intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tóm tắt Luận án Tiến sĩ Kỹ thuật: Phân tích động lực học của tấm và vỏ trụ thoải làm bằng vật liệu có cơ tính biến thiên chịu tải trọng khí động

Chia sẻ: Na Na | Ngày: | Loại File: PDF | Số trang:27

70
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục đích nghiên cứu của luận án: Xây dựng thuật toán phần tử hữu hạn (PTHH) và chương trình máy tính phân tích động lực học của tấm và vỏ trụ thoải FGM chịu tác dụng của tải trọng khí động gây ra bởi dòng khí có phương bất kỳ; khảo sát một số yếu tố ảnh hưởng đến đáp ứng động lực học của tấm và vỏ trụ thoải FGM, đưa ra các nhận xét, khuyến cáo kỹ thuật nhằm định hướng cho việc thiết kế, chế tạo và sử dụng các kết cấu FGM.

Chủ đề:
Lưu

Nội dung Text: Tóm tắt Luận án Tiến sĩ Kỹ thuật: Phân tích động lực học của tấm và vỏ trụ thoải làm bằng vật liệu có cơ tính biến thiên chịu tải trọng khí động

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ Lê Thúc Định PHÂN TÍCH ĐỘNG LỰC HỌC CỦA TẤM VÀ VỎ TRỤ THOẢI LÀM BẰNG VẬT LIỆU CÓ CƠ TÍNH BIẾN THIÊN CHỊU TẢI TRỌNG KHÍ ĐỘNG TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT Hà Nội - 2016
  2. CÔNG TRÌNH ĐƢỢC HOÀN THÀNH TẠI HỌC VIỆN KỸ THUẬT QUÂN SỰ - BỘ QUỐC PHÒNG Ngƣời hƣớng dẫn khoa học: PGS.TS Vũ Quốc Trụ Phản biện 1: GS.TSKH Đào Huy Bích Đại học Quốc Gia Hà Nội Phản biện 2: GS.TS Nguyễn Mạnh Yên Đại học Xây Dựng Phản biện 3: GS.TSKH Nguyễn Tiến Khiêm Viện Cơ Học Việt Nam Luận án sẽ được bảo vệ tại Hội đồng đánh giá luận án cấp Học viện theo quyết định số 837/QĐ-HV, ngày 21 tháng 03 năm 2016 của Giám đốc Học viện Kỹ thuật Quân sự, họp tại Học viện Kỹ thuật Quân sự vào hồi …… giờ …… ngày …… tháng …… năm 2016 Có thể tìm hiểu luận án tại: - Thư viện Học viện Kỹ thuật Quân sự - Thư viện Quốc gia
  3. CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ 1. Nguyễn Thái Chung, Vũ Quốc Trụ, Lê Thúc Định (2012), “Nghiên cứu dao động của tấm composite lớp chịu lực khí động”, Tuyển tập công trình khoa học Hội nghị cơ học toàn quốc lần thứ 9, Tập 2, Phần I, tr. 156 - 162. 2. Nguyễn Thái Chung, Vũ Quốc Trụ, Lê Thúc Định (2013), “Phân tích động lực học tấm có cơ tính biến thiên chịu tác dụng của lực khí động”, Tuyển tập công trình Hội nghị khoa học toàn quốc Cơ học vật rắn và biến dạng lần thứ 11, tr. 222 - 229. 3. Lê Thúc Định, Vũ Quốc Trụ, Trần Thị Hương (2014), “Phân tích dao động của tấm có cơ tính biến thiên chịu tác dụng của lực khí động và nhiệt độ”, Tạp chí Khoa học & Công nghệ, Đại học Thái Nguyên, Tập 122, số 08, tr. 15 - 20. 4. Nguyễn Thị Phương, Lê Thúc Định (2014), “Nonlinear static and dynamic buckling of eccentrically stiffened doubly curves shallow shells with functionally graded coatings resting on elastic foundation subjected to mechanical loads”, International Conference on Engineering Mechanics and Automation (ICEMA 3), Ha Noi, October 15-16, 2014, pp. 466 - 473. 5. Lê Thúc Định, Vũ Quốc Trụ, Trần Thị Hương (2015), “Phân tích ổn định tĩnh của tấm có cơ tính biến thiên”, Tạp chí Khoa học & Công nghệ, Đại học Thái Nguyên, Tập 135, số 05, tr. 207 - 211. 6. Lê Thúc Định, Vũ Quốc Trụ, Trần Thị Hương (2015), “Nghiên cứu ổn định tĩnh của vỏ làm bằng vật liệu có cơ tính biến thiên với các thuộc tính của vật liệu phụ thuộc vào nhiệt độ”, Tạp chí Khoa học và Kỹ thuật, Học viện Kỹ thuật quân sự, số 173, tr. 90 - 100. 7. Lê Thúc Định, Vũ Quốc Trụ, Trần Thị Hương (2015), “Nghiên cứu ổn định của tấm có cơ tính biến thiên chịu tác dụng của tải trọng khí động”, Tuyển tập công trình Hội nghị KHCN toàn quốc về cơ khí lần IV - 2015, Tập 2, tr. 701 - 709. 8. Lê Thúc Định, Vũ Quốc Trụ, Trần Thị Hương (2015), “Nghiên cứu ổn định của vỏ có cơ tính biến thiên chịu tác dụng của tải trọng động”, Tuyển tập công trình Hội nghị KHCN toàn quốc về cơ khí lần IV - 2015, Tập 2, tr. 769 - 777. 9. Lê Thúc Định (2015), “Phân tích động lực học vỏ có cơ tính biến thiên chịu tác dụng của lực khí động”, Tuyển tập công trình Hội nghị KHCN toàn quốc về cơ khí lần IV - 2015, Tập 2, tr. 936 - 945.
  4. 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Phân tích động lực học kết cấu làm bằng vật liệu có cơ tính biến thiên (FGM) chịu tải trọng khí động là bài toán khá phức tạp được nhiều nhà khoa học trên thế giới quan tâm nghiên cứu. Tuy nhiên, ở Việt Nam vấn đề này mới chỉ bắt đầu được nghiên cứu. Do đó, đề tài “Phân tích động lực học của tấm và vỏ trụ thoải làm bằng vật liệu có cơ tính biến thiên chịu tải trọng khí động” mà luận án đặt ra là vấn đề cấp thiết, có ý nghĩa khoa học và thực tiễn. 2. Mục đích nghiên cứu của luận án - Xây dựng thuật toán phần tử hữu hạn (PTHH) và chương trình máy tính phân tích động lực học của tấm và vỏ trụ thoải FGM chịu tác dụng của tải trọng khí động gây ra bởi dòng khí có phương bất kỳ. - Khảo sát một số yếu tố ảnh hưởng đến đáp ứng động lực học của tấm và vỏ trụ thoải FGM, đưa ra các nhận xét, khuyến cáo kỹ thuật nhằm định hướng cho việc thiết kế, chế tạo và sử dụng các kết cấu FGM. 3. Đối tƣợng và phạm vi nghiên cứu của luận án - Kết cấu tấm và vỏ trụ thoải FGM chịu tải trọng khí động. - Nghiên cứu đáp ứng động lực học của tấm và vỏ trụ thoải FGM. 4. Phƣơng pháp nghiên cứu Nghiên cứu lý thuyết, sử dụng phương pháp PTHH. Lập trình tính toán trong môi trường Matlab. 5. Cấu trúc luận án Luận án gồm phần mở đầu, 4 chương, kết luận, danh mục công trình công bố, tài liệu tham khảo và phụ lục. Trong đó có 123 trang thuyết minh, 14 bảng, 93 hình vẽ và đồ thị, 85 tài liệu tham khảo và 18 trang phụ lục. Mở đầu. Trình bày tính cấp thiết của đề tài luận án. Chương 1. Tổng quan về vấn đề nghiên cứu Chƣơng 2. Phân tích động lực học của tấm FGM chịu tải trọng khí động Chương 3. Phân tích động lực học của vỏ trụ thoải FGM chịu tải trọng khí động
  5. 2 Chƣơng 4. Khảo sát ảnh hưởng của một số yếu tố đến đáp ứng động lực học của tấm và vỏ trụ thoải FGM chịu tải trọng khí động. Kết luận và kiến nghị: Trình bày những kết quả mới của luận án và một số kiến nghị của tác giả rút ra từ nội dung nghiên cứu. CHƢƠNG 1 TỔNG QUAN VỀ VẤN ĐỀ NGHIÊN CỨU 1.1. Vật liệu có cơ tính biên thiên và ứng dụng của nó 1.1.1. Vật liệu có cơ tính biến thiên Loại FGM đang được quan tâm nhiều nhất là loại 2 thành phần được tạo thành từ gốm (ceramic) và kim loại (metal), với quy luật biến thiên của cơ tính theo hàm lũy thừa [40]: n  z 1 Vc  z      ,Vm  z   1  Vc  z  , (1.1) h 2 Tính chất hiệu dụng của FGM được xác định theo quy luật: n  z 1 Pe   Pc  Pm      Pm , (1.3) h 2 1.1.2. Ứng dụng của FGM FGM với những đặc tính “thông minh” nên được ứng dụng trong nhiều lĩnh vực quan trọng: hàng không vũ trụ, lò phản ứng hạt nhân, y tế, … 1.2. Tổng quan về lực khí động và nghiên cứu các kết cấu FGM 1.2.1. Lực khí động - Mô hình lực khí động tuyến tính theo hàm Theodorsen [75]. - Mô hình lực khí động tuyến tính Scanlan [25], [65]. - Mô hình lực khí động thực nghiệm phi tuyến [46]. - Lực khí động theo lý thuyết Piston tuyến tính [12], [40]. - Lực khí động theo lý thuyết Piston phi tuyến [12], [44]. - Mô hình lực khí động theo lý thuyết tuyến tính dòng có thế [24]. 1.2.2. Kết cấu FGM và tính toán cơ học 1.2.2.1. Tình hình nghiên cứu trên Thế giới Nghiên cứu về dao động và ổn định của tấm, vỏ FGM trên thế giới có các tác giả: Chen và các cộng sự [21], [27], Woo và các cộng sự [76], …
  6. 3 Nghiên cứu về đáp ứng khí động có các tác giả: Prakash, Ganapathi [50], Lee và Kim [40], Ibrahim và các cộng sự [35], Lee và Kim [39], … 1.2.2.2. Tình hình nghiên cứu trong nước Ở Việt Nam, các nghiên cứu về kết cấu FGM đã bắt đầu được quan tâm, tiêu biểu là các tác giả: Đào Huy Bích và các cộng sự [16], [17], Hoàng Văn Tùng, Nguyễn Đình Đức [71], Đào Văn Dũng, Vũ Hoài Nam [4], … 1.3. Các kết quả đạt đƣợc từ các công trình đã công bố 1 - Khảo sát dao động của các kết cấu FGM chịu tác dụng của các dạng tải trọng khác nhau. 2 - Phân tích ổn định tuyến tính và phi tuyến các kết cấu FGM chịu tải trọng cơ, nhiệt, cơ - nhiệt kết hợp hoặc trên nền đàn hồi. 3- Nghiên cứu dao động và ổn định khí động của tấm FGM chủ yếu dựa trên mô hình panel flutter và mô hình lực khí động theo lý thuyết piston. 1.4. Những vấn đề cần tiếp tục nghiên cứu 1 - Phân tích dao động của tấm và vỏ FGM có gân gia cường chịu tải trọng động và nhiệt độ. 2 - Nghiên cứu ổn định tĩnh của tấm và vỏ FGM có gân gia cường bằng phương pháp giải tích và phương pháp số theo lý thuyết biến dạng cắt bậc nhất và bậc cao. 3 - Phân tích động lực học của tấm và vỏ FGM chịu tác dụng của lực khí động với hướng dòng bất kỳ. 1.5. Những nội dung luận án tập trung nghiên cứu - Xây dựng thuật toán PTHH và chương trình tính để phân tích đáp ứng động lực học của tấm và vỏ trụ thoải FGM chịu tác dụng của lực khí động theo mô hình Scanlan. - Khảo sát ảnh hưởng của các yếu tố: tải trọng, các tham số hình học của kết cấu, đặc trưng vật liệu, điều kiện liên kết … đến đáp ứng động lực học của tấm và vỏ trụ thoải FGM chịu tác dụng của tải trọng khí động. 1.6. Kết luận chƣơng 1 Việc nghiên cứu đáp ứng động lực học của kết cấu FGM đã có nhiều công trình nghiên cứu và đạt được những kết quả nhất định. Tuy nhiên,
  7. 4 nghiên cứu về đáp ứng khí động còn nhiều hạn chế. Do đó, vấn đề “Phân tích động lực học của tấm và vỏ trụ thoải làm bằng vật liệu có cơ tính biến thiên chịu tải trọng khí động” mà luận án đặt ra là có tính kế thừa, phát triển, có ý nghĩa khoa học và thực tiễn. Chƣơng 2. PHÂN TÍCH ĐỘNG LỰC HỌC CỦA TẤM FGM CHỊU TẢI TRỌNG KHÍ ĐỘNG 2.1. Đặt vấn đề Bằng phương pháp PTHH, tác giả xây dựng thuật toán và chương trình tính nhằm phân tích đáp ứng động lực học của tấm FGM, chịu tác dụng của lực khí động theo mô hình Scanlan. 2.2. Đặt bài toán và các giả thiết Xét tấm FGM hai thành phần, có dạng hình chữ nhật chịu tác dụng của dòng khí với vận tốc U, có chiều dọc trục oy, phương song song với mặt phẳng oyz và hợp với mặt phẳng xoy một góc  (Hình 2.1). y z Tấm FGM o x α U Hình 2.1. Mô hình bài toán Các giả thiết: - Vật liệu tấm làm việc trong giới hạn đàn hồi, quan hệ ứng suất - biến dạng là tuyến tính. Tấm tuân theo lý thuyết Reissner - Mindlin. - Cơ tính của vật liệu biến thiên theo chiều dày. Hệ số poisson là hằng số và bằng 0,3. Mặt trung hòa của tấm trùng với mặt trung bình. 2.2.1. Quan hệ biến dạng - chuyển vị     1 N {u }  {Lu }  N   [DLu ]  Dw 2  {u}, (2.7) {c}  [Dc ]{u} . (2.8)
  8. 5 2.2.2. Ứng xử cơ học của tấm FGM chịu kéo (nén) và uốn đồng thời Quan hệ giữa các thành phần ứng suất và biến dạng [55]:  x   Q (z) Q (z) 0 0 0   x     11 12    y  Q21 (z) Q22 (z) 0 0 0   y      xy    0 0 Q66 (z) 0 0    xy  , (2.10)        xz   0 0 0 C 44 (z) 0    xz   yz   0 0 0 0 C55 (z)    yz      Quan hệ giữa các thành phần nội lực và biến dạng:  N   A   B 0   m    M   B  D 0    , (2.26)    0 0 S   c  Q       2.3. Thiết lập phƣơng trình dao động của phần tử tấm FGM chịu tác dụng của lực khí động Xét phần tử tấm đẳng tham số 4 nút chịu nén và uốn đồng thời, mỗi nút có 5 bậc tự do (Hình 2.3). y s w4 v4 w3 v3 z θy4 θy3 1 4 θx4 u4 3 θx3 u3 -1 1 w1 v1 w2 v2 r θy1 θy2 1 u1 x -1 θx1 2 θx2 u2 a) Trong hệ tọa độ tổng thể b) Trong hệ tọa độ tham chiếu Hình 2.3. Phần tử tấm FGM chịu nén và uốn đồng thời Véc tơ chuyển vị nút của phần tử:     T q e  u1 v1 w1 x1 y1 u 4 v4 w 4 x4 y4 . (2.28) Quan hệ giữa véc tơ chuyển vị tại điểm thuộc phần tử với véc tơ chuyển vị nút phần tử: u    Nq , e e (2.37)
  9. 6 2.3.1. Phương trình mô tả dao động của phần tử tấm Áp dụng nguyên lý Hamilton cho phần tử [65]: t1 t1 e  e e e  H    T  U  W dt    T e   e dt  0 ,   (2.40) t0 t0 Trường hợp chưa kể đến lực cản, từ (2.40) dẫn đến hệ phương trình: d  H e   H e    0 .    dt   q e    q  e Động năng của phần tử, được xác định theo biểu thức: 1   u  dV  12 q    T e T Te    ue  M e  q e , e (2.42) 2 Ve trong đó:  M e  - ma trận khối lượng phần tử: 1 1  M    (z)  N  N dV  q    N  N J drds , e T T (2.43) V e 1 1 Thế năng biến dạng đàn hồi của phần tử [6]:    K 1 e q  , T e  e  Ue  q L   K N  e (2.46) 2 trong đó:  K eL  - Ma trận độ cứng tuyến tính của phần tử:   BL  T  D   BL   B T S B  dA e   K eL     e   u     u   c    c   A 1 1 . (2.48)   BL  T  D   BuL    Bc  S Bc   Jdrds   T   u  1 1   K eN  - ma trận độ cứng phi tuyến của phần tử:   [BL ]  D   BN    BN  T  D  [BL ]    u   w  w   u  e  K eN       1 T  dA  A e    Bw   D   Bw   N N  2     . (2.49) [BL ]  D   BN    BN  T  D  [BL ]   1 1  u   w  w   u      J drds 1  N T 1 1   Bw  D   Bw  N   2     
  10. 7 Công gây ra bởi ngoại lực: e    e          F  , T T T T We  qe f be dVe  qe fse dAe  q e fce  q e e a (2.50) V A Phương trình mô tả dao động của phần tử tấm chịu uốn cộng kéo nén đồng thời, chưa kể đến cản:           Me  q e   K eL    K eN  qe  Fe  Fae , (2.54) 2.3.2. Véc tơ lực khí động tác dụng lên phần tử Lực khí động tác dụng lên phần tử tấm phẳng theo mô hình Scanlan [65]:  1 2  w B  l w  a U B  KH1 (K)  KH 2 (K)  K 2H*3 (K) * *  2  U U   , (2.55)  m   U 2B2 KA* (K)  KA* (K) 1 w B     2 a  1 2  K 2A*3 (K)   U U  Với phương dòng khí như mô tả ở hình 2.1, khi đó mô hình toán học lực khí động tác dụng lên phần tử tấm như sau [65]:   * w    KH (K)   U cos  1     1 2  B    1 C  Usin  2  l    U cos   B   KH * (K) x  p a  U cos   2 w a 2 2   2 *     K H3 (K)x  , (2.59)         * w Bx    *  U cos   1 m    U cos   B 2 KA (K) KA (K) U cos  2 1 2   2 a     K 2A*3 (K)x  Theo [13], [65], véc tơ lực khí động được xác định như sau: T  N y  {Fae }    [N w ] l w dA    T e e  mdA , (2.57) x  2020 Ae Ae  Thay (2.59) vào (2.60), sau khi biến đổi, ta được: {Fae }  [K ae ]{q e}  [Cae ]{q e}  {Fan e }, (2.61) trong đó: [K ea ] - ma trận độ cứng khí động của phần tử:
  11. 8  H*3 (k)[N w ]T [N x ]     e [K ea ]  a  Ucos   Bk 2   2  Ny  T  dA . (2.62) S   BA3 (k)  *  [N x ]    x   [Cea ] - ma trận cản khí động của phần tử:   H* (k)  N T  N          e   BH* (k)  N T  N  dA e   1 w w A  2 w x     Cea   a  Ucos  Bk   T  Ny   ,   1  x   w    * BA (k) N  (2.63)     Ae   Ny  T  e    B A 2 (k)    N x  dA   2 *    x    1  [N w ] Cpa  Usin   dA . 2 e {Fan }  T e (2.64) 2 Ae Phương trình dao động của phần tử tấm chịu tác dụng của lực khí động và ngoại lực khác, chưa kể đến cản:  M e  q e     K eL    K eN    K ae  q e   Fe   {Fan e }. (2.68)         Trường hợp kể đến cản, phương trình (2.68) trở thành:                        M e  q e   Cekc    Cea  q e   K eL    K eN    K ea  q e  Fe  {Fan e } (2.69) Trường hợp tấm chỉ chịu tác dụng của lực khí động:                      M e  q e   Cekc    Cea  q e   K eL    K eN    K ea  q e  {Fan e }. (2.72) 2.4. Xây dựng ma trận và véc tơ tổng thể của hệ Từ các ma trận và véc tơ phần tử đã xác định được chuyển về hệ tọa độ tổng thể của kết cấu, sau đó được ghép nối theo thuật toán chung của phương pháp PTHH bằng phương pháp độ cứng trực tiếp và ma trận chỉ số với sơ đồ Skyline [7], [13] sẽ nhận được các ma trận và véc tơ tổng thể của kết cấu. Phương trình dao động của tấm chịu tác dụng của lực khí động và các ngoại lực khác:  M q   Ckc    Ca q   K L    K N    K a q  F*  Fan  . (2.75)
  12. 9 2.5. Phƣơng trình vi phân mô tả dao động của hệ Phương trình vi phân mô tả dao động của tấm chịu tải trọng khí động xuất phát từ (2.72) như sau:  Mq  Ckc   Ca q  K L   K N    Ka q  Fan  . (2.76) Do  K  K q , từ (2.70) suy ra C  C q . Do đó, phương trình dao động của tấm là phương trình phi tuyến và được viết gọn lại: Mq  C q q  K q q  F . (2.78) 2.6. Thuật toán PTHH giải phƣơng trình vi phân dao động của hệ Để giải hệ phương trình (2.78), tác giả sử dụng phương pháp tích phân trực tiếp Newmark kết hợp với phương pháp lặp Newton-Raphson. Bắt đầu Nhập số liệu đầu vào Tính toán ban đầu:  M ,  K L , ... Bước tích phân thứ j: t j  t j1  t Điều kiện đầu: q t t (0)  q t , Ft t (0)  Ft ,  K t t (0)   K t  Bước lặp thứ i, tính:  M, Ckc , Ca , K N , K a , F Tích phân Newmark F  (i 1)  Qt t (i) Lặp Newton - Raphson Tính: , t t K   (i 1) Tính: t t Tính: (i) q , q t t (i) ,q t t (i) ,q t t (i) , q s q   D đ s j n đ Xuất kết quả: chuyển vị, ứng suất, ... Kết thúc Hình 2.4. Sơ đồ thuật toán giải bài toán
  13. 10 2.7. Phân tích ổn định của tấm FGM chịu tác dụng của lực khí động 2.7.1. Tiêu chuẩn ổn định động của Budiansky - Roth Nội dung của tiêu chuẩn được phát biểu: Trong một điều kiện nào đó, biên độ chuyển vị của hệ tăng theo thời gian và có bước nhảy đột ngột, hệ thực hiện dao động quanh vị trí cân bằng mới khác xa với vị trí cân bằng ban đầu thì kết cấu được xem là mất ổn định, tải trọng tương ứng để xảy ra hiện tượng này được gọi là lực tới hạn (Hình 2.5). Thời điểm lân cận quanh vị trí xuất hiện bước nhảy đột ngột của chuyển vị lớn nhất trong biểu đồ đáp ứng động theo thời gian được gọi là thời điểm kết cấu mất ổn định. Hoặc dưới tác dụng của tải trọng, chuyển vị của kết cấu tăng không ngừng theo thời gian, kết cấu sẽ mất ổn định. Hình 2.5. Biểu đồ dấu hiệu mất ổn định động theo Budiansky - Roth 2.7.2. Phân tích ổn định động của tấm FGM chịu tải trọng khí động Giải phương trình (2.78) ta có được đồ thị chuyển vị theo thời gian của tấm. Dựa vào hình dạng và tính chất đồ thị chuyển vị, sử dụng tiêu chuẩn ổn định Budiansky - Roth ta có thể kết luận về khả năng ổn định của tấm theo các dấu hiệu như sau: w w w o t o t o t a) b) c) Hình 2.6. Các dạng đáp ứng dao động theo thời gian - Nếu biên độ dao động tắt dần (Hình 2.6a): Tấm ổn định. - Nếu biên độ dao động tăng dần (Hình 2.6b) hoặc có sự đột biến:
  14. 11 Tấm mất ổn định. - Nếu biên độ dao động không đổi theo thời gian (Hình 2.6c): Tấm ở trạng thái tới hạn. 2.8. Giới thiệu và kiểm tra độ tin cậy của chƣơng trình tính 2.8.1. Giới thiệu chương trình tính Chương trình tính AVS_FGM_PLATE_2015 có khả năng phân tích phi tuyến động lực học tấm FGM chịu tác dụng của tải trọng khí động, với phương dòng khí bất kỳ. 2.8.2. Kiểm tra độ tin cậy của chương trình Để kiểm tra độ tin cậy của chương trình tính, tác giả tiến hành giải bài toán dao động cưỡng bức của tấm trong công trình công bố của tác giả Byoung-Wan Kim, Woon-Hak Kim và In-Won Lee [20]. Bảng 2.1. Bảng so sánh mô men uốn lớn nhất tại các mặt cắt ngang tấm Góc Luận án Byoung Wan y Sai số  (AVS_FGM_PLATE_2015) Kim,… [20] [m] [N.m] [N.m] (%) 0 7,81 7,67 1,81 1 7,73 7,62 1,40 2 7,72 7,58 1,89 0 15 3 7,66 7,54 1,59 4 7,68 7,52 2,08 5 7,60 7,50 1,31 6 7,56 7,47 1,22 0 15,18 14,79 2,59 1 15,07 14,70 2,51 2 14,91 14,63 1,92 0 30 3 14,92 14,58 2,31 4 14,93 14,54 2,68 5 14,93 14,51 2,89 6 14,82 14,47 2,36 0 19,86 19,45 2,14 1 19,88 19,34 2,79 450 2 19,70 19,26 2,28 3 19,62 19,20 2,18
  15. 12 4 19,65 19,15 2,58 5 19,53 19,13 2,14 6 19,52 19,08 2,29 Bảng so sánh cho thấy sai số lớn nhất của mô men uốn lớn nhất, với các góc tấn khác nhau của phương vận tốc gió giữa 2 phương pháp là nhỏ hơn 3%. Vậy chương trình tính AVS_FGM_PLATE_2015 mà tác giả đã lập là đủ tin cậy. 2.9. Kết luận chƣơng 2 - Xây dựng thuật toán PTHH và chương trình tính trong môi trường Matlab giải bài toán phân tích động lực học tấm FGM chịu tác dụng của tải trọng khí động gây ra bởi dòng khí có phương bất kỳ. - Kiểm tra độ tin cậy của chương trình tính bằng việc giải bài toán với các dữ liệu và điều kiện như trong công trình công bố của tác giả nước ngoài. Kết quả cho thấy chương trình đảm bảo độ tin cậy. Chƣơng 3. PHÂN TÍCH ĐỘNG LỰC HỌC CỦA VỎ TRỤ THOẢI FGM CHỊU TẢI TRỌNG KHÍ ĐỘNG 3.1. Đặt vấn đề Trong chương này, xây dựng thuật toán PTHH phân tích động lực học vỏ trụ thoải FGM chịu tác dụng của tải trọng khí động theo mô hình Scanlan. 3.2. Đặt bài toán Vỏ trụ thoải FGM chịu tác dụng của lực khí động gây ra bởi dòng khí có vận tốc không đổi U, theo chiều dọc trục OY, hợp với mặt phẳng XOY một góc  (Hình 3.1). z y O L x a f0 α R U θ/2 θ/2 Hình 3.1. Mô hình vỏ trụ thoải FGM chịu tải trọng khí động
  16. 13 Vỏ trụ thoải được rời rạc hoá bởi các phần tử phẳng 4 nút trong đó mỗi phần tử được xem là tổ hợp của: phần tử biến dạng phẳng 4 nút, mỗi nút có 2 bậc tự do (ui, vi) và phần tử vỏ phẳng 4 nút chịu uốn - xoắn kết hợp, mỗi nút có 4 bậc tự do (wi, xi, yi, zi), (Hình 3.3) [26], [37], [85]. y y w4 w3 v4 v3 θz4 θz3 z θy4 θy3 4 4 u4 3 u3 θx4 3 θx3 v1 w1 w2 θ v2 θz1 z2 θy1 θy2 1 u1 u2 x 1 x 2 θx1 2 θx2 a) Phần tử phẳng chịu kéo (nén) b) Phần tử chịu uốn-xoắn kết hợp Hình 3.3. Mô hình phần tử vỏ chịu kéo (nén) và chịu uốn-xoắn 3.3. Phƣơng trình vi phân dao động phi tuyến của vỏ trụ thoải FGM 3.3.1. Phương trình vi phân mô tả dao động của phần tử vỏ trụ thoải trong hệ tọa độ cục bộ Véc tơ chuyển vị nút của phần tử vỏ phẳng có kể đến bậc tự do xoắn: q   u  T e v 1 v1 w1 x1 y1 u 4 v4 w 4 x4 y4 z1 z2 z3 z4 . (3.1) 241 Phương trình vi phân mô tả dao động của phần tử vỏ phẳng được viết xuất phát từ (2.69):           M ev  q ev  Cekcv  Ceav  q ev   K ekcv  K av e  e e e  q v  {Fv }  {Fanv } ,   (3.2) trong đó: Ma trận khối lượng của phần tử vỏ:  Me    0   M ev    2020 20 4     . (3.3)   0 0   420 44  Ma trận độ cứng kết cấu và ma trận độ cứng khí động của phần tử vỏ:    K eL    K eN         0     K ea  0  204    K ekcv    2020  ,  K e    2020 20 4  . (3.4)  K erz       av   0   0 0       420 44    420 44  Ma trận cản kết cấu và ma trận cản khí động của phần tử vỏ:
  17. 14  Cekc    0   Cea    0  Ckcv    e  204  Cav    2020 e 20 4     20 20 ,    . (3.5)   0 0    0 0   420 44   420 44  Véc tơ chuyển vị nút của phần tử vỏ:      q e  q ev  . (3.6) z  Véc tơ ngoại lực (không kể lực khí động) và véc tơ lực khí động tác dụng lên phần tử vỏ: {Fe } {Fan e  }     e    {Fve }   201  , {Fanv }   201  , (3.7)  {0}   {0}   41   41  z  z1 z2 z3 z4  - véc tơ các bậc tự do xoắn của phần tử. T 3.3.2. Phương trình vi phân mô tả dao động của phần tử vỏ trụ thoải trong hệ tọa độ tổng thể Phương trình dao động của phần tử vỏ FGM trong hệ tọa độ tổng thể:              M e  q e  Cekc   Cae  q e   K ekc    K ea  q e  Fe  Fanv     e .       (3.16) Trường hợp chỉ có tác dụng của lực khí động:               M e  q e  Cekc   Cea  q e   K ekc    K ea  q e  Fanv    e .     (3.17) 3.3.3. Xây dựng ma trận và véc tơ tổng thể của vỏ trụ thoải FGM 3.3.3.1. Ma trận tổng thể: Ma trận tổng thể được tập hợp từ các ma trận phần tử theo sơ đồ: i j  k11 k12 : :  k : :  i j  21   k ii k ij  i e e  .. .. k ii  k iie k ij  k ije .. ..  i     . (3.18)  k eji k ejj  j  .. .. k ji  k eji k jj  k ejj .. ..  j     e K  : :     : : k nn  K
  18. 15 3.3.3.2. Véc tơ tải trọng tổng thể: Véc tơ tải trọng tổng thể của kết cấu được xác định theo sơ đồ: f1    f 2  ...  fie     e  fi  fie  . (3.21) f j    f j  f j  e fe    ...  i=dofi f n  j=dof j f 3.3.4. Phương trình dao động phi tuyến của vỏ trụ thoải FGM Phương trình vi phân mô tả dao động của vỏ trụ thoải FGM:  M q  Ckc   Ca q    K kc    K a  q  F  Fanv  , (3.22) Dạng viết gọn của phương trình (3.22): Mq  Cq  K q  F  Fanv . (3.26) Do K kc  phụ thuộc vào chuyển vị nút  q , nên từ (3.24) suy ra Ckc  cũng phụ thuộc q . Theo đó, phương trình (3.26) được viết lại: Mq  C qq  K qq  F  Fanv . (3.28) Trường hợp chỉ có tải trọng khí động tác dụng, phương trình dao động của vỏ có dạng: Mq  C qq  K qq  Fanv . (3.29) Để thuận tiện khi lựa chọn giải bài toán tuyến tính hay phi tuyến, phương trình (3.28) được biểu diễn như sau:  M q  CL   C N q    K L   K N  q  F  Fanv  , (3.30) trong đó: CL , CN , K L  , K N  tương ứng là ma trận cản tổng thể tuyến tính, phi tuyến và ma trận độ cứng tổng thể tuyến tính, phi tuyến. 3.4. Thuật toán PTHH giải phƣơng trình dao động của vỏ trụ thoải FGM 3.4.1. Bài toán dao động tuyến tính Phương trình mô tả dao động tuyến tính của vỏ có dạng:
  19. 16 Mq  CL q  KL q  F  Fanv . (3.31) Phương trình (3.31) là phương trình vi phân tuyến tính, nên được giải bằng phương pháp tích phân trực tiếp Newmark. 3.4.2. Bài toán dao động phi tuyến Phương trình dao động phi tuyến của vỏ có dạng (3.30) được giải bằng phương pháp tích phân trực tiếp Newmark kết hợp với lặp Newton-Raphson. 3.5. Phân tích động lực học của vỏ trụ thoải FGM chịu tải trọng khí động Sử dụng thuật toán đã trình bày ở mục 3.4, giải phương trình (3.30). Trên cơ sở kết quả đáp ứng chuyển vị theo thời gian, sử dụng tiêu chuẩn Budiansky - Roth để xem xét và nhận định khả năng ổn định của vỏ. 3.6. Giới thiệu và kiểm tra độ tin cậy của chƣơng trình 3.6.1. Giới thiệu chương trình Chương trình tính AVS_FGM_SHELL_2015 có khả năng phân tích phi tuyến động lực học vỏ trụ thoải FGM dưới tác dụng của tải trọng khí động gây ra bởi dòng khí có phương bất kỳ. 3.6.2. Kiểm tra độ tin cậy của chương trình Để kiểm tra độ tin cậy của chương trình tính, tác giả tiến hành giải bài toán của tác giả Ibrahim H. H. và Yoo H. H. [33]. Kết quả so sánh đáp ứng chuyển vị không thứ nguyên trung bình (biên độ dao động bình ổn) lớn nhất của vỏ cho hai phương pháp thể hiện như trong bảng 3.2. Bảng 3.2. Kết quả so sánh kiểm tra độ tin cậy chương trình tính Phƣơng pháp Sai Đại lƣợng Ibrahim và Yoo số AVS_FGM_SHELL_2015 [33] (%) Wmax 2,368 2,438 2,96 h Sai số trong 2 trường hợp là 2,96%, điều này khẳng định chương trình tính AVS_FGM_SHELL_2015 do tác giả lập có đủ độ tin cậy. 3.7. Kết luận chƣơng 3 - Xây dựng hệ phương trình mô tả dao động phi tuyến của vỏ trụ thoải FGM dưới tác dụng của tải trọng khí động, trong đó có xét đến
  20. 17 tính chất cản của kết cấu và cản khí động. - Xây dựng thuật toán PTHH và chương trình phân tích phi tuyến động lực học của vỏ trụ thoải FGM chịu tác dụng của tải trọng khí động. - Chương trình tính AVS_FGM_SHELL_2015 do tác giả lập đã được kiểm chứng và có cơ sở tin cậy. Chƣơng 4. KHẢO SÁT MỘT SỐ YẾU TỐ ẢNH HƢỞNG ĐẾN ĐÁP ỨNG ĐỘNG LỰC HỌC CỦA TẤM VÀ VỎ TRỤ THOẢI FGM CHỊU TẢI TRỌNG KHÍ ĐỘNG 4.1. Đặt vấn đề Sử dụng chương trình tính đã lập ở chương 2 và chương 3, thực hiện khảo sát số xác định đáp ứng động lực học của tấm, vỏ trụ thoải FGM chịu tải trọng khí động. 4.2. Ảnh hƣởng của một số yếu tố đến đáp ứng động lực học của tấm FGM chịu tải trọng khí động 4.2.1. Bài toán khảo sát Tấm FGM hai thành phần: nhôm ô xít và nhôm. Các thuộc tính của vật liệu thành phần tương ứng: Ec=7×1010 N/m2, Em=38×1010 N/m2; νc = νm=0,3; n=3. Kích thước hình học của tấm: a=0,38m, b=0,305m, h=0,005m, ngàm cứng một cạnh ngắn. Vận tốc gió không đổi U=15m/s, tác dụng theo phương oy và hợp với mặt phẳng xoy góc α=300 (Hình 4.1). y a = 0,38m z 5m Tấm FGM , 30 b =0 O x o 30 U Hình 4.1. Mô hình bài toán xuất phát Bài toán dao động riêng: Giải bài toán dao động riêng, nhận được các tần số riêng, trong đó bốn tần số riêng đầu tiên có giá trị: ω1 = 244 rad/s; ω2=706 rad/s; ω3 = 1512 rad/s; ω4 = 2453 rad/s. Bài toán tấm FGM chịu tác dụng của tải trọng khí động: Giải bài toán
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2