 7
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang France, 1996 56. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng (a + b)(b + c)(c + a ) ≥ 4 (a + b + c −1) . MOSP, 2001 57. Cho a, b, c là các s th c dương. Ch ng minh r ng (a 2 + b2 + c2 )(a + b − c)(b + c − a)(c + a − b) ≤ abc (ab + bc + ca) . 58. [ D.P.Mavlo ] Cho a, b, c là các s th c dương. Ch ng minh r ng (a + 1)(b +1)(c +1) 111abc 3+ a +b + c + + + + + + ≥ 3 . 1 + abc abcbca Kvant, 1988 59. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng n 1 n n n n .∏( x + 1) ≥ ∑ xi + ∑ . n n i x i=1 i =1 i=1 i 60. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 1 1 d a 3 + b3 + c3 + abcd ≥ min , + . 4 9 27 Kvant, 1993 61. Cho a, b, c là các s th c dương. Ch ng minh r ng ∑ (1+ a ) (1 + b ) (a − c) (b − c) ≥ (1 + a )(1 + b )(1 + c )(a − b) (b − c) (c − a) . 22 22 2 2 2 2 2 2 2 2 AMM 62. [ Titu Vàreescu, Mircea Lascu ] Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 và α ≥ 1. Ch ng minh r ng 3 xα yα zα + + ≥. y+z z+x x+ y 2 63. Cho x1, x2 ,..., xn , y1, y2 ,..., yn ∈ ℝ th a mãn ñi u ki n x12 + x2 +... + xn = y12 + y2 +... + yn =1 . 2 2 2 2 Ch ng minh r ng n ( x1 y2 − x2 y1 ) ≤ 2 1− ∑ xi yi . 2 i=1 Korea, 2001 64. [ Laurentiu Panaitopol ] Cho a1 , a2 ,..., an là các s nguyên dương khác nhau t ng ñôi m t. Ch ng minh r ng 2n + 1 (a1 + a2 + ... + an ) . a12 + a2 + ... + an ≥ 2 2 3 TST Romania 65. [ Călin Popa ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 8
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 33 bc ca ab + + ≥ . ( ) ( ) ( ) 4 3c + ab 3a + bc 3b + ca a b c 66. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c, d là các s th c th a mãn ñi u ki n (1 + a 2 )(1+ b2 )(1+ c 2 )(1 + d 2 ) = 16 . Ch ng minh r ng −3 ≤ ab + bc + cd + da + ac + bd − abcd ≤ 5 . 67. Cho a, b, c là các s th c dương. Ch ng minh r ng (a 2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca) . APMO, 2004 68. [ Vasile Cirtoale ] Cho x, y, z là các s th c th a mãn các ñi u ki n 0 < x ≤ y ≤ z, x + y + z = xyz + 2 . Ch ng minh r ng a) (1− xy )(1− yz )(1− zx) ≥ 0 , 32 b) x 2 y ≤ 1, x 3 y 2 ≤ . 27 69. [ Titu Vàreescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c ≥ abc . Ch ng minh r ng ít nh t m t trong ba b t ñ ng th c sau ñây là ñúng 236 236 236 + + ≥ 6, + + ≥ 6, + + ≥ 6 . abc bca cab TST 2001, USA 70. [ Gabriel Dospinescu, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng ( x −1)( y −1)( z −1) ≤ 6 3 −10 . 71. [ Marian Tetiva ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 a3 − b3 b3 − c3 c 3 − a3 (a − b) + (b − c ) + (c − a ) + + ≤ . a +b b+c c+a 4 Moldova TST, 2004 72. [ Titu Vàreescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng (a5 − a 2 + 3)(b5 − b2 + 3)(c5 − c 2 + 3) ≥ (a + b + c)3 . USAMO, 2004 73. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n n 1 n x ∑ k ∑ = n 2 + 1 . k =1 k =1 xk Ch ng minh r ng n 2 n 1 2 x ∑ k ∑ 2 > n + 4 + 2 . k =1 k =1 xk n (n −1) 74. [ Gabriel Dospinescu, Mircea Lascu, Marian Tetiva ] Cho a, b, c là các s th c dương. Ch ng minh r ng 9
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang a 2 + b 2 + c 2 + 2abc + 3 ≥ (1 + a)(1 + b)(1 + c) . 75. [ Titu Vàreescu, Zuming Feng ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 ( 2a + b + c ) (2b + a + c) (2c + b + c) +2 +2 ≤8. 2 2 2 2a + (b + c) 2b + (a + c) 2c + (a + b) 2 USAMO, 2003 76. Cho x, y là các s th c dương và m, n là các s nguyên dương. Ch ng minh r ng (n −1)(m −1)( x m+n + y m+n ) + (m + n −1)( x m y n + x n y m ) ≥ mn ( x m+n−1 y + y m+n−1 x) . Austrian – Polish Competition, 1995 77. Cho a, b, c, d , e là các s th c dương th a mãn ñi u ki n abcde = 1 . Ch ng minh r ng a + abc b + bcd c + cde d + dea e + eab 10 + + + + ≥. 1 + ab + abcd 1 + bc + bcde 1 + cd + cdea 1 + de + deab 1 + ea + eabc 3 Crux Mathematicorum π 78. [ Titu Vàreescu ] Cho a, b, c ∈ 0, . Ch ng minh r ng 2 sin a.sin (a − b).sin (a − c ) sin b.sin (b − c ).sin (b − a ) sin c.sin (c − a ).sin (c − b) + + ≥0. sin (b + c ) sin (c + a ) sin (a + b) TST 2003, USA 79. Cho a, b, c là các s th c dương. Ch ng minh r ng a 4 + b4 + c 4 + a 2b 2 + b 2c 2 + c 2 a 2 ≥ a 3b + b3c + c 3a + ab3 + bc3 + ca 3 . KMO Summer Program Test, 2001 80. [ Gabriel Dospinescu, Mircea Lascu ] Cho a1 , a2 ,..., an > 0, n > 2 th a mãn ñi u ki n a1a2 ...an = 1 . Hãy tìm h ng s kn nh nh t sao cho a1a2 a2 a3 an a1 + + ... + ≤ kn . (a + a2 )(a + a1 ) (a + a3 )(a + a2 ) (a + a1 )(a12 + an ) 2 2 2 2 2 1 2 2 3 n 81. [ Vasile Cirtoaje ] Cho a, b, c, x, y, z là các s th c dương. Ch ng minh r ng 2 (a 2 + b2 + c 2 )( x 2 + y 2 + z 2 ) ≥ 3 (a + b + c)( x + y + z ) . ax + by + cz + Kvant, 1989 82. [ Vasile Cirtoaje ] Cho a, b, c là ñ dài ba c nh c a m t tam giác. Ch ng minh r ng a b c b c a 3 + + −1 ≥ 2 + + . b c a a b c 83. [ Walther Janous ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x1 + x2 + ... + xn = 1 . Ch ng minh r ng n 1 + 1 ≥ n − xi . n ∏ x ∏ 1 − x i=1 i=1 i i Crux Mathematicorum 10
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 84. [ Vasile Cirtoaje, Gheoghe Eckstein ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng 1 1 1 + + ... + ≤1 . n −1 + x1 n −1 + x2 n −1 + xn TST 1999, Romania 85. [ Titu Vàreescu ] Cho a, b, c là các s th c không âm th a ñi u ki n a2 +b2 +c2 +abc = 4 . Ch ng minh r ng 0 ≤ ab + bc + ca − abc ≤ 2 . USAMO, 2001 86. [ Titu Vàreescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng {( ) }. a +b +c 3 )( )( 2 2 2 − abc ≤ max a− b , b− c , c− a 3 TST 2000, USA 87. [ Kiran Kedlaya ] Cho a, b, c là các s th c dương. Ch ng minh r ng a + ab + 3 abc 3 a + b a + b + c ≤ a. . . 3 2 3 88. Tìm h ng s k l n nh t sao cho v i b t kì s nguyên dương n không chính phương, ta có (1+ n ) sin (π n ) > k . Vietnamese IMO Training Camp, 1995 3 89. [ Tr n Nam Dũng ] Cho x, y, z là các s th c dương th a ñi u ki n ( x + y + z ) = 32 xyz . Tìm giá tr l n nh t và giá tr nh nh t c a bi u th c x4 + y4 + z 4 . 4 (x + y + z) Vietnam, 2004 90. [ George Tsintifas ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng 3 3 3 3 4 (a + b) (b + c) (c + d ) (d + a) ≥ 16a 2b2 c 2 d 2 (a + b + c + d ) . Crux Mathematicorum 91. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c là các s th c không âm th a mãn ñi u ki n a + b + c = 1 và n là s nguyên dương. Tìm giá tr l n nh t c a bi u th c (ab) (bc) (ca) n n n + + . 1− ab 1− bc 1− ca 92. Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 1 3 + + ≥ . ( ) a (1 + b) b (1 + c ) c (1 + a ) abc 1 + 3 abc 3 93. [Tr n Nam Dũng ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a 2 + b2 + c 2 = 9 . Ch ng minh r ng 11
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 2 (a + b + c) − abc ≤ 10 . Vietnam, 2002 94. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng a + 1 −1b + 1 −1 + b + 1 −1c + 1 −1 + c + 1 −1a + 1 −1 ≥ 3 . b c c a a b 95. [ Gabriel Dospinescu ] Cho n là s nguyên l n hơn 2. Tìm s th c l n nh t mn và s th c nh nh t M n sao cho v i các s th c dương b t kì x1 , x2 ,..., xn (xem xn = x0 , xn+1 = x1 ), ta có n xi mn ≤ ∑ ≤ Mn . xi−1 + 2 (n −1) xi + xi +1 i=1 96. [ Vasile Cirtoaje ] Cho x, y, z là các s th c dương. Ch ng minh r ng 1 1 1 9 +2 +2 ≥ . 2 2 2 2 2 x + xy + y y + yz + z z + zx + x (x + y + z) Gazeta Matematică 97. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng 2 (a3 +1)(b3 +1)(c 3 + 1)(d 3 +1) ≥ (1 + abcd )(1 + a 2 )(1 + b 2 )(1 + c 2 )(1 + d 2 ) . Gazeta Matematică 98. Cho a, b, c là các s th c dương. Ch ng minh r ng 44 (a + b 4 + c 4 ) . 4 4 4 (a + b) + (b + c) + (c + a) ≥ 7 Vietnam TST, 1996 99. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 1 1 1 + + ≤ + + . 1+ a + b 1+ b + c 1+ c + a 2 + a 2 + b 2 + c Bulgaria, 1997 100. [Tr n Nam Dũng ] Cho a, b, c là các s th c dương th a 21ab + 2bc + 8ca ≤ 12 . Tìm giá tr nh nh t c a bi u th c 123 ++. abc Vietnam, 2001 101. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n xy + yz + zx = 3 . Ch ng minh r ng a b c ( y + z)+ ( z + x) + ( x + y) ≥ 3 . b+c c+a a +b 102. Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 (b + c − a ) (c + a − b) (a + b − c) 3 + + ≥. 2 2 2 (b + c) + a 2 (c + a) + b 2 (a + b) + c 2 5 Japan, 1997 12
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 103. [ Vasile Cirtoaje, Gabriel Dospinescu ] Cho a1 , a2 ,..., an ≥ 0, an = min {a1 , a2 ,..., an } . Ch ng minh r ng a + a2 + ... + an−1 n − an . a1n + a2 + ... + an − na1a2 ...an ≥ (n −1) 1 n n n −1 104. [ Turkervici ] Cho x, y , z , t là các s th c dương. Ch ng minh r ng x 4 + y 4 + z 4 + t 4 + 2 xyzt ≥ x 2 y 2 + y 2 z 2 + z 2t 2 + x 2 z 2 + y 2t 2 . Kvant 105. Cho a1 , a2 ,..., an là các s th c dương. Ch ng minh r ng n 2 n a ≤ ij ∑ i ∑ i + j −1ai a j . i=1 i , j=1 106. Cho a1 , a2 ,..., an , b1 , b2 ,..., bn ∈ (1001, 2002) sao cho a12 + a2 + ... + an = b12 + b2 + ... + bn . 2 2 2 2 Ch ng minh r ng a 3 17 a13 a2 3 + + ... + n ≤ (a12 + a2 + ... + an ) . 2 2 bn 10 b1 b2 TST Singapore 107. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng (a 2 + b2 )(b2 + c 2 )(c 2 + a 2 ) ≥ 8(a 2b2 + b2c 2 + c 2 a 2 ) 2 . 108. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương th a mãn ñi u ki n abcd = 1 . Ch ng minh r ng 1 1 1 1 + + + ≥1. 2 2 2 2 (1 + a ) (1 + b) (1 + c) (1 + d ) Gazeta Matematică 109. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng a2 b2 c2 a b c +2 +2 ≥ + + . 2 2 2 2 b +c c +a a +b b+c c +a a +b Gazeta Matematică 110. [ Gabriel Dospinescu ] Cho n s th c a1 , a2 ,..., an . Ch ng minh r ng 2 a ≤ 2 1≤∑ n ( i a + ... + a j ) . ∑ i i∈ℕ* i≤ j≤ TST 2004, Romania 111. [Tr n Nam Dũng ] Cho x1 , x2 ,..., xn ∈ [−1,1] th a mãn ñi u ki n x1 + x2 + ... + xn = 0 . 3 3 3 Tìm giá tr l n nh t c a bi u th c x1 + x2 + ... + xn . 112. [ Gabriel Dospinescu, Călin Popa ] Cho n s th c a1 , a2 ,..., an , n ≥ 2 th a mãn ñi u ki n a1a2 ...an = 1 . Ch ng minh r ng 13
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 2n n n −1 (a1 + a2 + ... + an − n) . a12 + a2 + ... + an − n ≥ 2 2 n −1 113. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2a 2b 2c + + ≤ 3. a +b b+c c+a Gazeta Matematică 114. Cho x, y, z là các s th c dương. Ch ng minh r ng 9 1 1 1 ( xy + yz + zx) ≥ . + + 2 2 2 ( x + y ) ( y + z) ( z + x) 4 Iran, 1996 115. [ Cao Minh Quang ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n n ∏(3x +1) ≤ 2 . n i i=1 Ch ng minh r ng 1 n n ∑ 6 x +1 ≥ 3 . i=1 i 116. [ Suranyi ] Cho a1 , a2 ,..., an là các s th c dương. Ch ng minh r ng (n −1)(a1n + a2 + ... + an ) + na1a2 ...an ≥ (a1 + a2 + ... + an )(a1n−1 + a2 −1 + ... + ann−1 ) . n n n Miklos Schweitzer Competition 117. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0 th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng n ∑ (x − x ) ≥ ∑ x 2 2 −n . i j i 1≤i≤ j≤n i =1 A generazation of Tukervici’s Inequality 1 118. [ Vasile Cirtoaje ] Cho a1 , a2 ,..., an < và a1 + a2 + ... + an = 1, n > 2 . Tìm giá tr n −1 nh nh t c a bi u th c a1a2 ...an n ∑ . 1−(n −1) ai i=1 119. [ Vasile Cirtoaje ] Cho a1 , a2 ,..., an ∈ [0,1) th a mãn ñi u ki n a12 + a2 + ... + an 2 2 3 a= ≥ . 3 n Ch ng minh r ng a a1 a na + 2 2 + ... + n 2 ≥ . 2 1− an 1− a 2 1− a1 1− a2 120. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n 14
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang (a + b + c)( x + y + z ) = (a 2 + b 2 + c 2 )( x 2 + y 2 + z 2 ) = 4 . Ch ng minh r ng 1 abcxyz < . 36 121. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x1 x2 ...xn = 1 . Tìm h ng s kn nh nh t sao cho 1 1 1 + + ... + ≤ n −1 . 1 + kn x1 1 + kn x2 1 + kn xn Mathlinks Contest 122. [ Vasile Cirtoaje, Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x12 + x2 + ... + xn = 1 . Tìm h ng s kn l n nh t sao cho 2 2 (1− x1 )(1− x2 )...(1− xn ) ≥ kn x1 x2 ...xn . 123. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 3 +3 +3 ≥. a (b + c ) b (c + a ) c (a + b) 2 3 IMO, 1995 124. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng ab bc ca +5 +5 ≤ 1. a + b + ab b + c + bc c + a 5 + ca 5 5 5 IMO Shortlist, 1996 125. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 + ab 2 1 + bc 2 1 + ca 2 18 + + ≥3 . 3 3 3 a + b3 + c3 c a b Hong Kong, 2000 126. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 1 + + ≤ . 2 2 2 (a +1) + b + 1 (b +1) + c + 1 (c +1) + a + 1 2 2 2 2 127. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng a −1 + 1 b −1 + 1 c −1 + 1 ≤ 1 . b c a IMO, 2000 128. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng a3 b3 c3 3 + + ≥. (1 + b)(1 + c) (1 + a)(1 + c) (1 + a )(1 + b) 4 IMO Shortlist, 1998 129. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 15
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 1 ab bc ca + + ≤. 1+ c 1+ a 1+ b 4 130. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng a 2 + b 2 + c 2 + 2 3abc ≤ 1 . Poland, 1999 131. Cho a, b, c là các s th c dương th a mãn ñi u ki n a 2 + b 2 + c 2 = 1 . Ch ng minh r ng 1 a +b+c + ≥4 3. abc Macedonia, 1999 132. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng ab + c + bc + a + ca + b ≥ 1 + ab + bc + ca . 133. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng (1 + a)(1 + b)(1 + c) ≥ 8 (1− a )(1− b)(1− c) . Russia, 1991 134. Cho a, b là các s th c dương th a mãn ñi u ki n a + b = 1 . Ch ng minh r ng a2 b2 1 + ≥. a +1 b +1 3 Hungary, 1996 135. Cho các s th c x, y . Ch ng minh r ng 2 3( x + y + 1) + 1 ≥ 3 xy . Columbia, 2001 136. Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 a b 2 (a + b) + ≥ 3 + 3 . a b 3 b a Czech and Slovakia, 2000 137. Cho a, b, c ≥ 1 . Ch ng minh r ng a −1 + b −1 + c −1 ≤ c (ab + 1) . Hong Kong, 1998 138. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng 1 1 1 3 + + ≤. 2 2 2 2 1+ x 1+ y 1+ z Korea, 1998 139. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c + + ≥1 . 2 2 2 a + 8bc b + 8ca c + 8ab IMO, 2001 16
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 140. Cho a, b, c, d là các s th c dương. Ch ng minh r ng 2 a b c d + + + ≥. b + 2c + 3d c + 2d + 3a d + a + 3b a + 2b + 3c 3 IMO Shortlist, 1993 141. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n ab + bc + cd + da = 1 . Ch ng minh r ng a3 b3 c3 d3 1 + + + ≥. b+c +d c +d +a d +a +b a +b+c 3 IMO Shortlist, 1990 142. Cho a, b, c là các s th c dương. Ch ng minh r ng a2 b2 c2 bc ca ab +2 +2 ≥1 ≥ 2 +2 +2 . 2 a + 2bc b + 2ca c + 2ab a + 2bc b + 2ca c + 2ab Romania, 1997 143. Cho a, b, c là các s th c dương. Ch ng minh r ng a 3 b3 c3 + + ≥ a +b +c . bc ca ab Canada, 2002 144. Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 1 1 +3 +3 ≤ . 3 3 3 3 a + b + abc b + c + abc c + a + abc abc USA, 1997 145. Cho a, b, c là các s th c dương th a mãn ñi u ki n a2 + b2 + c2 = 3 . Ch ng minh r ng 1 1 1 3 + + ≥. 1 + ab 1 + bc 1 + ca 2 Belarus, 1999 146. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c a +b b + c ++≥ + +1. b c a b+c a +b Belarus, 1998 3 147. Cho a, b, c ≥ − , a + b + c = 1 . Ch ng minh r ng 4 9 a b c +2 +2 ≤. 2 a + 1 b + 1 c + 1 10 Poland, 1996 148. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 . Ch ng minh r ng x9 + y 9 y9 + z9 z 9 + x9 +6 +6 ≥2. x6 + x3 y 3 + y 6 y + y 3 z 3 + z 6 z + z 3 z 3 + x 6 Roamania, 1997 149. Cho x ≥ y ≥ z > 0 . Ch ng minh r ng 17
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang x2 y y2 z z 2 x ≥ x2 + y2 + z 2 . + + z x y Vietnam, 1991 150. Cho a ≥ b ≥ c > 0 . Ch ng minh r ng a 2 − b 2 c 2 − b2 a 2 − c 2 + + ≥ 3a − 4b + c . c a b Ukraine, 1992 151. Cho x, y, z là các s th c dương. Ch ng minh r ng ( ) ≤ 3+ xyz x + y + z + x 2 + y 2 + z 2 3 . (x + y + z )( xy + yz + zx ) 2 2 2 9 Hong Kong, 1997 152. Cho a1 , a2 , ..., an > 0 và a1 + a2 + ... + an < 1 . Ch ng minh r ng a1a2 ...an (1− a1 − a2 − ... − an ) 1 ≤ n+1 . (a1 + a2 + ... + an )(1− a1 )(1− a2 )...(1− an ) n IMO Shortlist, 1998 153. Cho hai s th c a, b , a ≠ 0 . Ch ng minh r ng 1b a 2 + b2 + + ≥ 3. a2 a Austria, 2000 154. Cho a1 , a2 , ..., an > 0 . Ch ng minh r ng a2 a2 a12 a2 2 + + ... + n−1 + n ≥ a1 + a2 + ... + an . a2 a3 an a1 China, 1984 155. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 . Ch ng minh r ng x 2 + y 2 + z 2 + x + y + z ≥ 2 ( xy + yz + zx) . Russia, 2000 156. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz ≥ xy + yz + zx . Ch ng minh r ng xyz ≥ 3( x + y + z ) . India, 2001 111 + + = 2 . Ch ng minh r ng 157. Cho x, y, z > 1 và xyz x + y + z ≥ x −1 + y −1 + z −1 . IMO, 1992 158. Cho a, b, c là các s th c dương th a mãn ñi u ki n ab +bc +ca =1. Ch ng minh r ng 1 1 1 1 + 6b + 3 + 6c + 3 + 6a ≤ . 3 a b c abc 18
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang IMO Shortlist, 2004 159. Cho x ≥ 2, y ≥ 2, z ≥ 2 . Ch ng minh r ng ( x3 + y )( y 3 + z )( z 3 + x) ≥ 125 xyz . Saint Petersburg, 1997 160. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n c 2 + d 2 = (a 2 + b 2 ) . Ch ng 3 minh r ng a 3 b3 + ≥ 1. c d Singapore, 2000 161. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c + + ≥1. b + 2c c + 2a a + 2b Czech – Slovak Match, 1999 162. Cho a, b, c là các s th c dương. Ch ng minh r ng ab bc ca a b c + + ≥ + + . c (c + a) a (a + b) b (b + c) c + a b + a c + b Moldova, 1999 163. Cho a, b, c, d là các s th c dương. Ch ng minh r ng a +c b+d c +a d +b + + + ≥ 4. a+b b+c c +d d +a Baltic way, 1995 164. Cho x, y, u , v là các s th c dương. Ch ng minh r ng xy + xu + uy + uv xy uv ≥ + . x + y +u +v x+ y u +v Poland, 1993 165. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c 1 + 1 + 1 + ≥ 2 1 + a + b + c . b c a abc 3 APMO, 1998 166. Cho x, y, z là các s th c không âm th a mãn ñi u ki n x + y + z =1. Ch ng minh r ng 4 x2 y + y 2 z + z 2 x ≤ . 27 Canada, 1999 167. Cho a, b, c, d , e, f là các s th c dương th a mãn ñi u ki n 1 a + b + c + d + e + f = 1, ace + bdf ≥ . 108 Ch ng minh r ng 19
- 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 1 abc + bcd + cde + def + efa + fab ≤ . 36 Poland, 1998 168. Cho a, b, c ∈ [0,1] . Ch ng minh r ng a 2 + b 2 + c 2 ≤ a 2b + b 2 c + c 2 a + 1 . Italy, 1993 169. Cho a, b, c ≥ 0, a + b + c ≥ abc . Ch ng minh r ng a 2 + b 2 + c 2 ≥ abc . Ireland, 1997 170. Cho a, b, c ≥ 0, a + b + c ≥ abc . Ch ng minh r ng a 2 + b 2 + c 2 ≥ 3abc . BMO, 2001 171. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng xy + yz + zx ≥ 9 ( x + y + z ) . Belarus, 1996 172. Cho x1 , x2 , x3 , x4 là các s th c dương th a mãn ñi u ki n x1 x2 x3 x4 = 1 . Ch ng minh r ng 1 1 1 1 x13 + x2 + x3 + x4 ≥ max x1 + x2 + x3 + x4 , + + + . 3 3 3 x1 x2 x3 x4 Iran, 1997 173. Cho a, b, c, x, y, z là các s th c dương. Ch ng minh r ng 3 a 3 b3 c 3 (a + b + c ) ++≥ . z 3( x + y + z ) x y Belarus TST, 2000 174. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n 1 1 1 1 + + + =1. 4 4 4 1+ d 4 1+ a 1+ b 1+ c Ch ng minh r ng abcd ≥ 3 . Latvia, 2002 175. Cho x, y, z > 1 . Ch ng minh r ng 2 +2 yz 2 + 2 zx 2 +2 xy xy + yz + zx ≥ ( xyz ) . xx yy zz Proposed for 1999 USAMO 176. Cho c ≥ b ≥ a ≥ 0 . Ch ng minh r ng (a + 3b)(b + 4c)(c + 2a) ≥ 60abc . Turkey, 1999 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
500 bài toán bất đẳng thức chọn lọc P1
25 p | 1135 | 434
-
500 bài toán bất đẳng thức chọn lọc P2
24 p | 787 | 297
-
SKKN môn Toán lớp 10: Áp dụng kỹ thuật chọn điểm rơi tìm giá trị lớn nhất, giá trị nhỏ nhất trong một số bài toán bất đẳng thức
22 p | 880 | 270
-
SKKN: Việc sử dụng bất đẳng thức bunhiacopxki vào giải một số bài toán
12 p | 570 | 99
-
SKKN: Bồi dưỡng học sinh cách tìm tòi lời giải trong một số bài toán bất đẳng thức
23 p | 281 | 73
-
Tự luận và trắc nghiệm về chuyên đề - Ứng dụng phương pháp vectơ và tọa độ để giải một số bài toán sơ cấp: Phần 1
58 p | 134 | 16
-
Một số bài toán giúp học tốt về tỉ lệ thức
10 p | 168 | 11
-
Các bài toán lý thú về sự liên hệ giữa đẳng thức và bất đẳng thức - Nguyễn Duy Liên
7 p | 99 | 9
-
Tuyển tập một số bài toán bất đẳng thức trong kì thi chuyên Toán 2020
67 p | 57 | 9
-
Rèn luyện một số hoạt động Toán thông qua một bài toán bất đẳng thức về diện tích
17 p | 68 | 8
-
Sáng kiến kinh nghiệm THCS: Xây dựng một số phương pháp giải bài toán bất đẳng thức đại số khi bồi dưỡng học sinh giỏi lớp 8
13 p | 34 | 7
-
Một số bất đẳng thức trong các đề thi học sinh giỏi, tuyển sinh ĐH – THPT Quốc gia và lớp 10 chuyên Toán
186 p | 20 | 7
-
Bài toán bất đẳng thức - GTLN - GTNN của biểu thức - Nguyễn Hữu Hiếu
38 p | 17 | 6
-
Bài toán bất đẳng thức, giá trị nhỏ nhất, giá trị lớn nhất của biểu thức
38 p | 66 | 5
-
Sáng kiến kinh nghiệm THPT: Một số bài toán bất đẳng thức ba biến có giả thiết và kết luận liên quan đến p, q, r
21 p | 16 | 4
-
Khảo sát hàm số: Một số bài toán Max Min
28 p | 46 | 3
-
SKKN: Sử dụng tính đơn điệu của hàm số để giải một số bài toán về phương trình, bất phương trình và hệ phương trình trong chương trình Toán phổ thông
20 p | 74 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn