Bài giảng Toán rời rạc: Chương 1 - Cơ sở logic (ĐH Công nghệ Hồ Chí Minh)
lượt xem 41
download
Chương 1 "Cơ sở logic" thuộc bài giảng Toán rời rạc giới thiệu đến các bạn những nội dung về mệnh đề, dạng mệnh đề, vị từ, lượng từ, quy tắc suy luận, nguyên lý quy nạp,... Mời các bạn cùng tham khảo nội dung bài giảng để có thêm tài liệu phục vụ nhu cầu học tập và giảng dạy.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Toán rời rạc: Chương 1 - Cơ sở logic (ĐH Công nghệ Hồ Chí Minh)
- Giới thiệu TOÁN RỜI RẠC luyen.hutech@gmail.com http://www.math.hcmus.edu.vn/∼luyen/trrhutech FB: fb.com/trrhutech Trường Đại Học Công Nghệ TP Hồ Chí Minh luyen.hutech@gmail.com Toán Rời Rạc 22/02/2016 1/69
- Tài liệu 1 Giáo trình: Toán Rời Rạc - Tài liệu lưu hành tại HUTECH 2 Tham khảo thêm: - Nguyễn Hữu Anh, Toán Rời Rạc, Nhà Xuất Bản Lao Động 2001 - Kenneth H. Rosen, Discrete mathematics and its applications, Seventh Edition, 2011 Thang điểm đánh giá - Điểm danh 10% - Giữa kỳ 20% (thi vào buổi thứ 8) - Thi cuối kỳ 70% Lưu ý. Trong quá trình học, một số bạn sẽ được gọi lên bảng làm bài. Tùy theo bài làm mà có được xem xét cộng thêm điểm vào điểm giữa kỳ hay không. luyen.hutech@gmail.com Toán Rời Rạc 22/02/2016 2/69
- Nội quy - Giữ trật tự - Chuyển điện thoại sang chế độ im lặng và không sử dụng điện thoại trong lớp - Đi học phải có giấy và viết luyen.hutech@gmail.com Toán Rời Rạc 22/02/2016 3/69
- TOÁN RỜI RẠC - HK2 - NĂM 2015-2016 Nội dung môn học gồm 5 chương 1. Cơ sở logic 2. Tập hợp và ánh xạ 3. Phép đếm 4. Quan hệ 5. Hàm Boole luyen.hutech@gmail.com Toán Rời Rạc 22/02/2016 4/69
- TOÁN RỜI RẠC - HK2 - NĂM 2015-2016 Chương 1 CƠ SỞ LOGIC luyen.hutech@gmail.com http://www.math.hcmus.edu.vn/∼luyen/trrhutech FB: fb.com/trrhutech Trường Đại Học Công Nghệ TP Hồ Chí Minh luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 5/69
- Nội dung Chương 1. CƠ SỞ LOGIC 1. Mệnh đề 2. Dạng mệnh đề 3. Vị từ, lượng từ 4. Quy tắc suy luận 5. Nguyên lý quy nạp luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 6/69
- 1.1. Mệnh đề 1 Định nghĩa và chân trị của mệnh đề 2 Phân loại mệnh đề 3 Các phép toán trên mệnh đề luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 7/69
- 1.1.1. Định nghĩa và chân trị của mệnh đề Định nghĩa. Mệnh đề là một phát biểu có giá trị chân lý xác định, đúng hoặc sai. Nhận xét. Câu hỏi, câu cảm thán, mệnh lệnh không là mệnh đề. Ví dụ. Phát biểu nào sau đây là mệnh đề a) Mặt trời quay quanh trái đất b) 1 + 1 = 2 c) Hôm nay trời đẹp quá! (không là mệnh đề) d) Học bài đi! (không là mệnh đề) e) 3 là số lẻ phải không? (không là mệnh đề) Chúng ta dùng các ký hiệu P, Q, R, . . . để chỉ mệnh đề. luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 8/69
- Chân trị của mệnh đề Một mệnh đề chỉ có thể đúng hoặc sai. Khi mệnh đề P đúng ta nói P có chân trị đúng, ngược lại ta nói P có chân trị sai. Chân trị đúng và chân trị sai sẽ được ký hiệu lần lượt là 1 (hay Đ, T ) và 0 (hay S, F ) Ví dụ. Kiểm tra các phát biểu sau có phải là mệnh đề không? Nếu có, hãy xác định chân trị. a) Paris là thành phố của Mỹ. b) n là số tự nhiên. c) Con nhà ai mà xinh thế! d) 3 là số nguyên tố. e) Toán rời rạc là môn bắt buộc của ngành Tin học. f) Bạn có khỏe không? g) x2 + 1 luôn dương. luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 9/69
- 1.1.2. Phân loại mệnh đề Mệnh đề gồm 2 loại: 1 Mệnh đề phức hợp: là mệnh đề được xây dựng từ các mệnh đề khác nhờ liên kết bằng các liên từ (và, hay, khi và chỉ khi,...) hoặc trạng từ “không”. 2 Mệnh đề sơ cấp (nguyên thủy): Là mệnh đề không thể xây dựng từ các mệnh đề khác thông qua liên từ hoặc trạng từ “không”. Ví dụ. Phân loại các mệnh đề sau: a) 2 không là số nguyên tố b) 2 là số nguyên tố c) Nếu 3 > 4 thì trời mưa d) An đang xem phim hay An đang học bài e) Hôm nay trời đẹp và 1 + 1 = 3 luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 10/69
- 1.1.3. Các phép toán trên mệnh đề a. Phép phủ định Phủ định của mệnh đề P được ký hiệu là ¬P hay P (đọc là “không” P hay “phủ định của” P ), là mệnh đề được định bởi: ¬P đúng ⇔ P sai. Bảng chân trị : P ¬P 1 0 0 1 Ví dụ. 1 P =“2 là số nguyên tố”⇒ ¬P = “2 không là số nguyên tố” 2 Q =“1 > 2”⇒ ¬Q= “1 ≤ 2” luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 11/69
- b. Phép nối liền (hội, giao) Phép nối liền của hai mệnh đề P và Q được kí hiệu bởi P ∧ Q (đọc là “P và Q”), là mệnh đề được định bởi: P ∧ Q đúng ⇔ P và Q đồng thời đúng. Bảng chân trị : P Q P ∧Q 0 0 0 0 1 0 1 0 0 1 1 1 Ví dụ. Xác định chân trị của các mệnh đề sau: a) 3 > 4 và Trần Hưng Đạo là vị tướng b) 2 là số nguyên tố và là số chẵn c) An đang hát và uống nước luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 12/69
- c. Phép nối rời (tuyển, hợp) Phép nối rời của hai mệnh đề P và Q được kí hiệu bởi P ∨ Q (đọc là “P hay Q”), là mệnh đề được định bởi: P ∨ Q sai ⇔ P và Q đồng thời sai. Bảng chân trị : P Q P ∨Q 0 0 0 0 1 1 1 0 1 1 1 1 Ví dụ. Xác định chân trị của các mệnh đề sau: a) 3 > 4 hay Paris là thủ đô của Anh b) Mặt trời mọc ở hướng Đông hay 1 + 3 = 5 c) π > 4 hay trời không mưa d) 2 là số nguyên tố hay là số chẵn luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 13/69
- d. Phép kéo theo Mệnh đề P kéo theo Q của hai mệnh đề P và Q, kí hiệu bởi P → Q (đọc là “P kéo theo Q” hay “Nếu P thì Q” hay “P là điều kiện đủ của Q” hay “Q là điều kiện cần của P ”) là mệnh đề được định bởi: P → Q sai ⇔ P đúng và Q sai. Bảng chân trị: P Q P →Q 0 0 1 0 1 1 1 0 0 1 1 1 luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 14/69
- Ví dụ. Xác định chân trị của các mệnh đề sau: a) Nếu 1 = 2 thì tôi là người Việt Nam b) Nếu trái đất quay quanh mặt trời thì 1 + 3 = 5 c) π < 4 kéo theo 5 < 6 d) Nếu 2 + 1 = 0 thì tôi là chủ tịch nước e. Phép kéo theo hai chiều Mệnh đề P kéo theo Q và ngược lại của hai mệnh đề P và Q, ký hiệu bởi P ↔ Q (đọc là “P nếu và chỉ nếu Q” hay “P khi và chỉ khi Q” hay “P là điều kiện cần và đủ của Q”) là mệnh đề được định bởi: P ↔ Q đúng ⇔ P và Q có cùng chân trị. luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 15/69
- Bảng chân trị : P Q P ↔Q 0 0 1 0 1 0 1 0 0 1 1 1 Ví dụ. Xác định chân trị của các mệnh đề sau: a) 2 = 4 khi và chỉ khi 2 + 1 = 0 b) 6 chia hết cho 3 khi và chi khi 6 chia hết cho 2 c) London là một thành phố nước Anh nếu và chỉ nếu thành phố HCM là thủ đô của VN d) π > 4 là điều kiện cần và đủ của 5 < 6 luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 16/69
- 1.2. Dạng mệnh đề 1 Định nghĩa và chân trị của dạng mệnh đề 2 Sự tương đương logic 3 Các luật logic luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 17/69
- 1.2.1. Định nghĩa và chân trị của dạng mệnh đề Định nghĩa. Dạng mệnh đề là một biểu thức được cấu tạo từ: - Các mệnh đề (các hằng mệnh đề 0, 1) - Các biến mệnh đề p, q, r, . . . , tức là các biến lấy giá trị là các mệnh đề nào đó - Các phép toán ¬, ∧, ∨, →, ↔ và dấu đóng mở ngoặc (). Ví dụ. a) E(p, q) = ¬(¬p ∨ q) ∨ 1 b) F (p, q, r) = (p → q) ∨ ¬(q ∨ r) Định nghĩa. Bảng chân trị của dạng mệnh đề E(p, q, r) là bảng ghi tất cả các trường hợp chân trị có thể xảy ra đối với dạng mệnh đề E theo chân trị của các biến mệnh đề p, q, r. luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 18/69
- Ví dụ. Cho p, q, r là biến mệnh đề. Lập bảng chân trị của dạng mệnh đề sau E(p, q, r) = (p ∨ q) → r. Giải. p q r p ∨ q (p ∨ q) → r 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 Nhận xét. Nếu có n biến, bảng này sẽ có 2n dòng, chưa kể dòng tiêu đề. luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 19/69
- Độ ưu tiên các phép toán mệnh đề trong dạng mệnh đề Thứ tự ưu tiên lần như sau mức 1: ¬ mức 2: ∧, ∨ mức 3: →, ↔ Các phép toán trên cùng mức có cùng độ ưu tiên. Ví dụ. a) ¬p ∨ q → r ∨ s có nghĩa là ((¬p) ∨ q) → (r ∨ s). b) ¬p ∧ q ∨ r là nhập nhằng. Ta cần phải dùng các dấu ngoặc để chỉ rõ nghĩa. Ví dụ.(tự làm) Lập bảng chân trị của các dạng mệnh đề sau: a) A(p, q) = ¬(p ∧ q) ∧ p b) B(p, q, r) = p ∧ (q ∨ r) ↔ ¬q luyen.hutech@gmail.com Chương 1. Cơ sở logic 22/02/2016 20/69
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Toán rời rạc - Chương 5: Đại số Boole
12 p | 283 | 42
-
Bài giảng Toán rời rạc: Chương 1 - Phương pháp đếm
27 p | 196 | 25
-
Bài giảng Toán rời rạc - Chương 1: Cơ sở logic
20 p | 161 | 15
-
Bài giảng Toán rời rạc: Chương 3 - TS. Nguyễn Viết Đông
20 p | 182 | 10
-
Bài giảng Toán rời rạc: Chương 7 - TS. Nguyễn Viết Đông
42 p | 148 | 9
-
Bài giảng Toán rời rạc: Chương 2 - TS. Nguyễn Viết Đông
10 p | 115 | 8
-
Bài giảng Toán rời rạc - Chương 1: Cơ sở logic (Phạm Thế Bảo)
99 p | 96 | 8
-
Bài giảng Toán rời rạc - Chương 4: Đại Số Bool (Phạm Thế Bảo)
78 p | 82 | 7
-
Bài giảng Toán rời rạc: Chương 3 - Đại số Bool - Hàm Bool
11 p | 205 | 6
-
Bài giảng Toán rời rạc: Chương 1 - Nguyễn Lê Minh (2020)
47 p | 97 | 6
-
Bài giảng Toán rời rạc - Chương 2: Phép đếm (Phạm Thế Bảo)
68 p | 41 | 6
-
Bài giảng Toán rời rạc: Chương 2 - ThS. Trần Quang Khải
27 p | 54 | 4
-
Bài giảng Toán rời rạc: Chương 5 - Nguyễn Quỳnh Diệp
84 p | 42 | 4
-
Bài giảng Toán rời rạc: Chương 4 - Nguyễn Quỳnh Diệp
71 p | 53 | 3
-
Bài giảng Toán rời rạc: Chương 2 - Nguyễn Quỳnh Diệp
44 p | 39 | 3
-
Bài giảng Toán rời rạc: Chương 5 - Dr. Ngô Hữu Phúc
50 p | 13 | 3
-
Bài giảng Toán rời rạc: Chương 4 - TS. Đặng Xuân Thọ
50 p | 47 | 2
-
Bài giảng Toán rời rạc: Chương 5 - ThS. Trần Quang Khải
14 p | 26 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn