intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Cơ sở tự động: Chương 2c - Nguyễn Đức Hoàng

Chia sẻ: Tằng Túy | Ngày: | Loại File: PPTX | Số trang:21

83
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chương 2: Mô hình toán học hệ thống liên tục. Chương này cung cấp cho người học các kiến thức: Phương trình trạng thái, thành lập phương trình trạng thái từ phương trình vi phân, thành lập phương trình trạng thái từ sơ đồ khối, mối quan hệ giữa các mô tả toán học. Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Cơ sở tự động: Chương 2c - Nguyễn Đức Hoàng

  1. MÔN HỌC CƠ SỞ TỰ ĐỘNG Giảng viên: Nguyễn Đức Hoàng Bộ môn Điều Khiển Tự Động Khoa Điện – Điện Tử Đại Học Bách Khoa Tp.HCM Email: ndhoang@hcmut.edu.vn
  2. CHƯƠNG 2 MÔ HÌNH TOÁN HỌC HỆ THỐNG LIÊN TỤC
  3. Phương trình trạng thái Trạng thái của một hệ thống là tập hợp nhỏ nhất các  biến (biến trạng thái) mà nếu biết giá trị các biến này  tại t0 và các tín hiệu vào  ở t > t0 , ta hoàn toàn có thể  xác  định  được  đáp  ứng  của  hệ  thống  tại  mọi  thời  điểm t ≥ t0. Vector trạng thái : x = [ x1 x 2 ... x n ] T
  4. Phương trình trạng thái Sử  dụng  biến  trạng  thái  có  thể  chuyển  PTVP  bậc  n  mô tả hệ thống thành hệ gồm n PTVP bậc nhất (hệ  PTTT) & = Ax(t) + Bu(t) x(t) y(t) = Cx(t) + Du(t) Trong đó (hệ SISO) �a11 a12 L a1n � �b1 � �a 21 a 22 L a 2n � �b 2 �C = [ c1 c2 L cn ] A=� �B = � � �M M O M� �M �D = d � � � � �a n1 a n2 L a nn � �bn �
  5. Phương trình trạng thái Ví dụ 1: Hệ thống giảm xóc K C 1 &&y = − y − y& + P(t) m m m x1 = y Đặt x 2 = y& x& 1 = x 2 K C 1 x& 2 = &&y = − x1 − x 2 + P(t) m m m
  6. Phương trình trạng thái Ví dụ 1: Hệ thống giảm xóc (tt) � 0 1 � �0� x& 1 � � � x � � C� * � �+ �1 � 1 � � �= K * P(t) { x �& �− − � x � � {2 � � m m � � { 2� � m � u x& 1 44 2 4 43 x { A B x1 � � y { = x 1 = [ 1 { � 0 ] * x � y C � { 2� x
  7. Phương trình trạng thái Ví dụ 2: Mạng RLC Đặt x1 = v 2 (t) x1 = v 2 (t) � PΤΤΤ? 1 PTTT2 ? x 2 = v& 2 (t) x 2 = i(t)
  8. Phương trình trạng thái Ví dụ 2: Mạng RLC (tt) � 0 1 � �0 � x& 1 � � � � x � 1� � � PTTT1 : � �= 1 R * � �+ 1 * v{1 (t) x& 2 � � � − − �� x2 � � � u { � LC L � { � LC � x& 1 44 2 4 43 x { A B � 1 � �0 � �0 � x& 1 � � C x1 � � � � PTTT2 : � �= � �* � �+ 1 * v{ 1 (t) x& 2 � � 1 � R �� x2 � � � u { − − { � L � x& � L L � x { 14243 B A
  9. Phương trình trạng thái Ví dụ 3:  m1&&y1 = K 2 (y 2 − y1 ) − K1y1 + P(t) − C1y& 1 m 2&&y 2 = −K 2 (y 2 − y1 ) x1 = y1 x 2 = y& 1 Đặt PTTT ? x3 = y2 x 4 = y& 2
  10. Thành lập PTTT  từ  PTVP TH1:  Vế  phải  PTVP  không  chứa  đạo  hàm  tín  hiệu  vào Hệ thống mô tả bởi PTVP n n −1 d y(t) d y(t) dy(t) a 0 n + a1 n −1 + L + a n −1 + a n y(t) = b0 u(t) dt dt dt Đặt biến trạng thái theo quy tắc x1 (t) = y(t) v   Biến  đầu  tiên  bằng  tín  hiệu  x (t) = x& (t) 2 1 ra v  Biến tiếp theo bằng đạo hàm  M      biến trước đó x n (t) = x& n −1 (t)
  11. Thành lậpPTTT từ PTVP TH1:  Vế  phải  PTVP  không  chứa  đạo  hàm  tín  hiệu  vào (tt) PTTT & = Ax(t) + Bu(t) x(t) y(t) = Cx(t) + Du(t) x(t) = [ x1 (t) x 2 (t) L x n −1 (t) x n (t) ] T �0 1 0 L 0 � �0 � �0 � C = 1 0 L 0 0 �0 � 0 1 L 0 � � � � [ ] �M M M O M � �M � A=� � B = �0 � �0 0 0 L 1 � � � D=0 � an a a a1 � �b0 � − � − n −1 − n −2 L − � � � a0 � � a0 a0 a0 a0 � �
  12. Thành lậpPTTT từ PTVP TH1:  Vế  phải  PTVP  không  chứa  đạo  hàm  tín  hiệu  vào  (tt)Viết  PTTT  mô  tả  hệ  thống  có  mô  tả  bằng  PTVP  sau && + y(t) 2y(t) & + 4y(t) = 6u(t) x1 (t) = y(t) & = Ax(t) + Bu(t) x(t) PTTT x 2 (t) = x& 1 (t) y(t) = Cx(t) + Du(t) �0 1 � �0 � �0 1 � � � 0 �� C = [ 1 0] A = � a2 � a1 = � � B = b 0 = �� � − − � � −2 −0.5� � � �� 3 � a0 a0 � �a0 � D=0
  13. Thành lậpPTTT từ PTVP TH2: Vế phải PTVP chứa đạo hàm tín hiệu vào Hệ thống mô tả bởi PTVP n n −1 d y(t) d y(t) dy(t) a 0 n + a1 n −1 + L + a n −1 + a n y(t) = dt dt dt d n −1u(t) d n −2 u(t) du(t) b0 n −1 + b1 n −2 + L + b n −2 + b n −1u(t) dt dt dt Đặt biến trạng thái theo quy tắc x1 (t) = y(t) v   Biến  đầu  tiên  bằng  tín  hiệu  x 2 (t) = x& 1 (t) − β1u(t) ra M v   Biến  tiếp  theo  bằng  đạo  hàm  x n (t) = x& n −1 (t) − βn −1u(t)
  14. Thành lậpPTTT từ PTVP TH2: Vế phải PTVP chứa đạo hàm tín hiệu vào (tt) & = Ax(t) + Bu(t) x(t) PTTT y(t) = Cx(t) + Du(t) x(t) = [ x1 (t) x 2 (t) L x n −1 (t) x n (t) ] T �0 1 0 L 0� �β1 � �0 0 1 L 0� �β � C = [ 1 0 L 0 0] � � �M M M O M� �2 � A=� � B = �M � �0 0 0 L 1 � � � βn −1 � D=0 � an � a a a1 � − � − n −1 − n −2 L − � �βn � � � � a0 a0 a0 a0 �
  15. Thành lậpPTTT từ PTVP TH2: Vế phải PTVP chứa đạo hàm tín hiệu vào (tt) Các hệ số   được xác định như sau b0 β1 = a0 b1 − a1β1 β2 = a0 M b n −1 − a1βn −1 − a 2βn −2 − L − a n −1β1 βn = a0
  16. Thành lậpPTTT từ PTVP TH2: Vế phải PTVP chứa đạo hàm tín hiệu vào (tt) Viết  PTTT  mô  tả  hệ  thống  có  mô  tả  bằng  PTVP  && + y(t) sau 2y(t) & + 4y(t) = 6u(t) & + 3u(t) x1 (t) = y(t) & = Ax(t) + Bu(t) x(t) x 2 (t) = x& 1 (t) − β1u(t) PTTT y(t) = Cx(t) + Du(t) �0 1 � � b0 � �0 1 � A = � a2 � a1 = � � a � �� 3 � − − � � −2 −0.5� B=� �= �� 0 � b1 − a1β1 � �� � a0 a0 � � 0 � a � C = [ 1 0] D=0 � 0 �
  17. Thành lậpPTTT từ PTVP dùng phương pháp tọa độ pha (Xem sách)
  18. Thành lậpPTTT từ sơ đồ khối X1 (s) 10 = � sX1 (s) = −5X1 (s) + 10X 2 (s) X 2 (s) s + 5 � x& 1 = −5x1 + 10x 2
  19. Thành lậpPTTT từ sơ đồ khối �x& 1 � � −5 10 0 � � x1 � �� 0 � � � � � x& 2 = 0 0 −1 * x 2 + 1 * u � �� � � � � � � �� � x& 3 � � � ��1 0 −1� �� �x3 � � �� 0 �� �x1 � � y = [ 1 0 0] * x 2 � � � � �x3 ��
  20. Tính hàm truyền từ PTTT Cho PTTT & = Ax(t) + Bu(t) x(t) y(t) = Cx(t) + Du(t) Suy  ra  hàm  truyền  của  hệ  thống là −1 G(s) = D + C *(sI − A) * B
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2