Xử lý ảnh số - Chương 4
lượt xem 88
download
Tham khảo tài liệu 'xử lý ảnh số - chương 4', văn hoá - nghệ thuật, điêu khắc - hội họa phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Xử lý ảnh số - Chương 4
- Xử lý ảnh số Ts.NGÔ VĂN SỸ ĐẠI HỌC BÁCH KHOA ĐẠI HỌC ĐÀ NẴNG
- Chương 4 Phân tích ảnh Các bài toán phân tích ảnh Cấu trúc Trích thuộc tính Các thuộc tính hình dạng Sườn và đường viền Hoa văn Tách sườn Trích đường viền Đối sánh quang cảnh và phát hiện Biểu diễn đường viền Phân đoạn ảnh Biểu diễn miền Các kỹ thuật phân lớp Biểu diễn moment Hiểu ảnh
- Các bài toán phân tích ảnh Viễn thám (Remote sensing) Khoa học hình sự (Forensic) Ảnh ytế (Tomographs) Nhận dạng chữ viết và chữ ký (Character recognitions) Phát hiện vật thể chuyển động (Moving detection) Nhận dạng mặt người (Human identification) Người máy (Robotics)
- Trình tự phân tích ảnh Trích Ngân hàng Thu Tiền xử lý thuộc tính dữ liệu nhận Đối tượng Lưu trữ Phân đoạn Phân lớp Đối sánh Tách Quyết thông tin Mã hoá định Hệ thống đọc ảnh Hệ thống hiểu ảnh
- Các thuộc tính ảnh Thuộc tính độ lớn Phản xạ Đâm xuyên Thuộc tính hình học Hình dáng Đường nét Thuộc tính không gian Chi tiết Nền Thuộc tính biến đổi Phổ tần không gian cao Phổ tần không gian thấp Thuộc tính màu sắc Biểu diễn trong các hệ toạ độ màu khác nhau Thuộc tính thống kê Các hàm moment, moment tuyệt đối, moment trung tâm
- Các hàm moment L −1 Hàm moment bậc k mk = ∑ xik Pu ( xi ) xi = 0 m1: giá trị trung bình m2: trung bình bình phương ^ L −1 m k = ∑ ( xi − m1 ) k Pu ( xi ) Hàm moment trung tâm bậc k xi = 0 ^ m 2 : phương sai ^ m 3 : độ nghiêng L −1 µk = k ∑ xi Pu ( xi ) Hàm moment tuyệt đối bậc k xi = 0 µ1: độ lớn µ2: độ méo ^ L −1 µ mk = ∑ xi − m1 Pu ( xi ) k Hàm moment trung tâm tuyệt đối bậc xi = 0 k
- Thuộc tính hình học Điểm: toạ độ Đoạn thẳng: toạ độ điểm đầu và cuối Độ dốc Độ cong Điểm uốn Khẩu độ Giao điểm Tiếp tuyến Đa giác đều
- Thuộc tính sườn và đương viền (edge and contour) Sườn là tập hợp những điểm có giá trị đột biến khi quét theo một hướng (ngang, đứng, chéo) nào đó Thường nằm ở vị trí ranh giới giữa đối tượng và nền, hoặc ở các chi tiết. Các điểm sườn liên kết lại thành đường viền, đặc trưng cho hình dạng vật thể Một đường viền phải thoả mãn tính liên thông (connectivity) theo lưới lấy mẫu (chữ nhật, lục giác) và hai miền được phân cách bởi nó phải không liên thông (nonconnectivity) với nhau
- Nguyên lý tách sườn (edge detection) Hàm ảnh 1D theo f ( x) hướng ngang ∂f ( x) Toán tử gradien ∂x ∂ 2 f ( x) Toán tử Laplacian ∂x 2 ∂f ( x, y ) ∂f ( x, y ) + Toán tử gradien mở rộng theo hai hướng ∂x ∂y Toán tử Laplacian mở rộng theo hai hướng ∂ 2 f ( x, y ) ∂ 2 f ( x , y ) + ∂x 2 ∂y 2
- Các toán tử tách sườn Phương pháp gradien g1(m,n) g(m,n) g(m,n) H1 g12 + g 2 2 Cắt ngưỡng u(m,n) g2(m,n) g2 ϕ0 + arctg( ) Ө(m,n) H2 g1
- Các toán tử tách sườn Các mặt nạ Sobel, Prewitt, Kirsh ⎡1 1 1⎤ ⎡1 0 − 1⎤ H1 = ⎢ 0 0 0 ⎥ ⎢ ⎥ H 2 = ⎢1 0 − 1⎥ ⎢ ⎥ ⎢− 1 − 1 − 1⎥ ⎣ ⎦ ⎢1 0 − 1⎥ ⎣ ⎦ ⎡1 2 1⎤ ⎡1 0 −1 ⎤ ⎢ ⎥ H1 = ⎢ 0 0 0⎥ H2 = ⎢ 2 ⎢ 0 − 2⎥⎥ ⎢− 1 − 2 − 1⎥ ⎢1 0 −1 ⎥ ⎣ ⎦ ⎣ ⎦ ⎡1 0 ⎤ ⎡ 0 1⎤ H1 = ⎢ ⎥ H2 = ⎢ ⎥ ⎣0 − 1⎦ ⎣ − 1 0⎦ Hình
- Thí dụ: g1(m,n) 2 3 3 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -3 -3 -3 -3 -1 1 3 3 3 3 2 -2 -3 -3 -3 -3 -1 1 3 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -2 -3 -3 -3 -3 -2
- Các toán tử tách sườn Phương pháp Laplacian g(m,n) g(m,n) u(m,n) H Cắt ngưỡng -1/4 -1/4 -1/4 1 -1/4 1 -1/4 -1/4 -1/4 -1/4
- Các toán tử tách sườn Toán tử Compass gi(m,n) g(m,n) g(m,n) u(m,n) Hi max{g i } Cắt ngưỡng i - 0-7 g i max ϕ 0 + arctg ( ) g0 Ө(m,n)
- Các mặt nạ compass 5 5 5 5 5 -3 5 -3 -3 -3 -3 -3 -3 0 -3 5 0 -3 5 0 -3 5 0 -3 -3 -3 -3 -3 -3 -3 5 -3 -3 5 5 -3 H0 H1 H2 H3 -3 -3 -3 -3 -3 -3 -3 -3 5 -3 5 5 -3 0 -3 -3 0 5 -3 0 5 -3 0 5 5 5 5 -3 5 5 -3 -3 5 -3 -3 -3 H4 H5 H6 H7
- Các mặt nạ compass H0 H1 H2 H3 H4 H5 H6 H7
- Trích đường viền Tính liên thông Liên thông 4 Liên thông 8 Liên thông 6 (lưới lục giác) P4 P3 P2 P2 P5 P0 P1 P3 P0 P1 P6 P7 P8 P4 Liên thông-8 Liên thông-4 Liên thông-6
- Nghịch lý liên thông Nghịch lý liên thông Đường viền thoả mãn tính liên thông 8 thì hai miền cũng thoả mãn tính liên thông 8 Vì vậy phải chọn tính liên thông 4 cho miền trong và ngoài đường viền.
- Thuật toán dò biên Bước 1: Xuất phát từ một điểm bất kỳ trên biên, bước sang trái, nếu điểm bên trái thuộc miền đối tượng thì chuyển sang bước 3, nếu không chuyển sang bước 2 Bước 2: Trở lại điểm trước đó và bước sang phải. Bước 3: Xác định lại toạ độ điểm biên và thực hiện lại bước 1 và 2 cho đến khi gặp lại điểm xuất phát.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Phương pháp Xử lý ảnh
17 p | 436 | 169
-
24 giờ tìm hiểu Strobist và ánh sáng tự nhiên
16 p | 190 | 38
-
Lịch sử điện ảnh Hồng Kông
10 p | 234 | 22
-
Xử lý ảnh số - Khôi phục ảnh part 4
5 p | 110 | 19
-
Một trong những cách làm tăng nét trong Photoshop
4 p | 140 | 15
-
Xử lý ảnh số - Phân đoạn ảnh part 4
5 p | 77 | 13
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn