
Hong Duc Univers ity
307 Le Lai Str. Thanh Hoa City, Thanh hoa, Viet nam
M t trong nh ng bài toán đ c tr ng c a C h c l ng t là ộ ữ ặ ư ủ ơ ọ ượ ử
bài toán sau.
Xét m t h t ho c “m t h h t” theo m t đ c tr ng đ i l ng ộ ạ ặ ộ ệ ạ ộ ặ ư ạ ượ
v t lý ậL nào đó. Gi s ả ử L có ph là ổL1, L2,…, Ln,…, và th i ở ờ
đi m ểt0 = 0, h t tr ng thái c b nạ ở ạ ơ ả
Sau th i gian ờt, h t s tr ng thái m i làạ ẽ ở ạ ớ
n
t c là mô t b i hàm riêngứ ả ở
( )
x
nn
ψψ
=
(x có th là m t ho c b t a đ )ể ộ ặ ộ ọ ộ
( )
tx,
ψ
nh v y theo gi thi t thìư ậ ả ế
( ) ( )
xx
n
ψψ
=
0,