intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Lý thuyết mạch điện: Chương 6 - Cung Thành Long

Chia sẻ: Cuchoami2510 | Ngày: | Loại File: PDF | Số trang:18

28
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Lý thuyết mạch điện: Chương 6 Mạch điện tuyến tính với kích thích chu kỳ không điều hòa, cung cấp cho người học những kiến thức như: Nguyên tắc chung; Giải mạch điện có kích thích một chiều; Trị hiệu dụng và công suất của hàm chu kỳ; Ví dụ áp dụng; Phổ tần của hàm chu kỳ không điều hòa. Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Lý thuyết mạch điện: Chương 6 - Cung Thành Long

  1. MẠCH CÓ THÔNG SỐ TẬP TRUNG Chương VI MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.1. Nguyên tắc chung VI.2. Giải mạch điện có kích thích một chiều VI.3. Trị hiệu dụng và công suất của hàm chu kỳ VI.4. Ví dụ áp dụng VI.5. Phổ tần của hàm chu kỳ không điều hòa
  2. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.1. NGUYÊN TẮC CHUNG - Thực tế cần tính mạch điện có kích thích chu kỳ không sin (hệ thống điện có cầu chỉnh lưu cỡ lớn, hồ quang điện, biến tần,…) - Phương pháp giải: + Phân tích nguồn chu kỳ thành tổng các thành phần điều hòa (khác tần số) eT ( t ) = ∑ ek ( t ) = ∑ 2 Ek sin ( kωt + ψ k ) + Cho từng thành phần kích thích tác động, tính đáp ứng của mạch + Tổng hợp kết quả i ( t ) = ∑ ik ( t ) u ( t ) = ∑ uk ( t )
  3. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.1. NGUYÊN TẮC CHUNG - Nguồn chu kỳ được chuyển sang thành tổng các tín hiệu điều hòa dựa vào chuỗi Fourier ∞ f ck ( t ) = f 0 + ∑ Fkm cos ( kω t+ψ k ) k =1 k ∈Z+ ω - Tần số sơ bản của các thành phần điều hòa
  4. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.2. GIẢI MẠCH ĐIỆN CÓ KÍCH THÍCH MỘT CHIỀU 1. Đặc điểm của mạch một chiều + Nguồn một chiều: giá trị không đổi theo thời gian + Ở chế độ xác lập: di du = 0, =0 dt dt Do đó: I0 R U 0 = RI 0 I0 L dI 0 U L0 = L =0 dt I0 C du IC 0 = C =0 dt
  5. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.2. GIẢI MẠCH ĐIỆN CÓ KÍCH THÍCH MỘT CHIỀU 2. Cách giải mạch điện một chiều ở chế độ xác lập + Bỏ qua nhánh chứa tụ khi giải mạch + Bỏ qua cuộn cảm trong nhánh chứa cuộn cảm + Mạch “chỉ còn” các phần tử điện trở + Hệ phương trình lập theo phương pháp dòng nhánh, dòng vòng, thế đỉnh DẠNG ĐẠI SỐ + Các phép biến đổi mạch vẫn đúng cho mạch một chiều
  6. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.3. TRỊ HIỆU DỤNG VÀ CÔNG SUẤT CỦA HÀM CHU KỲ 1. Trị hiệu dụng Với dòng điện: i ( t ) = ∑ ik ( t ) = ∑ 2 I k sin ( kωt + ψ k ) k k T T 1 2 1 ⎡ 2 I= T ∫0 i dt = T ∫0 ⎣ ∑ 2I k sin ( kωt +ψ k )⎦ dt ⎤ T T 1 1 I = ∑ ∫ ik2 dt + ∑ ∫ ik il dt = ∑I 2 k T 0 T 0 k Tương tự: U= ∑ k k U 2 E= ∑E 2 k k
  7. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.3. TRỊ HIỆU DỤNG VÀ CÔNG SUẤT CỦA HÀM CHU KỲ 2. Công suất Công suất đưa vào phần tử: T T 1 1 P = ∫ uT iT dt = ∫ ∑ uk ∑ ik dt iT T 0 T 0 uT T T 1 1 P=∑ ∫ u i k k dt + ∑ ∫ uk il dt = ∑ Pk T0 T 0 ∑k I 2 Im + Hệ số méo: K meo = k ≠1 + Hệ số đỉnh: K dinh = I1 I
  8. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 1. Ví dụ thứ nhất u = 20 + 100 2 sin 314t + 20 2 sin ( 3.314t − 200 ) V V R L R = 10Ω; L = 0,1H ; C = 10−6 F Tính số chỉ của ampemet, vonmet và công suất u C nguồn? A Giải + Cho thành phần một chiều tác động: Do C hở mạch nên: I 0 = 0 A U C 0 = 0V P0 = U 0 I 0 + Cho thành phần xoay chiều thứ nhất tác động: (ω = 314rad / s )
  9. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 1. Ví dụ thứ nhất ⎛ 1 ⎞ Z1 = R + j ⎜ ω L − U1 = 100(00 ⎝ ωC ⎟⎠ R jω L  I = U1 U = − j 1 I1 1 1 U1 −j Z1 C1 ωC ωC { } Pu1 = Re U1 Iˆ1 + Cho thành phần xoay chiều thứ hai tác động (ω = 3.314rad / s ) Sơ đồ tính toán vẫn như trên nhưng tổng trở của cuộn cảm và tụ C thay đổi ⎛ 1 ⎞ U  U 3 = 20( − 20 V Z 3 = R + j ⎜ ω3 L − 0 ⎟ I3 = 3 ⎝ ω3C ⎠ Z3 1  U C 3 = − j ω3C I3 { } Pu 3 = Re U 3 Iˆ3
  10. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 1. Ví dụ thứ nhất + Tổng hợp kết quả: - Số chỉ của ampemet: I = I 0 + I1 + I 3 = I1 + I 3 - Số chỉ của vonmet: U c = U C 0 + U C1 + U C 3 - Công suất tác dụng của nguồn: Pu = Pu 0 + Pu1 + Pu 3 = Pu1 + Pu 3
  11. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 2. Ví dụ thứ hai i1 L1 i3 e1 = 10 + 100 2 sin103 t V e3 = 220 2 sin (103 t − 200 ) + 150 2 sin ( 3.103 t + 400 ) V i2 R1 R1 = 100Ω; L1 = 0, 2 H ; R2 = 50Ω; C2 = 10−4 F ; R3 = 50Ω R2 R3 Tính số chỉ của vonmet, ampemet, i3 ( t ) , Pe1 , Pe 3 ? e1 V e3 C2 Giải A + Cho thành phần một chiều tác động: E10 I 20 = 0 A; I10 = − I 30 = U C 0 = − I 30 R3 PE10 = E10 I10 ; PE 30 = 0 R1 + R3
  12. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 2. Ví dụ thứ hai ( + Cho thành phần xoay chiều thứ nhất tác động: ω = 103 rad / s ) I11 Z L11 I31 Y11 E11 + Y31 E 31 ϕ A1 = I21 A Y11 + Y21 + Y31 R1 R2 R3 I11 = Y11 ( E11 − ϕ A1 ) I21 = Y21ϕ A1 E11 I31 = Y31 ( E31 − ϕ A1 ) U C11 = Z C 21 I21 Z C 21 E31 { PE11 = Re E11 Iˆ11 } { PE 31 = Re E 31 Iˆ31 }
  13. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 2. Ví dụ thứ hai + Cho thành phần xoay chiều thứ hai tác động (ω = 3.10 rad / s ) 3 Y33 E 33 I13 Z L13 I33 ϕ A3 = Y13 + Y23 + Y33 I23 R1 I13 = −Y13ϕ A3 I23 = Y23ϕ A3 R2 R3 I = Y ( E − ϕ ) U = Z 33 33 33 A3 C 23 I C 23 33 Z C 23 E 33 PE13 = 0 { PE 33 = Re E 33 Iˆ33 }
  14. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.4. VÍ DỤ ÁP DỤNG 2. Ví dụ thứ hai + Tổng hợp kết quả: - Số chỉ của ampemet: I1 = I102 + I112 + I132 A - Số chỉ của vonmet: U C = U C2 20 + U C2 21 + U C2 23 V - Giá trị tức thời của dòng điện i3: i3 ( t ) = I 30 + i31 ( t ) + i33 ( t ) A - Công suất các nguồn: PE1 = PE10 + PE11 W PE 3 = PE 31 + PE 33 W
  15. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.5. PHỔ TẦN CỦA HÀM CHU KỲ KHÔNG ĐIỀU HÒA 1. Phổ biên độ và phổ pha ∞ - Tín hiệu chu kỳ được phân tích thành: f (ωt ) = ∑ Fkm cos ( kω t+ψ k ) 0 Fkm ,ψ k phân bố theo tần số và phụ thuộc vào dạng của f (ωt ) Fkm = Fkm (ω ) ,ψ k = ψ k (ω ) được gọi là phổ biên độ và phổ pha của hàm chu kỳ - Với các hàm chu kỳ: Fkm(ω), ψkm(ω) có giá trị khác không tại các điểm rời rạc kω trên trục tần số, ta gọi là phổ vạch hay phổ gián đoạn. - Tín hiệu không chu kỳ (xung đơn hoặc tín hiệu hằng), có thể coi TÆ∞, do đó ω Æ 0. Các vạch phổ xít nhau, phân bố liên tục theo tần số, ta có phổ đặc hay phổ liên tục. - Với các tín hiệu chu kì dạng đối xứng qua trục thời gian, chuỗi Fourier không có thành phần điều hòa chẵn, phổ sẽ triệt tiêu ở các điểm 2k
  16. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.5. PHỔ TẦN CỦA HÀM CHU KỲ KHÔNG ĐIỀU HÒA 2. Dạng phức của phổ + Tín hiệu biểu diễn dưới dạng phổ tần qua các cặp phổ: ⎡⎣ Fkm ( kω ) ,ψ k ( kω )⎤⎦ + Ở mỗi tần số kω, phổ tần xác định bằng một cặp: Fkm ,ψ k Biểu diễn các căp số module – góc pha này dưới dạng phức. Các giá trị này phân bố rời rạc theo tần số, tạo thành phổ tần phức. Fkm = Fkm e jψ k ∞ 1 ∞ 1 ∞ f (ωt ) = f 0 + ∑ Fkm cos ( kω t+ψ k ) = f 0 + ∑ Fkm e e + ∑ Fkm e − jψ k e− jkωt jψ k jkωt 1 2 1 2 1 1 ∞ 1 ∞ ( *) f (ωt ) = ∑ Fkm e jψ k e jkωt = ∑ Fkm e jkωt 2 −∞ 2 −∞ (*) là công thức liên hệ giữa hàm thời gian và phổ tần của nó
  17. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.5. PHỔ TẦN CỦA HÀM CHU KỲ KHÔNG ĐIỀU HÒA 2. Dạng phức của phổ 1 ∞ 1 ∞ ( *) f (ωt ) = ∑ Fkm e jψ k e jkωt = ∑ Fkm e jkωt 2 −∞ 2 −∞ ( *) có giá trị phức rời rạc theo tần số ω. Trị tuyệt đối của mođule hàm số là phổ biên độ, còn argumen là phổ pha. 1 Quy ước: Fom e jψ 0 = f 0 2 F0 m = 2 f 0 ;ψ 0 = 0
  18. MẠCH ĐIỆN TUYẾN TÍNH VỚI KÍCH THÍCH CHU KỲ KHÔNG ĐIỀU HÒA VI.5. PHỔ TẦN CỦA HÀM CHU KỲ KHÔNG ĐIỀU HÒA 3. Tính phổ phức theo tín hiệu đã cho − jkωt Nhân hai vế của (*) với e lấy tích phân trong một chu kỳ: π 2π 2π ∞ 1 1 1  j (l − k )ωt π ∫ f ( ωt ) e − jkωt d ωt = 2π ∫ Fkm dωt + ∑ l =−∞ 2π ∫ Fkm e d ωt 0 0 2π 1 Fkm = ∫ f (ωt ) e − jkωt dωt ( *) π 0
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2