intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

27 đề thi thử kì thi quốc gia THPT môn: Toán - Năm 2015

Chia sẻ: Thường Nguyện | Ngày: | Loại File: PDF | Số trang:27

38
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

27 đề thi thử kì thi quốc gia THPT môn "Toán - Năm 2015" giúp cho các em học sinh củng cố kiến thức về môn Toán. Đặc biệt, thông qua việc giải những bài tập trong đề thi này sẽ giúp các em biết được những kiến thức mình còn yếu để có sự đầu tư phù hợp nhằm nâng cao kiến thức về khía cạnh đó.

Chủ đề:
Lưu

Nội dung Text: 27 đề thi thử kì thi quốc gia THPT môn: Toán - Năm 2015

  1. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 01 Thời gian làm bài: 180 phút 2x  1 Câu 1 (2,0 điểm). Cho hàm số y  (1) . x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Gọi M là điểm nằm trên đồ thị (C ) và H , K tương ứng là hình chiếu vuông góc của M trên các trục Ox và Oy . Tìm tọa độ điểm M sao cho tứ giác MHOK có diện tích bằng 2 .   1 Câu 2 (1,0 điểm). Giải phương trình 4 cos x    2  .  3  cos x 1 1x Câu 3 (1,0 điểm). Tính tích phân I   x 3 dx . 0 Câu 4 (1,0 điểm). 3  4i a) Tìm số phức z thỏa mãn điều kiện 2z   1  6i . z b) Một lớp học có 40 học sinh gồm 22 học sinh nam và 18 học sinh nữ. Cần chọn ra một nhóm có 5 học sinh gồm 1 nhóm trưởng và 4 thành viên. Tính xác suất để nhóm trưởng là nam và nhóm phải có cả nam lẫn nữ. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1; 0;2) , B(1;1; 0) và mặt phẳng (P ) : x  2y  z  3  0 . Tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P ) . Viết phương trình mặt phẳng đi qua A, B và vuông góc với mặt phẳng (P ) . Câu 6 (1,0 điểm). Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh bằng a . Gọi M là trung điểm của cạnh AB , hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC ) trùng với trọng tâm của tam giác 2a MBC , cạnh bên SC  . Tính theo a thể tích khối chóp S .ABC và khoảng cách từ điểm C đến mặt 3 phẳng (SAB ) . Câu 7 (1,0 điểm). Trong mặt phẳng tọa độ Oxy , cho hình chữ nhật ABCD , đường thẳng AB , AC lần lượt có phương trình là x  y  5  0 và x  3y  7  0 . Trọng tâm G của tam giác ACD nằm trên đường thẳng d : 2x  y  6  0 . Tìm tọa độ các đỉnh của hình chữ nhật ABCD .  1 1 2     Câu 8 (1,0 điểm). Giải hệ phương trình  x  2 y 1 x y (x , y  )  2 2 x  y  4xy  4x  2y  5  0 Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn x  y  4z  4 . Tìm giá trị nhỏ nhất của z x y z biểu thức P  2z    2 y z . x y 2 4 2 toanhoc24h.blogspot.com
  2. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 02 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 4  mx 2  1 (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  2 . b) Tìm giá trị của m để đường thẳng d : y  2x  1 cắt đồ thị của hàm số (1) tại bốn điểm phân biệt. cos x  sin x  cos 2x Câu 2 (1,0 điểm). Giải phương trình  sin x . 1  tan x 2 x  ln x Câu 3 (1,0 điểm). Tính tích phân I   (x  1) dx . 3 1 Câu 4 (1,0 điểm).     a) Giải phương trình log22 2x  1  3 log2 2  21x  5  3x . b) Gọi S là tập hợp các số tự nhiên gồm bốn chữ số phân biệt được chọn từ các chữ số 0;1;2; 3; 4;5 . Xác định số phần tử của S . Chọn ngẫu nhiên một số từ S , tính xác suất để số được chọn lớn hơn 2014 . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho điểm A(2;1; 4) và mặt phẳng (P ) : 2x  y  z  3  0 . Tìm tọa độ hình chiếu vuông góc của điểm A trên mặt phẳng (P ) . Viết phương trình mặt cầu có bán kính nhỏ nhất đi qua A và tiếp xúc với mặt phẳng (P ) . Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, BC  a . Cạnh bên SA vuông góc với mặt phẳng đáy, đường thẳng SC tạo với các mặt phẳng (SAB ) và (ABCD ) các góc đều bằng 300. Gọi M là trung điểm của cạnh CD . Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng SC và BM . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có tâm I (2;3) . Hình 7 6 chiếu vuông góc của đỉnh A trên đường thẳng BD là điểm H  ;  . Biết điểm C nằm trên đường thẳng  5 5  d : 2x  y  6  0 . Xác định tọa độ các đỉnh của hình chữ nhật ABCD . (x  2y  1) 2y  1  (x  2y ) x  1  Câu 8 (1,0 điểm). Giải hệ phương trình  (x, y  ) . 2xy  5y  (x  1)(2y  1)  Câu 9 (1,0 điểm). Cho x , y, z là các số thực không âm thỏa mãn x  3y  2z  3 . Tìm giá trị lớn nhất của x 2  9y 2 biểu thức P  2   3z  z 2 . xy  1 toanhoc24h.blogspot.com
  3. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 03 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  3mx 2  3(m 2  1)x  1 (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để đồ thị của hàm số (1) có hai điểm cực trị A, B phân biệt sao cho tam giác MAB vuông tại M , với M (0;1) . Câu 2 (1,0 điểm). Giải phương trình sin x 2 cos 4x  2 cos 2x  1  3 cos 5x .  4  (x  sin x )cos 2 Câu 3 (1,0 điểm). Tính tích phân I  x dx . 0 Câu 4 (1,0 điểm). a) Tìm tập hợp các điểm M trên mặt phẳng phức biểu diễn số phức w  (1  i )z  2 , biết 1  iz  z  2i . b) Cho đa giác lồi n cạnh ( n  , n  6 ). Số tam giác tạo bởi các đường chéo của đa giác lồi n cạnh đó bằng 30 . Tìm n . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(2; 0; 1), B(0;2; 3) và đường thẳng x y 1 z 1 d:   . Tìm tọa độ hình chiếu vuông góc của điểm A trên đường thẳng d . Viết phương 1 2 1 trình mặt phẳng (P ) chứa d và cách đều hai điểm A và B . Câu 6 (1,0 điểm). Cho hình chóp S .ABC có đáy ABC là tam giác vuông tại A , AB  a . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với mặt phẳng (SAC ) góc 300 . Tính theo a thể tích khối chóp S .ABC và khoảng cách từ điểm A đến mặt phẳng (SBC ) . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có điểm B(2;0) , đường thẳng đi qua đỉnh B và vuông góc với đường chéo AC có phương trình 7x  y  14  0 , đường thẳng đi qua đỉnh A và trung điểm của cạnh BC có phương trình x  2y  7  0 . Tìm tọa độ điểm D của hình chữ nhật ABCD , biết điểm A có hoành độ âm. 4xy  x  4 (2  x )(y  2)  14  Câu 8 (1,0 điểm). Giải hệ phương trình  2 (x, y  ) . x  y 2  2x  1  0  Câu 9 (1,0 điểm). Cho a, b, c là các số thực dương thỏa mãn a 2  bc  b 2  c 2 . Tìm giá trị lớn nhất của b c 3a 3 biểu thức P    . a 2  c 2 a 2  b 2 (b  c )6 toanhoc24h.blogspot.com
  4. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 04 Thời gian làm bài: 180 phút x 1 Câu 1 (2,0 điểm). Cho hàm số y  (1) x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Tìm giá trị của m để đường thẳng d : y  mx  m  1 cắt đồ thị (C ) tại hai điểm phân biệt A, B sao cho CD  EF nhỏ nhất, với C , D là chân đường vuông góc của A, B trên trục hoành và E , F là giao điểm của các tiếp tuyến tại A, B của đồ thị (C ) với trục tung. Câu 2 (1,0 điểm). Giải phương trình sin2 2x  3 cos 2x sin x  3  4 sin 2 x . Câu 3 (1,0 điểm). Tính diện tích hình phẳng giới hạn bởi đường cong y  (x  1) x  1 và đường thẳng y  x 1. Câu 4 (1,0 điểm). a) Giải phương trình log 3 (x  1)  2 log 1 (x  1).log 3 x  log2 (x 2  2x  1) . 4 n  2  b) Tìm số hạng chứa x trong khai triển nhị thức Niu-tơn của  x  5  , x  0 . Biết n là số nguyên  3 x  1 1 16 dương thỏa mãn điều kiện 2  3  4. Cn C n Cn Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1; 2; 3) , B(3; 0; 1) và mặt phẳng (P ) : x  y  z  1  0 . Viết phương trình mặt phẳng (Q ) sao cho A, B đối xứng với nhau qua (Q ) . Tìm tọa độ điểm M nằm trên (P ) sao cho MA  MB  3 . Câu 6 (1,0 điểm). Cho lăng trụ ABC .A ' B ' C ' có đáy ABC là tam giác vuông tại A , AB  a , BC  2a . Hình chiếu vuông góc của điểm A ' trên mặt phẳng (ABC ) trùng với trung điểm của cạnh AC . Góc giữa mặt phẳng (BCC ' B ') và mặt phẳng (ABC ) bằng 600 . Tính theo a thể tích khối lăng trụ ABC .A ' B 'C ' và khoảng cách giữa hai đường thẳng AA ' và BC . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình bình hành ABCD có AD  2AB . Biết  A(4; 2) , đường phân giác góc ABC có phương trình d : 2x  y  0 và đường thẳng CD đi qua điểm K (3; 6) . Tìm tọa độ các điểm B,C , D .  xy  x  2  x  y  2  Câu 8 (1,0 điểm). Giải hệ phương trình  (x, y  ) . xy  2x  y  2  2 x  2  Câu 9 (1,0 điểm). Cho x , y là các số thực dương thỏa mãn 3x  y  7 . Tìm giá trị nhỏ nhất của biểu thức 1 2x  3 xy 2 P  x2    . y2 y xy  1 toanhoc24h.blogspot.com
  5. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 05 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  (2  m )x 2  4m (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để đồ thị hàm số (1) cắt trục hoành tại ba điểm phân biệt A(2; 0), B,C sao cho AB 2  AC 2  12 . 2  x x  Câu 2 (1,0 điểm). Giải phương trình sin 3x  sin  cos   cos 4x   .   2 2  Câu 3 (1,0 điểm). Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường 1 x2 y , y  0 xung quanh trục hoành. x 2 Câu 4 (1,0 điểm). (1  5i )z a) Cho số phức z thỏa mãn điều kiện  z  10  4i . Tìm môđun của số phức w  1  iz  z 2 . 1i b) Gọi M là tập hợp các số tự nhiên có ba chữ số đôi một khác nhau được chọn từ các chữ số 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên một số từ tập M . Tính xác suất để số được chọn là số có tổng các chữ số là một số lẻ. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hình thoi ABCD có tâm I (1; 3;2) . Hai điểm x 1 y z 2 A , B thuộc đường thẳng d :   và điểm C thuộc mặt phẳng (P ) : x  2y  z  15  0. 2 1 1 Viết phương trình đường thẳng BD . Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, BC  a . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Cạnh bên SC tạo với mặt phẳng đáy góc 300. Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng SA và BD . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho đường tròn (C ) : (x  1)2  (y  1)2  20 và đường thẳng d : 3x  4y  8  0 . Viết phương trình đường tròn (T ) có tâm nằm trên d và cắt (C ) tại hai 10 điểm A, B sao cho AB  2 10 , biết đường thẳng AB tạo với d một góc  với cos   . 10  2 x  xy  2y  1  x  1 y  0 Câu 8 (1,0 điểm). Giải hệ phương trình  3 (x , y  ) . x  5x 2  7y  6  3y  2  Câu 9 (1,0 điểm). Cho a, b, c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức a2 ab 2 16c 4 P   . (a  b)2 (b 2  ac)(c  a ) (c  a )4 toanhoc24h.blogspot.com
  6. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 06 Thời gian làm bài: 180 phút x3 7 Câu 1 (2,0 điểm). Cho hàm số y   x2  (1) . 3 3 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Viết phương trình đường thẳng d đi qua điểm cực tiểu của đồ thị (C ) và cắt đồ thị (C ) tại hai điểm phân biệt A, B (khác điểm cực tiểu) sao cho tiếp tuyến của (C ) tại A và B vuông góc với nhau. 2 sin x 1 3 Câu 2 (1,0 điểm). Giải phương trình   . 1  cos x 1  cos x sin x  4 cos x  e  sin x dx . tan x Câu 3 (1,0 điểm). Tính tích phân I   cos 3 x 0 Câu 4 (1,0 điểm). z 3z a) Tính môđun của số phức w   , biết 3z  z  4 1  3i  . z  1  i z  5  2i b) Từ các chữ số 1,2, 3, 4, 5, 6, 7 người ta lập các số tự nhiên có năm chữ số phân biệt rồi chọn một số. Tính xác suất để số được chọn có hai chữ số 1 và 2 . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho điểm I (1;0;1) , đường thẳng x y 1 z 1 d:   và mặt phẳng (P ) : y  2z  0 . Tìm tọa độ điểm M thuộc (P ) sao cho IM vuông 2 1 2 góc với d và độ dài IM bằng 3 . Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh bằng a 2 . Góc tạo bởi mặt phẳng (SCD ) và mặt phẳng (ABCD ) bằng 450 . Biết tam giác SBD cân tại S và tam giác SAC vuông tại S . Tính theo a thể tích khối chóp S .ABCD và khoảng cách từ điểm A đến mặt phẳng (SCD ) . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD . Trên các cạnh AD, AB lần lượt lấy hai điểm E , F sao cho AE  AF . Gọi H là hình chiếu vuông góc của A lên BE . Tìm tọa độ điểm C biết C thuộc đường thẳng d : x  2y  1  0 và hai điểm F (2; 0) , H (1; 1) . Câu 8 (1,0 điểm). Giải phương trình 2(2x  1) x 2  1  x 4x 2  3  1 . Câu 9 (1,0 điểm). Cho a, b, c là các số thực dương thỏa mãn abc a  b  c   4 . Tìm giá trị nhỏ nhất 1 8bc của biểu thức P   . a  b a  c   bc b  c 2  8 2  toanhoc24h.blogspot.com
  7. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 07 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  (2m  1)x 2  mx  m (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để đường thẳng d : y  2x  2 đồ thị hàm số (1) tại ba điểm phân biệt có hoành độ x 1, x 2, x 3 thỏa mãn x 12  x 22  x 32  17 .  Câu 2 (1,0 điểm). Giải phương trình (1  sin 2x ) cot2x  3   1 sin x  2 cos x . 2 x2  4 Câu 3 (1,0 điểm). Tính tích phân I  x x 3  4x 2  4x  x 2 dx . 1 Câu 4 (1,0 điểm). a) Tìm số phức z thỏa mãn điều kiện (1  i )z  z là số thuần ảo và z  2i  1 . b) Cho hai đường thẳng d1 và d2 song song với nhau, trên d1 có 4 điểm phân biệt và trên d2 có n điểm phân biệt. Tìm n để số tam giác tạo bởi n  4 điểm bằng 160 . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho điểm A(1;1; 0) , mặt phẳng (P ) có phương x 1 y 1 z 2 trình 2x  3y  z  1  0 và đường thẳng d :   . Viết phương trình mặt phẳng (Q ) đi 1 1 2 qua A , vuông góc với (P ) và cắt d tại điểm B sao cho AB  2 .    300 . Mặt phẳng (SAB ) Câu 6 (1,0 điểm). Cho hình chóp S .ABC có đáy BAC  900 , BC  2a , ACB vuông góc với mặt phẳng (ABC ) . Biết rằng tam giác SAB cân tại S và tam giác SBC vuông. Tính theo a thể tích khối chóp S .ABC và khoảng cách từ điểm A đến mặt phẳng (SBC ) . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình thang ABCD có hai đáy là AB và CD . Biết AB  BC , điểm A(2; 3) , đường phân giác của góc ABC có phương trình là x  y  1  0 , hình  29 8  chiếu vuông góc của đỉnh B trên đường thẳng CD là điểm H  ;  . Tìm tọa độ các đỉnh B,C , D biết  5 5  diện tích hình thang ABCD bằng 12 .  2 y x  1  3 x  y  2x  y Câu 8 (1,0 điểm). Giải hệ phương trình  x, y   . (x  5y  4) x  y 2  2xy  2y  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn x  y  1  z . Tìm giá trị nhỏ nhất của biểu x y z2  2 thức P    . x  yz y  zx z  xy toanhoc24h.blogspot.com
  8. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 08 Thời gian làm bài: 180 phút mx  1 Câu 1 (2,0 điểm). Cho hàm số y  (1) , m là tham số thực. x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  2 . b) Tìm giá trị của m để trên đồ thị của hàm số (1) có hai điểm M , N cách đều hai điểm A(1;1), B(3; 1) và tạo thành tứ giác AMBN có diện tích bằng 8 .   Câu 2 (1,0 điểm). Giải phương trình 2 cos 2x  1 cos x  2 cos x   . 2  4   3 x tan x  1 Câu 3 (1,0 điểm). Tính tích phân I   x  cos x dx . 0 Câu 4 (1,0 điểm). x  a) Giải phương trình log8x (4x )  log2x    4 log 8x 2. log2x 2  2 .  8  b) Gọi S là tập hợp các số tự nhiên gồm ba chữ số phân biệt có dạng abc, trong đó a,b, c được chọn từ các chữ số 1;2; 3; 4; 5; 6;7; 8; 9 . Chọn ngẫu nhiên một số từ tập S , tính xác suất để số được chọn thỏa mãn a b c . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P ) : x  2y  4z  3  0 và hai x 1 y z 2 x 1 y 2 z 1 đường thẳng d1 :   , d2 :   . Tìm tọa độ điểm M nằm trên d1 sao 1 2 2 2 1 1 cho OM song song với (P ) . Viết phương trình đường thẳng  nằm trong (P ) vuông góc với d1 và cắt d2 . Câu 6 (1,0 điểm). Cho lăng trụ ABC .A ' B 'C ' có đáy ABC là tam giác vuông cân tại A , AB  AC  a. Hình chiếu vuông góc của điểm A ' trên mặt phẳng (ABC ) là điểm H thuộc cạnh BC sao cho BH  3CH , góc giữa BB ' và mặt phẳng (ABC ) bằng 600 . Tính thể tích khối lăng trụ ABC .A ' B 'C ' theo a và tính côsin của góc tạo bởi mặt phẳng (BCC ' B ') và mặt phẳng (ABC ) . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho điểm A(4;1) và đường tròn (C ) có phương trình x 2  y 2  2x  4y  1  0 . Viết phương trình đường thẳng d cắt (C ) tại hai điểm B,C sao cho tam giác ABC đều. x 2  y 2  y  28  Câu 8 (1,0 điểm). Giải hệ phương trình   x, y   .  2xy  x  3  x  y  x  y  3  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện x 2  y 2  z . Tìm giá trị lớn nhất (1  2xy )z 3z 2 của biểu thức P   . (x 2  y 2 )(1  z 2 ) (1  z 2 ) 1  z 2 toanhoc24h.blogspot.com
  9. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 09 Thời gian làm bài: 180 phút 2x  1 Câu 1 (2,0 điểm). Cho hàm số y  (1) x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Viết phương trình đường thẳng d đi qua điểm I (2;1) và cắt đồ thị (C ) tại hai điểm phân biệt A, B sao cho I là trung điểm của đoạn thẳng AB .  7   5  Câu 2 (1,0 điểm). Giải phương trình 2 cos x    2 cos 2x    sin 3x  1 .  4   4  ln x 4 ln x Câu 3 (1,0 điểm). Tính diện tích hình phẳng giới hạn bởi các đường y  2 và y  . x (x  2)2 Câu 4 (1,0 điểm). a) Giải phương trình sau trên tập số phức (z 2  z  1)2  3(1  i)(z 2  z  1)  2  3i  0 . b) Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 5 viên bi trắng, hộp thứ hai chứa 3 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 2 viên bi, tính xác suất để 4 viên bi được lấy ra có đủ cả hai màu. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng (P ) : x  y  2z  3  0 , x y  2 z 1 (Q ) : 2x  y  z  2  0 và đường thẳng d :   . Viết phương trình mặt cầu (S ) có tâm 1 2 1 nằm trên d và tiếp xúc với (P ) và (Q ) . Lập phương trình mặt phẳng (R) song song với (P ) và cắt mặt cầu 9 (S ) theo một đường tròn có diện tích bằng . 2 Câu 6 (1,0 điểm). Cho hình chóp S .ABC có cạnh SA vuông góc với mặt phẳng đáy và AB  a, AC  2a,   1200 . Mặt phẳng BAC (SBC ) tạo với mặt phẳng (ABC ) một góc 600 . Tính theo a thể tích khối chóp S .ABC và khoảng cách giữa hai đường thẳng SB và AC . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD có I , K tương ứng là trung 3  10  điểm của các cạnh AD và BC . Điểm M nằm trên cạnh CD sao cho MD  MC , biết điểm G 1;   5  3  là trọng tâm của tam giác BDK và đường thẳng IM có phương trình là 3x  y  11  0 . Viết phương trình đường thẳng BD . (x  1)(y  1)2  4x 3  Câu 8 (1,0 điểm). Giải hệ phương trình  (x  y )2  3x  1 x, y   .  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện x  z . Tìm giá trị nhỏ nhất của biểu xz y2 2(x  3z ) thức P    . 2 y  yz xz  yz x  2z toanhoc24h.blogspot.com
  10. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 10 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  3mx 2  3m  2 (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Gọi d là tiếp tuyến của đồ thị hàm số (1) tại điểm M (1; 1) . Tìm giá trị của m để đường thẳng d song song với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (1) .   Câu 2 (1,0 điểm). Giải phương trình 4 sin2 x  4 sin 3x sin x    1 .  6   6 3  sin x Câu 3 (1,0 điểm). Tính tích phân I   3 tan x  2 cos x dx . 0 Câu 4 (1,0 điểm).     x x a) Giải phương trình 3 1  3 1  2x 1 . n  2 b) Gọi a , b lần lượt là hệ số của các số hạng chứa x và x trong khai triển nhị thức Niu-tơn của  x   , 2 5  x  với x  0 và n là số nguyên dương. Biết a  48b , tìm n . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho ba điểm A(4; 1;2), B(1;2;2),C (1; 1; 5) . Chứng minh tam giác ABC đều. Tìm tọa độ điểm D để ABCD là tứ diện đều. Câu 6 (1,0 điểm). Cho lăng trụ ABC .A ' B ' C ' có đáy ABC là tam giác đều cạnh bằng a . Hình chiếu vuông góc của điểm A ' trên mặt phẳng (ABC ) là điểm H thuộc cạnh AB sao cho HB  3HA . Góc tạo bởi B ' C với mặt phẳng (ABB ' A ') bằng 300 . Tính thể tích khối lăng trụ ABC .A ' B ' C ' theo a và tính côsin của góc tạo bởi mặt phẳng (ABB ' A ') và mặt phẳng (ACC ' A ') . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có điểm M nằm trên cạnh BC sao cho MC  2MB , trên tia đối của tia DC lấy điểm N sao cho NC  2ND . Biết điểm D(1; 3) , điểm A nằm trên đường thẳng d : 3x  y  9  0 và phương trình đường thẳng MN là 4x  3y  3  0 . Tìm tọa độ các đỉnh còn lại của hình chữ nhật ABCD .  4x 3  4xy 2  2  x 2  xy  y 2  2x  y Câu 8 (1,0 điểm). Giải hệ phương trình  2x  xy  y  2 x, y   . 2 2(2x  y ) x  y  x  5xy  4x  y  1  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện x 2  y 2  z 2  3xy . Tìm giá trị nhỏ x2 y x 2  y2 nhất của biểu thức P    . y 2  yz z x x2  z2 toanhoc24h.blogspot.com
  11. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 11 Thời gian làm bài: 180 phút x 3 Câu 1 (2,0 điểm). Cho hàm số y  (1) . x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Chứng minh rằng với mọi giá trị của tham số m đường thẳng d : y  x  m luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B . Tìm m để AB 2  AO 2  27 , với O là gốc tọa độ. x 3x x Câu 2 (1,0 điểm). Giải phương trình sin2 x cos x  sin x cos2 x  cos2  sin cos . 2 2 2  4 x tan x  cos x Câu 3 (1,0 điểm). Tính tích phân I   1  tan 2 x dx . 0 Câu 4 (1,0 điểm). 2 2 a) Giải phương trình 8x  x 1  2x  81 x 1  2x  3 x 3 . b) Từ các chữ số 0;1;2; 3; 4;5;6 người ta lập các số tự nhiên gồm 4 chữ số phân biệt rồi chọn một số. Tính xác suất để số được chọn có mặt chữ số 5 và đồng thời chia hết cho 5 . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , mặt phẳng (P ) : 2x  y  4z  0 và đường thẳng x 1 y 1 z d:   . Viết phương trình đường thẳng  nằm trong (P ) và vuông góc với d , biết khoảng 1 1 1 cách từ gốc tọa độ O đến đường thẳng  bằng 6.   600 . Mặt Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh bằng a , ABC phẳng (SAB ) vuông góc với mặt đáy (ABCD ) , tam giác (SAB ) cân tại S và mặt phẳng (SCD ) tạo với mặt đáy (ABCD ) góc 300 . Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng AD và SC . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có AB  BC , đường  22 7 tròn tâm D bán kính CD cắt các đường thẳng AC , AD lần lượt tại các điểm E  ;   và F (0; 1) .  13 13  Biết điểm D nằm trên đường thẳng d : x  y  7  0 . Tìm tọa độ các đỉnh của hình chữ nhật ABCD . 2 5  x  y  2x  3 (x  1)(2  y )  y  Câu 8 (1,0 điểm). Giải hệ phương trình  x, y    . (x  y )2  x  y  2  Câu 9 (1,0 điểm). Cho x , y là các số thực dương thỏa mãn điều kiện x 2  y 2  xy  1 . Tìm giá trị lớn nhất x3 y3 24 xy của biểu thức P    . y 1 x 1 x y 2 3 3 toanhoc24h.blogspot.com
  12. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 12 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  3mx 2  3(m  1)x  1 (1) , m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để hàm số (1) đồng biến trên khoảng (1; ) . 3  3 3 cos x   Câu 2 (1,0 điểm). Giải phương trình  3 tan x  4  8 sin x   . 1  sin x  3  2 1 Câu 3 (1,0 điểm). Tính tích phân I   3x  x2 dx . 1 Câu 4 (1,0 điểm). a) Tìm số phức z thỏa mãn điều kiện z  1  z  i  5 . b) Một nhóm gồm 6 bạn đi xem phim, trong đó có An và Bình. Người ta xếp 6 bạn ngồi vào một dãy ghế hàng ngang gồm 8 ghế ( 2 ghế còn dư để trống). Tính xác suất để An và Bình ngồi cạnh nhau. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , mặt phẳng (P ) : x  2y  2z  3  0 , đường x 4 y  3 z 1 thẳng d :   và điểm A(0; 1; 2) . Viết phương trình mặt cầu (S ) có tâm nằm trên d, 1 2 1 đi qua A và cắt (P ) theo một đường tròn có đường kính bằng 4 2 . Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D , CD  a , AB  AD  2a . Cạnh bên SA vuông góc với mặt phẳng đáy, mặt phẳng (SBC ) tạo với mặt phẳng (ABCD ) một góc 600 . Gọi M là trung điểm của cạnh SB , mặt phẳng (ADM ) cắt cạnh SC tại N . Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng BN và CD . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có diện tích bằng 30 , hai điểm E (3; 3) , F nằm trên đường thẳng BC . Hình chiếu vuông góc của điểm D trên đường thẳng AF là 14 3   1  điểm H  ;   . Biết M  ; 0 là trung điểm của cạnh AD và đường thẳng BC có hệ số góc là một số  5 5   2  nguyên. Tìm tọa độ các đỉnh của hình chữ nhật ABCD . x 2y 2  2y 2  16  11xy Câu 8 (1,0 điểm). Giải hệ phương trình  2 x , y    . x  2y 2  12y  3xy 2  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện x 2  z 2  y 2  xy  3yz  zx . Tìm x 1 giá trị lớn nhất của biểu thức P   . (2y  z )2 xy (y  2z ) toanhoc24h.blogspot.com
  13. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 13 Thời gian làm bài: 180 phút 2x  1 Câu 1 (2,0 điểm). Cho hàm số y  (1) . x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Tìm giá trị của m để đường thẳng d : y  2x  m cắt đồ thị (C ) tại hai điểm phân biệt A, B sao cho tổng khoảng cách từ hai điểm A, B đến trục hoành bằng 9 . Câu 2 (1,0 điểm). Giải phương trình 3 sin x  4 cos x  3 sin x tan2 x  6 tan x  2 .  3 x (sin x  cos2 x ) Câu 3 (1,0 điểm). Tính tích phân I   1  x cos x dx . 0 Câu 4 (1,0 điểm).   a) Tìm số phức z thỏa mãn điều kiện z  1  i  z và z 2  4 z  2i là số thực. b) Một hộp đựng 15 viên bi gồm 6 viên bi trắng, 5 viên bi vàng và 4 viên bi đỏ. Lấy ngẫu nhiên từ hộp đó ra 5 viên bi. Tính xác suất để 5 viên bi được lấy ra có không quá hai màu. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , điểm A(2;1;2) và đường thẳng d có phương x 5 y 1 z  3 trình là   . Viết phương trình mặt cầu (S ) có tâm là A và cắt đường thẳng d tại hai 3 1 4 điểm B,C sao cho tam giác ABC đều.   600 , cạnh bên SA  a 5 . Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thoi, ABC 3 Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD ) trùng với trọng tâm của tam giác ABD , mặt bên (SCD ) tạo với mặt phẳng đáy góc 600 . Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng SB và AC . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD , trên tia đối của tia BA lấy điểm E sao cho EB  2AB và trên cạnh AD lấy điểm F sao cho DF  3AF . Các đường thẳng CE , CF tương ứng có phương trình là 4x  3y  20  0 và 2x  11y  10  0 . Biết điểm M (2; 4) nằm trên đường thẳng AD , tìm tọa độ các đỉnh của hình vuông ABCD . (x  y ) 4  x  2x y  2(x  y )  Câu 8 (1,0 điểm). Giải hệ phương trình  x, y    . 2(x  y  1)  (4  x )y  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức x 3  y 3  x y  z2 P  2  2   . xy  2y  xz 2x  yz  4(x  y )2 toanhoc24h.blogspot.com
  14. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 14 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 4  2mx 2  3m  1 (1) . a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để đồ thị của hàm số (1) có ba điểm cực trị, đồng thời tam giác tạo bởi ba điểm cực trị nhận gốc tọa độ O làm trực tâm. 1  sin 2x  cos 2x Câu 2 (1,0 điểm). Giải phương trình  sin 3x  sin x  1 . 1  tan x Câu 3 (1,0 điểm). Tính diện tích hình phẳng giới hạn bởi các đường y  1  xe x và y  x  e x . Câu 4 (1,0 điểm). a) Giải phương trình log 2 (4x 2  4x  3)  log 1 x  2  log 4 (x 2  4x  3) . 2 1 42 1 b) Cho n là số nguyên dương thỏa mãn 3  5  . Tìm số hạng chứa x 5 trong khai triển nhị thức C n 1 An 2 3n 3n 3 1 Niu-tơn của  x 2   , x  0 .  x  Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho ba điểm A(1; 0; 3) , B(3; 4;1) , C (0;2; 3)    và mặt phẳng (P ) : x  2y  z  1  0 . Tìm tọa độ điểm M nằm trên (P ) sao cho MA  MB  2MC đạt giá trị nhỏ nhất. Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh bằng a , SA  SB  a , SD  a 2 . Mặt phẳng (SBD ) vuông góc với mặt phẳng (ABCD ) . Tính thể tích khối chóp S .ABCD theo a và tính côsin của góc giữa hai mặt phẳng (SAD ) và (SCD ) . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD nội tiếp đường tròn (C ). 10 1  Gọi M là trung điểm của cạnh AB , đường thẳng CM cắt đường tròn (C ) tại E (0;2) . Biết G  ;  là  3 3  trọng tâm của tam giác ABC , điểm F (2; 4) nằm trên đường tròn (C ) và điểm B có hoành độ dương. Tìm tọa độ các đỉnh của hình chữ nhật ABCD .  2x  1  2y  1  4 (2x  1)(2y  1)  x  y  Câu 8 (1,0 điểm). Giải hệ phương trình  x, y    . x 2  2y  x 3  2y  2  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn x 2  y 2  z 2  2x . Tìm giá trị lớn nhất của x z z 4x 2 biểu thức P    . x  2y  1 y  1 (x  y )2 toanhoc24h.blogspot.com
  15. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 15 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  2mx 2  x  2m (1) . a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Gọi A là giao điểm của đồ thị hàm số (1) với trục hoành, tiếp tuyến của đồ thị hàm số (1) tại A cắt trục tung tại B . Tìm giá trị của m để diện tích tam giác OAB bằng 1 , trong đó O là gốc tọa độ. Câu 2 (1,0 điểm). Giải phương trình sin 3x  cos 3x  sin x  cos x  2 sin 2x . x  x2 Câu 3 (1,0 điểm). Tính thể tích khối tròn xoay tạo bởi khi quay hình phẳng giới hạn bởi y  và x2  3 y  0 quanh trục hoành. Câu 4 (1,0 điểm). a) Giải phương trình 8x  8x  5(2x  2x )  3 . b) Thầy PTK đi mua hoa tặng người yêu, cửa hàng bán hoa có 10 loại hoa, mỗi loại có 4 bông. Thầy ấy chọn ngẫu nhiên 6 bông, tính xác suất để người yêu của thầy ấy nhận được 3 cặp bông, mỗi cặp là một loại hoa khác nhau. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1; 0;2) , B(1;1;1) và mặt phẳng (P ) : x  2y  z  3  0 . Viết phương trình mặt phẳng (Q ) đi qua A, B và vuông góc với (P ) . Tìm tọa độ điểm M nằm trên đường thẳng AB sao cho MA.MB  12 . Câu 6 (1,0 điểm). Cho lăng trụ tam giác đều ABC .A ' B 'C ' có cạnh đáy bằng a . Gọi M , N , I tương ứng là trung điểm của các đoạn thẳng AA ', AB, BC . Góc giữa mặt phẳng (C ' AI ) và mặt phẳng (ABC ) bằng 600. Tính theo a thể tích khối tứ diện NAC ' I và khoảng cách giữa hai đường thẳng MN và AC ' . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có điểm E nằm trên 2  1 25 cạnh BC , phương trình đường tròn ngoại tiếp tam giác ABE là x    y  1  2 và phương trình  2  4 đường thẳng DE là 3x  4y  18  0 . Biết điểm M (0; 3) nằm trên đường thẳng AB , tìm tọa độ các đỉnh của hình chữ nhật ABCD .  2 2  x  6  2 y  3  5  x  2y Câu 8 (1,0 điểm). Giải hệ phương trình  x, y    . x x 2  6  y y 2  3  x 2  y 2  2  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn x 2  y 2  z 2  4 . Tìm giá trị nhỏ nhất của 2y 2 3x 3  3xy 2  2x 2y biểu thức P   . 2y  zx y (z  2)2 toanhoc24h.blogspot.com
  16. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 16 Thời gian làm bài: 180 phút x 3 Câu 1 (2,0 điểm). Cho hàm số y  (1) . x 2 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Tìm giá trị của m để đường thẳng d : y  2x  m cắt đồ thị (C ) tại hai điểm phân biệt A, B và cắt tiệm cận đứng tại M sao cho MA2  MB 2  25 . Câu 2 (1,0 điểm). Giải phương trình (cos x  sin x )cos 2x  sin 2 x  (1  cos x )(1  sin x ) . 1 2x Câu 3 (1,0 điểm). Tính tích phân I   dx . 0 2 x 6  3.2x  2 Câu 4 (1,0 điểm). a) Cho số phức z thỏa mãn điều kiện 5z  3  i  (2  5i )z . Tìm môđun của w  (z  i )8  3i(z  1)2 . n  x b) Cho khai triển 1    a 0  a1x  a 2x 2  ...  an x n , trong đó a 0 , a1, a2,..., an là các hệ số và n là số  2  nguyên dương thỏa mãn a0  2a1  4a2  ...  2n an  1024 . Tìm hệ số a8 . Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho điểm A(1; 0;2) và đường thẳng x y 2 z 3 d:   . Viết phương trình mặt phẳng (P ) chứa d sao cho khoảng cách từ A đến (P ) lớn 2 1 1 nhất. Câu 6 (1,0 điểm). Cho hình chóp tam giác đều S .ABC có cạnh bên bằng a , góc tạo bởi mặt bên với đáy bằng 600. Gọi M , N lần lượt là trung điểm của các cạnh AB và SC . Tính theo a thể tích khối chóp S .ABC và khoảng cách giữa hai đường thẳng SA và MN . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có M là trung điểm của  2 21 14 27  cạnh AB và N là điểm nằm trên cạnh AD sao cho NA  2ND . Biết H  ;  , K  ;   tương  5 5   5 5  ứng là chân đường vuông góc hạ từ B và D lên đường thẳng MN , điểm A có hoành độ âm và MN  2 10. Tìm tọa độ các đỉnh của hình chữ nhật ABCD . x 3  3x 2  y 3  3y  2  Câu 8 (1,0 điểm). Giải hệ phương trình  x , y    .    x  3  x x 2  x 2  3y  3  3y  3   Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn x 2  y 2  z 2  xy  2z . Tìm giá trị nhỏ nhất 2  x y  8z 3  của biểu thức P   2    .  y  z 2 x 2  z 2  (x 2  z 2 )(y 2  z 2 ) toanhoc24h.blogspot.com
  17. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 17 Thời gian làm bài: 180 phút Câu 1 (2,0 điểm). Cho hàm số y  x 3  3mx 2  3(m  1)x  1 (1) . a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) khi m  1 . b) Tìm giá trị của m để đường thẳng d : y  x  2 cắt đồ thị hàm số (1) tại ba điểm phân biệt A, B,C sao cho B là trung điểm của AC , biết điểm A có hoành độ bằng 1 . Câu 2 (1,0 điểm). Giải phương trình (2 cos 2x  1)cos x  sin x  2(sin x  cos x )sin 3x .  4  x x   x sin  dx . 4 Câu 3 (1,0 điểm). Tính tích phân I   cos 4 0 2 2  Câu 4 (1,0 điểm).  a) Tìm số phức z thỏa mãn điều kiện z  1  5 và 17 z  z  5zz  0 .  b) Một tổ gồm 9 học sinh, trong đó có 3 học sinh nữ. Cần chia tổ đó thành 3 nhóm đều nhau, mỗi nhóm có 3 học sinh. Tính xác suất để khi chia ngẫu nhiên ta được mỗi nhóm có đúng 1 học sinh nữ. Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho điểm I (1;1; 0) và hai mặt phẳng (P ) : x  y  5  0 , (Q ) : y  z  3  0 . Viết phương trình đường thẳng d vuông góc với giao tuyến của (P ) và (Q ) đồng thời cắt (P ),(Q ) lần lượt tại M , N sao cho I là trung điểm của đoạn thẳng MN . Câu 6 (1,0 điểm). Cho lăng trụ ABC .A ' B 'C ' có tất cả các cạnh bằng a . Hình chiếu vuông góc của điểm B lên mặt phẳng (A ' B 'C ') là trung điểm H của cạnh A ' B ' . Gọi E là trung điểm của cạnh AC , tính theo a thể tích khối chóp E .HB ' C ' và khoảng cách từ điểm B đến mặt phẳng (ACC ' A ') . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có E (4; 1) là điểm nằm trên cạnh BC sao cho EB  2EC . Đường tròn ngoại tiếp tam giác ADE cắt cạnh AB tại điểm F , phương trình đường thẳng DF là 7x  y  2  0 . Biết F là trung điểm của cạnh AB và điểm D có hoành độ dương. Tìm tọa độ các đỉnh của hình chữ nhật ABCD .  2 2 3x  6y 2   20  (x  y )2 Câu 8 (1,0 điểm). Giải hệ phương trình   1 x, y    . 3x  3y   10  x y Câu 9 (1,0 điểm). Cho a, b, c là các số thực dương thỏa mãn điều kiện (a  2b)(b  c)  5bc và 2a  c . a 2  b2 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P  . ac toanhoc24h.blogspot.com
  18. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 18 Thời gian làm bài: 180 phút 3x  4 Câu 1 (2,0 điểm). Cho hàm số y  (1) . 2x  3 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Tìm điểm M thuộc đồ thị (C ) sao cho khoảng cách từ M đến trục hoành gấp hai lần khoảng cách từ M đến đường tiệm cận đứng của đồ thị (C ) . 2  x x   Câu 2 (1,0 điểm). Giải phương trình 2 sin x sin  cos   1  2 sin x    3 sin 2x .  2 2   3  2 1 Câu 3 (1,0 điểm). Tính tích phân I   dx . 1  x2 2  4  x2  Câu 4 (1,0 điểm). a) Giải phương trình log2 x  log 1 (x 2  2x  1)  log4 (x 2  4x  4)  log 1 (x  1)  0. 4 2 1 2 3 b) Cho n là số nguyên dương thỏa mãn C n 1  3C n 2 C n 1 . Tìm hệ số của số hạng chứa x 4 trong khai n   1  triển của biểu thức  x  2 1   , x  0 .   x  Câu 5 (1,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1; 4;2) , B(1;2; 4) và đường thẳng x 1 y  2 z d:   . Viết phương trình đường thẳng  đi qua A và cắt d sao cho khoảng cách từ B đến 1 1 2  nhỏ nhất. Câu 6 (1,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D , AD  DC , AB  2AD , mặt bên SBC là tam giác đều cạnh 2a và thuộc mặt phẳng vuông góc với mặt phẳng (ABCD ). Tính thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng BC và SA theo a . Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC có phương trình đường cao kẻ 1  từ đỉnh A là 3x  y  5  0 , trực tâm H 2; 1 , M  ; 4 là trung điểm của AB , BC  10 . Tìm tọa  2  độ các đỉnh của tam giác ABC , biết hoành độ điểm B bé hơn hoành độ điểm C .  Câu 8 (1,0 điểm). Giải hệ phương trình   2xy  xy  y  2  y 2x  1 y  1  1  x, y    .  2(x 2  4y  4) y  1  (y 2  2x  1)y  Câu 9 (1,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện z (x  z )  z (y  z )  xy . Tìm x y x  y  30z giá trị nhỏ nhất của biểu thức P    . y z x z 4x  4y 2  z 2  12xy 2 toanhoc24h.blogspot.com
  19. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 19 Thời gian làm bài: 180 phút 2x  1 Câu 1 (4,0 điểm). Cho hàm số y  (1) . x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Tìm giá trị của m để đường thẳng d : y  x  m cắt đồ thị (C ) tại hai điểm phân biệt A, B sao cho tam giác ABC đều, với C (4; 1) . 2 3 sin 3x cos x Câu 2 (2,0 điểm). Giải phương trình  4 cos2 x  1 . 2  cos 2x ln 5 e 2x Câu 3 (2,0 điểm). Tính tích phân I   2e x  1  3e x  1 dx . 0 Câu 4 (2,0 điểm). 2 2 2 x a) Giải phương trình 4x  25x  2(x 1)  16 . b) Từ các chữ số 0;1;2; 3; 4; 5;6; 7 người ta lập các số tự nhiên gồm bốn chữ số phân biệt rồi chọn một số. Tính xác suất để số được chọn có đúng hai chữ số chẵn và hai chữ số lẻ. Câu 5 (2,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho hai điểm A(1;2; 0) , B(2; 0;1) và mặt cầu (S ) : x 2  y 2  z 2  2x  4y  6z  5  0 . Viết phương trình mặt phẳng (ABC ) , biết điểm C thuộc (S ) và   300 ACB . Câu 6 (2,0 điểm). Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D , CD  2a , AB  AD  a . Hình chiếu vuông góc của điểm S trên mặt phẳng (ABCD ) trùng với trung điểm của cạnh AD , góc giữa mặt phẳng (SBC ) và mặt phẳng (ABCD ) bằng 600 . Tính theo a thể tích khối chóp S .ABCD và khoảng cách giữa hai đường thẳng SD và BC . Câu 7 (2,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình bình hành ABCD có A(4; 2) , phương trình đường thẳng BD là 6x  y  2  0 . Gọi M là trung điểm của cạnh AB , đường thẳng đi qua C và vuông góc với DM có phương trình là x  4y  3  0 . Tìm tọa độ các đỉnh còn lại của hình bình hành ABCD .  xy  x  2y  y  1 x  y 2 Câu 8 (2,0 điểm). Giải hệ phương trình  x, y    .  2y  3  3x 2  y  2  3x  2  Câu 9 (2,0 điểm). Cho x , y, z là các số thực dương thỏa mãn điều kiện x 2  y 2  z  3xy . Tìm giá trị nhỏ x y x 3  y3 nhất của biểu thức P    . y z z x 16z toanhoc24h.blogspot.com
  20. Khóa giải đề – Thầy Phạm Tuấn Khải ĐỀ THI THỬ KÌ THI QUỐC GIA THPT NĂM 2015 Môn: Toán. ĐỀ SỐ 20 Thời gian làm bài: 180 phút x 1 Câu 1 (4,0 điểm). Cho hàm số y  (1) . x 2 a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số (1) . b) Gọi A, B là hai điểm phân biệt trên (C ) sao cho hai tiếp tuyến tại A và B song song với nhau. Hai tiếp tuyến tại A và B lần lượt cắt trục tung tại C , D sao cho CD  4 . Tìm tọa độ hai điểm A, B .     2 Câu 2 (2,0 điểm). Giải phương trình sin x    sin 2x     sin 2x (1  2 cos x ) .  4   4  2  2 x  x 3 cos 2x  2x cos2 x Câu 3 (2,0 điểm). Tính tích phân I   x2  1 dx . 0 Câu 4 (2,0 điểm). a) Tìm số phức z biết 1  2i  z là số thực và 2z  4z  1  2 2 . n 1  b) Tìm hệ số của số hạng chứa x 35 trong khai triển nhị thức Niu–tơn của  3  x 5  , biết rằng x  C 21n 1  C 22n 1  ...  C 2nn 1  230  1 . Câu 5 (2,0 điểm). Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (P ) : 2x  y  2z  1  0 và hai x 1 y 2 z 2 x 2 y  4 z  7 đường thẳng d1 :   , d2 :   . Tìm các điểm A trên d1 và B trên 2 1 2 3 4 2 d2 sao cho AB song song với (P ) và khoảng cách giữa AB và (P ) bằng 1 . Câu 6 (2,0 điểm). Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB  AC  a . Gọi M là trung điểm của cạnh AB , hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABC ) trùng với tâm đường tròn ngoại tiếp tam giác BMC . Góc giữa đường thẳng SB và mặt phẳng (ABC ) bằng 600 . Tính theo a thể tích khối chóp S .ABC và khoảng cách từ điểm C đến mặt phẳng (SAB ) . Câu 7 (2,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD có điểm B(1; 3) và diện 5 5 tích bằng 30 . Gọi E là điểm nằm trên cạnh BC sao cho EC  2EB , điểm H  ;  là hình chiếu vuông  2 2  góc của đỉnh B trên đường thẳng DE . Biết điểm C có tung độ âm, tìm tọa độ các đỉnh còn lại của hình chữ nhật ABCD . x (x  y )2  x 2  y 2  2  Câu 8 (2,0 điểm). Giải hệ phương trình  2 y  xy  (x  y  1) x  y  2x  2 x, y    .  Câu 9 (2,0 điểm). Cho a, b, c là các số thực dương thỏa mãn điều kiện a 2  ab  b 2  c . Tìm giá trị lớn 1 1 3(ab  2) 2c 2  36 nhất của biểu thức P    . a 2  2 b2  2 4ab(2c  3)2 toanhoc24h.blogspot.com
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2