intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Kỹ thuật điện: Chương 2 - Phạm Hùng Phi

Chia sẻ: Hoa Anh đào | Ngày: | Loại File: PDF | Số trang:14

27
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Kỹ thuật điện: Chương 2 Mạch điện xoay chiều hình Sin, cung cấp cho người học những kiến thức như: Khái niệm về mạch điện xoay chiều hình sin; Trị hiệu dụng của dòng điện xoay chiều hình sin; Biểu diễn các đại lượng xoay chiều hình sin; Phản ứng của nhánh với dòng điện xoay chiều hình sin; Công suất trong mạch điện xoay chiều 1 pha; Nâng cao hệ số cosϕ (bù công suất phản kháng). Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Kỹ thuật điện: Chương 2 - Phạm Hùng Phi

  1. 9/29/14 Chương II : MẠCH ĐIỆN XOAY CHIỀU HÌNH SIN 2.1 Khái niệm về mạch điện xoay chiều hình sin 2.2 Trị hiệu dụng của dòng điện xoay chiều hình sin 2.3 Biểu diễn các đại lượng xoay chiều hình sin 2.4 Phản ứng của nhánh với dòng điện xoay chiều hình sin 2.5 Công suất trong mạch điện xoay chiều 1 pha ϕ (bù công suất phản kháng) 2.6 Nâng cao hệ số cosϕ 1 1 9/29/14 2.1 Khái niệm về mạch điện xoay chiều hình sin i = I m sin(ωt + ψ i ) i ωt + ψ i 1 0.8 Im ω = 2πf 0.6 0.4 1 t f= 0.2 fcb = 50Hz T = 0,02s 0 T -0.2 -0.4 T Biên độ -0.6 ψi Đặc trưng: -0.8 Tần số -1 Góc pha đầu 0 1 2 3 4 5 6 7 e = E m sin(ωt + ψ e ) u = U m sin(ωt + ψ u ) 2 2
  2. 9/29/14 2.2 Trị hiệu dụng của dòng điện xoay chiều hình sin a. Định nghĩa: Giá trị dòng một chiều tương đương về nhiệt năng I R i i~ 1 Im Sau T: Ao = RI2T 0.8 0.6 i = I m sin ωt p= Ri2 0.4 0.2 0 t T ∫ Ri dt -0.2 ψi = 0 T 2 Sau T: A~ = -0.4 -0.6 0 T -0.8 1 − -1cos(2ωt) T A~ = RIm ∫ sin (ωt)dt = RIm2∫ 2 2 dt 02 1 2 3 4 5 6 7 0 sin(2ωt) T 0 1 1 A~ = RIm2 (t − ) Cân bằng 2NL R I 2 T = R I m 2 T 2 2ω 0 2 1 A ~ = R Im T 2 2 I Trị hiệu dụng I = m 3 2 3 9/29/14 Um Em Tương tự : U = E = 2 2 Đặc trưng cho các đại lượng i = 2I sin(ωt + ψ i ) xoay chiều hình sin cùng tần u = 2U sin(ωt + ψ u ) số : e = 2E sin(ωt + ψ e ) - Trị hiệu dụng ( I, U, E) - Góc pha đầu ( ψi , ψu , ψe) Khi so sánh các đại lượng xoay chiều hình sin cùng tần số : - So sánh về trị hiệu dụng - So sánh về góc pha Góc lệch pha giữa điện áp và dòng điện : ϕ = ψ u − ψi 4 4
  3. 9/29/14 2.3 Biểu diễn các đại lượng xoay chiều hình sin 1. Véc tơ : A r Đặc trưng cho 1 véc tơ: A ϕ A và ϕ 0 x Đặc trưng cho các đại lượng xoay chiều hình sin cùng tần số: Trị hiệu dụng ( I, U, E) và góc pha đầu ( ψi , ψu , ψe) r r r r Ký hiệu I U E U r * Ưu điểm: Trực quan k =n ψu I r * Lưu ý: ∑ Ik = 0 k =1 ψi Định luật o x k = n1 ur k = n 2 ur ψe Kiếc-khốp ∑ Uk = ∑ Ek k =1 k =1 r E 5 5 9/29/14 Giả sử có mạch điện i Biết : i1 = 2 20sin(ωt + 60 ) i1 i2 i 2 = 210sin(ωt − 30 ) r Tìm : i = i1 + i2 = 2 I sin(ωt + ψ i ) I1 r r r I = I1 + I 2 2 2 I = I1 + I 2 r I ψi’ I = 202 + 102 = 22,36 60o ψi I 10 x ψ i ' = arctg 2 = arctg 0 30o I1 20 r I2 ψ i ' = 26 34 ' ψ i = 33 26 ' Kết quả: i = 2.22,36sin(ωt + 33 26 ') 6 6
  4. 9/29/14 2. Số phức: +j a. Nhắc lại khái niệm về số phức jb • A A=a+jb A a, b : số thực ϕ +1 j: đơn vị ảo = −1 1 = - j 0 j a * Hai dạng biểu thị số phức: Dạng đại số: A = a + j b Dạng lũy thừa: A = A e jϕ * Quan hệ giữa 2 dạng: jϕ - Biết dạng đại số: a + j b Biết dạng lũy thừa: A = A e A = a 2 + b2 a= A cosϕ b ϕ = arctg b= A sinϕ a 7 7 9/29/14 * Các phép tính + , - số phức A1 = a 1 + j b 1 = A1 e jϕ1 A2 = a 2 + j b 2 = A 2 e jϕ 2 = (a1 ± a2 ) + j (b1 ± b2) = a+jb * Các phép tính *, / số phức A = A1 * A2 = (a1* a2 - b1 * b2 ) + j (a1b2 + a2 b1) = a + j b hoặc A1 e jϕ1 * A 2 e jϕ2 = A1 A 2 e j( ϕ1 +ϕ2 ) = A e jϕ A1 A1 j( ϕ1 −ϕ2 ) A= = e = A e jϕ A2 A2 8 8
  5. 9/29/14 Chú ý : 1. Nhân 1 số với j • Mô đun không đổi • Góc cộng 900 2. Chia 1 số cho j (nhân –j) • Mô đun không đổi • Góc cộng (-900) b. Biểu thị các đại lượng xoay chiều hình sin bằng số phức : Đặc trưng cho số phức : A và ϕ Đặc trưng cho đại lượng xoay chiều hình sin cùng tần số : Trị hiệu dụng ( I, U, E) và góc pha đầu ( ψi , ψu , ψe) • • • Ký hiệu: I = Ie jψi U = Ue jψ u E = Ee jψe 9 9 9/29/14 * Các phép tính đạo hàm và tích phân số phức : iL L • Phép đạo hàm : IL XL di L uL • Dạng tức thời u L = L UL I • dt • jψ i Dạng phức: IL = IL e • UL = L d IL = jωLILe jψ i dt iC C • • • Phép tích phân : XL U L = jX L I L (cảm kháng) 1 uC Dạng tức thời: u C = ∫ i C dt XC (dung kháng) C • 1 • • • Dạng số phức: UC = IC U C = − jX C IC j ωC XC Định luật Kiếc - khốp : IC k =n • k = n1 • k =n2 • ∑I k =1 k =0 ∑U k =1 k = ∑E k =1 k UC 10 10
  6. 9/29/14 2.4 Phản ứng của nhánh với dòng điện xoay chiều hình sin iR R 1. Nhánh thuần trở uR i R = 2I R sin ωt ( 1) => uR = RiR = 2RI R sin ωt (2) Biểu thức t/q : u R = 2U R sin(ωt + ψ u ) (3) UR = RIR ψu = 0 Từ (2) và (3) => ur ϕ R = ψu - ψi = 0 UR r IR • Dạng véc tơ: 11 11 9/29/14 • • 4 pR • Dạng phức : IR , U R • 3 PR • IR 2 U R = U R e jψ u = RI Re jψi 1 t • • 0 ϕ R = ψu - ψ i = 0 U R = R IR -1 iR uR -2 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 • Công suất : pR = uR iR i R = 2I R sin ωt (1) p R = 2U R I R sin 2 (ωt) u R = 2RI R sin ωt (2) = U R I R (1 − cos(2ωt)) T 1 Công suất trung bình : PR = ∫ p R dt = ?U R I R = RI R > 0 2 T0 12 12
  7. 9/29/14 2. Nhánh điện cảm iL L i L = 2I L sin ωt (1) uL UL = XL I L ψu = 90o di L uL = L = 2ωLI L cos(ωt) (2) dt X L ϕL = ψu - ψi = 90o u L = 2ωLI Lsin(ωt+90o ) (3) ur T/quát : u L = 2U L sin(ωt + ψ u ) (4) UL r • Dạng véc tơ: IL • • • • • Dạng phức : I L , U L U L = jX L I L • Công suất : pL= uL iL p L = 2 U L I L s in ( ω t ) c o s ( ω t) = U L I Lsin(2ωt) 13 13 9/29/14 Nhận năng lượng p L =U L I Lsin(2ωt) u i 1 Công suất trung bình : 0.8 0.6 T 0.4 p 1 PL = ∫ p L dt = 0 0.2 0 T T0 -0.2 -0.4 Phát năng lượng -0.6 -0.8 -1 0 1 2 3 4 5 6 Kết luận : Phần tử điện cảm không biến đổi năng lượng điện Đặc trưng cho quá trình tích lũy năng lượng trên điện cảm: biên độ pL = ULIL = QL Công suất phản kháng QL = XL I L 2 VAr, kVAr 14 14
  8. 9/29/14 iC C 3. Nhánh điện dung i C = 2IC sin ωt uC 1 1 uC = C∫ i dt = 2 IC (−cosωt) C ωC UC = XC I C Xc ψu = - 90o 1 uC = 2 I C sin ( ω t-9 0 o ) ϕ = ψu - ψi = - 90o ωC Biểu thức : u C = 2U C sin(ωt + ψ u ) r • Dạng véc tơ: IC • • • Dạng phức : U C = − jX C IC ur • Công suất : pC= uC iC UC p C = − 2 U C I C s in ( ω t ) c o s ( ω t) = - U C ICsin(2ωt) 15 15 9/29/14 Nhận năng lượng p C = -U C ICsin(2ωt) i u Công suất trung bình: 1 0.8 0.6 T p 1 0.4 PC = ∫ p C dt =0 0.2 T0 0 -0.2 -0.4 Phát năng lượng -0.6 -0.8 -1 0 1 2 3 4 5 6 Kết luận : Phần tử điện dung không biến đổi năng lượng điện Đặc trưng cho quá trình tích lũy năng lượng trên điện dung : -UCIC = QC Công suất phản kháng QC = -XC IC2 VAr, kVAr 16 16
  9. 9/29/14 i R 4. Nhánh R – L – C nối tiếp uR i = 2I sin ωt u = uR + uL + uC u uL L uC u = 2U sin(ωt + ψ u ) =ϕ ur ur ur ur z C ur ur U = UR + UL + UC UL UC U = UR +( UL -UC )2 = I R 2 +( X L -X C ) 2 2 = Iz ur X U z= R +X 2 2 ur UR r I U L -U C X -X X ϕ = arctg = arctg L C = arctg ϕ = ψu UR R R z X Tam giác tổng trở ϕ 17 R 17 9/29/14 ur ur UL X > 0, ϕ >0 UC - Khi XL > XC ur ur r U ur r U vượt trước I Tính chất điện cảm (r - L) UR I ϕ ur ur - Khi XL < XC X < 0, ϕ
  10. 9/29/14 Dạng phức : • • • • • • • U = U R + U L + U C =• R I+ jX L I− jX • C I • • = [R + j(X L − X C )]I = (R + jX) I U = ZI Z Z = R + jX = ze jϕ Là tổng trở phức của nhánh I R VD: Biết R = 4 Ω; XL = 10 Ω ; •XC = 7 Ω; U = 100 V. Tìm Z và I XL U Z = R + j (XL – XC ) = R + j X = Ze jϕ XC 3 jarctg = 5e j36 52' o =4+j3 = 4 2 + 32 e 4 • • U o • I= 100e j0 = I = 20e − j36 52' o o 19 Z 5e j36 52' 19 9/29/14 2.5 Công suất trong mạch điện xoay chiều 1 pha i i = 2I sin ωt u = 2U sin(ωt + ϕ) u Zt 1. Công suất tức thời p = ui = 2UIsin ωt sin(ωt + ϕ) = UI[cosϕ-cos(2ωt+ϕ)] p = Po + p(2ωt) 2 2 p p 1.5 1.5 1 1 Po i 0.5 0.5 0 0 -0.5 u -0.5 p(2 ω) -1 0 1 2 3 4 5 6 -1 20 0 1 2 3 4 5 6 7 20
  11. 9/29/14 T 1 2. Công suất tác dụng P = ∫ pdt p(t) = UI[cosϕ-cos(2ωt+ϕ)] T0 P = UIcosϕ ur ur UC UL P = RI 2 ur U P = ∑ Pri = ∑ ri I ri 2 ur r UR I W, kW i i ϕ Để đo công suất P dùng đồng hồ Oát kế Chỉ số W = UI cos( ψu-ψi) ϕ I * * W * Cuộn dòng U Zt U I * Cuộn áp 21 21 9/29/14 Điều chỉnh 0 thang đo điện áp Đầu vào cuộn *I 75 75 * U 150 150 dòng và 300 300 ur ur 600 UC UL cuộn áp 600 ur U UX ur r 3. Công suất phản kháng UR I ϕ Q = QL + QC = XL IL2-XC IC2 Q = XI2 = XI. I UX Q = UI sin ϕ Q = ∑ (Q Li + QC j ) i,j 4. Công suất biểu kiến (toàn phần) S = P 2 + Q 2 = UI VA, kVA, MVA 22 22
  12. 9/29/14 ϕ (bù công suất phản kháng) 2.6 Nâng cao hệ số cosϕ ϕ 1. Sự cần thiết phải nâng cao hệ số cosϕ Pt Zng,d I I= Ucosϕ E U Zt (Pt, cosϕ) Gỉa thiết: - Pt = const - U = const Cosϕ càng thấp I càng lớn - Xụt áp ∆Ud, tổn hao công suất ∆Pd càng lớn - Tiết diện dây Sd lớn chi phí đầu tư đường dây cao Phải tìm cách nâng cao cosϕ 23 23 9/29/14 ϕ 2. Cách nâng cao hệ số cosϕ Tải có tính chất điện cảm I IC Mắc song song với tải bộ tụ bù C It k r r a) Khi k mở I = It U Zt C U ϕ1 r IC = U XC ϕ2 bù thừa r IC = UωC r r ϕ2 bù đủ U I = It ϕ1 r r r r I r I C bù thiếu b) Khi k đóng I = I t + Ic r It 24 24
  13. 9/29/14 I IC 3. Cách tính tụ Cb (tải có t/c đ/ cảm) It k Khi chưa bù, tải có Pt , Qt , cosϕ1 thấp U Zt Cb Tìm tụ Cb để bù nâng lên cosϕ2 > cosϕ1 Khi chưa bù: Q1 = Qt Sau khi bù (đóng k): Q 2 = Q t + QC QC St QC = Q 2 − Q t = Pt (tgϕ2 − tgϕ1 ) Qt U S’ Q C = − U IC = − U = − ωC b U 2 Q2 XC ϕ2 Pt Cb = (tg ϕ1 − tg ϕ 2 ) Pt U ω 2 ϕ1 25 25 9/29/14 Ví dụ : Cho mạch điện như hình vẽ : Io IC Khi k mở, chỉ số các đồng hồ đo : * * Ao W It k Ao = 20 A Zt V C V = 220 V A2 A1 W = 3000 W Khi k đóng, chỉ số các đồng hồ đo : Ao = 15 A Tìm : R, X, Z, cosϕ của tải C, XC, IC, QC của tụ P, Q, S, cosϕ toàn mạch sau khi đóng k 26 26
  14. 9/29/14 Giải Io * IC 1. Tìm : R, X, Z, cosϕ của tải Ao * W It k P R= 2 = V Zt C Im A2 A1 U Z= = Im X= Z2 − R2 = R P cos ϕ = = = Z U.Im 27 27 9/29/14 2. Tìm C, XC, IC, QC của tụ Pt cos ϕ1 = tgϕ1= Cb = (tgϕ1 − tgϕ2 ) U2ω P cos ϕ2 = = U.I® tgϕ2= Cb = 1 QC = - U.IC = - VAr Xc = = ωC U IC = = XC 3. Tìm P, Q, S, cosϕ toàn mạch sau khi đóng k P= Q = Qt + QC = Q = Ptgϕ2 = S = U.Iđ cos ϕ2 = 28 28
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2