Bài giảng Toán rời rạc: Chương 6 - Nguyễn Đức Nghĩa
lượt xem 7
download
Bài giảng Toán rời rạc - Chương 6: Bài toán luồng cực đại" trình bày các nội dung: Bài toán luồng cực đại trong mạng; lát cắt, đường tăng luồng, định lý về luồng cực đại và lát cắt hẹp nhất, thuật toán Ford-Fulkerson, thuật toán Edmond-Karp, các ứng dụng. Mời các bạn cùng tham khảo nội dung chi tiết.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Toán rời rạc: Chương 6 - Nguyễn Đức Nghĩa
- Chương 6 Bài toán luồng cực đại Maximum Flow Problem c v 3/3 4/6 1/1 t 4/7 s 3/3 w 1/1 1/9 3/5 3/5 u z 2/2 BM Khoa học Máy tính • TOÁN RỜI RẠC • Fall 2005 • Nguyễn Đức Nghĩa
- Bài toán luồng cực đại Maximum Flow Problem c v 3/3 4/6 1/1 t 4/7 s 3/3 w 1/1 1/9 3/5 3/5 u z 2/2 BM Khoa học Máy tính • TOÁN RỜI RẠC • Fall 2005 • Nguyễn Đức Nghĩa
- NỘI DUNG Bài toán luồng cực đại trong mạng. Lát cắt, Đường tăng luồng. Định lý về luồng cực đại và lát cắt hẹp nhất. Thuật toán Ford-Fulkerson Thuật toán Edmond-Karp. Các ứng dụng Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 3
- L. R. Ford; D. R. Fulkerson (1962). Flows in Networks. Princeton, NJ: Princeton University Press. Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 4
- Lester Randolph Ford, Jr (1927 ~) Lester Randolph Ford, Jr. (born September 23, 1927), son of Lester R. Ford, Sr., is an American mathematician specializing in network flow programming. His 1956 paper with D. R. Fulkerson on the maximum flow problem established the maxflow-mincut theorem. Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 5
- Delbert Ray Fulkerson (August 14, 1924 - January 10, 1976) Delbert Ray Fulkerson was a mathematician who co- developed the Ford-Fulkerson algorithm, one of the most used algorithms to compute maximal flows in networks. Ph.D, Univ. of Wisconsin-Madison, 1951. In 1956, he published his famous paper on the Ford- Fulkerson algorithm together with Lester Randolph Ford. In 1979, the renowned Fulkerson Prize was established which is now awarded every three years for outstanding papers in discrete mathematics jointly by the Mathematical Programming Society and the American Mathematical Society. Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 6
- Network Flows Ravindra K. Ahuja, Thomas Magnanti and James Orlin. Network Flows. Prentice Hall, 1993. 11 42 21 1 s 2 t 32 31 864 pages! 11 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 2008/5/2
- Mạng và luồng trong mạng Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 8
- MẠNG (Network) Mạng là đồ thị có hướng G = (V,E) : Có duy nhất một đỉnh s không có cung đi vào gọi là đỉnh phát (nguồn) và duy nhất một đỉnh t không có cung đi ra gọi là đỉnh thu (đích). Mỗi cung e của G được gắn với một số không âm c(e) được gọi là khả năng thông qua của e. Ví dụ: v 3 6 1 7 t s 3 w 1 9 5 5 u z 2 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 9
- LUỒNG TRONG MẠNG Định nghĩa. Luồng f trong mạng G=(V,E) là phép gán số f(e) cho mỗi cạnh e ( f(e) được gọi là luồng trên cạnh e) thoả mãn các điều kiện: 1) Hạn chế về khả năng thông qua (Capacity Rule): Với mỗi cung e, 0 f (e) c(e) 2) Điều kiện cân bằng luồng (Conservation Rule): Với mỗi v s, t f ( e) f ( e) eE - ( v ) eE + ( v ) trong đó E-(v) và E+(v) tương ứng là tập các cung đi vào và đi ra khỏi đỉnh v. Định nghĩa. Giá trị của luồng f là (*) val ( f ) f (e ) f (e ) eE + ( s ) eE - ( t ) (Đẳng thức (*) thu được bằng cách cộng tất cả các điều kiện cân bằng luồng.) Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 10
- LUỒNG TRONG MẠNG – Ví dụ Ví dụ: v 1/3 2/6 1/1 t 3/7 s 3/3 w 1/1 2/9 4/5 3/5 u z 2/2 Trong 2 số viết bên mỗi cạnh: giá trị luồng trên cạnh là số màu đỏ, số còn lại là khả năng thông qua. Các điều kiện 1) và 2) được thoả mãn => f là luồng trên mạng. Giá trị luồng là: 8 = f(s,v) + f(s,u) + f(s,w) = f(v,t) + f(w,t) + f(z,t) Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 11
- Bài toán luồng cực đại Luồng trong mạng G được gọi là luồng cực đại nếu trong số tất cả các luồng trong mạng G v 1/3 2/6 nó là luồng có giá trị lớn nhất 1/1 3/7 t s 3/3 Bài toán tìm luồng cực đại w 1/1 2/9 4/5 trong mạng G được gọi là bài 3/5 toán luồng cực đại u z 2/2 Luồng với giá trị 8 = 2 + 3 + 3 = 1 + 3 + 4 v 3/3 4/6 1/1 t 3/7 s 3/3 w 1/1 2/9 4/5 3/5 u z 2/2 Luồng cực đại có giá trị 10 = 4 + 3 + 3 = 3 + 3 + 4 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 12
- Mạng Mạng: G = (V, E, s, t, c) . (V, E) = đồ thị có hướng, không có cung lặp. Có hai đỉnh đặc biệt: s = phát/nguồn (source), t = thu/đích (sink). c(e) = khả năng thông qua (capacity) của cung e. 2 9 5 10 15 15 10 4 s 5 3 8 6 10 t 4 6 15 10 Capacity 15 Toán rời rạc – Fall 2005 4 30 7 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 13
- Luồng Luồng từ s đến t là hàm f: E R thoả mãn: Với mỗi e E: 0 f(e) c(e) (hạn chế kntq) Với mỗi v V – {s, t}: e vµo v f ( e) e ra khái v f ( e) (cân bằng luồng) - f (e) : f ( w, v) + f (e) : w : ( v, w) E f (v, w) eE ( v ) w : ( w,v ) E eE ( v ) 0 2 9 5 4 0 0 10 15 15 0 10 4 4 0 4 4 s 5 3 8 6 10 t 0 0 kntq 4 0 6 15 0 10 15 Capacity 0 Luồng 4 30 7 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Flow 0 Bộ môn KHMT 14
- Luồng Bài toán luồng cực đại: Tìm luồng có tổng luồng trên các cạnh đi ra khỏi đỉnh phát là lớn nhất: val ( f ) f (e ) f (e ) eE + ( s ) eE - (t ) 0 2 9 5 4 0 0 10 15 15 0 10 4 4 0 4 4 s 5 3 8 6 10 t 0 0 kntq 4 0 6 15 0 10 15 Luồng 0 Giá trị = 4 Toán rời rạc – Fall 2005 4 30 7 NGUYỄN ĐỨC NGHĨA 0 Bộ môn KHMT 15
- Luồng Luồng có giá trị 24 trong mạng: 6 2 9 5 10 6 0 10 15 15 0 10 4 4 3 8 8 s 5 3 8 6 10 t 1 10 4 0 6 15 0 10 kntq 15 11 Giá trị = 24 Luồng 4 30 7 11 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 16
- Luồng Luồng có giá trị 28 trong mạng: 9 2 9 5 10 9 1 10 15 15 0 10 4 0 4 8 9 s 5 3 8 6 10 t 4 10 4 0 6 15 0 10 kntq 15 14 Giá trị = 28 Luồng 4 30 7 14 Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 17
- Luồng trong mạng Mạng Đỉnh Cung Luồng trạm giao dịch, cáp nối, cáp quang, voice, video, truyền thông máy tính, vệ tinh packets cổng, registers, mạng điện dây dẫn dòng điện processors cơ khí joints rods, beams, springs heat, energy hồ chứa, trạm bơm, dòng nước, thuỷ lợi đường ống nguồn nước chất lỏng tài chính nhà băng giao dịch tiền hàng hoá, sân bay, ga tàu, đường cao tốc, ray, giao thông phương tiện, giao lộ đường bay hành khách hoá học sites bonds energy Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 18
- Luồng trong mạng Mạng Đỉnh Cung Luồng telephone exchanges, cables, fiber optics, voice, video, communication computers, satellites microwave relays packets gates, registers, circuits wires current processors mechanical joints rods, beams, springs heat, energy reservoirs, pumping hydraulic pipelines fluid, oil stations, lakes financial stocks, currency transactions money freight, airports, rail yards, highways, railbeds, transportation vehicles, street intersections airway routes passengers chemical sites bonds energy Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 19
- Các ứng dụng/qui dẫn Network connectivity. Network reliability. Bipartite matching. Security of statistical data. Data mining. Distributed computing. Open-pit mining. Egalitarian stable matching. Airline scheduling. Distributed computing. Image processing. Many many more . . . Project selection. Baseball elimination. Toán rời rạc – Fall 2005 NGUYỄN ĐỨC NGHĨA Bộ môn KHMT 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Toán rời rạc - Chương 2: Quan hệ hai ngôi
21 p | 2675 | 171
-
Bài giảng Toán rời rạc - Chương 1: Quan hệ
37 p | 838 | 142
-
Bài giảng Toán rời rạc: Chương 5 - Nguyễn Đức Nghĩa
78 p | 325 | 60
-
Bài giảng Toán rời rạc - Chương 4: Bài toán tối ưu tổ hợp
93 p | 447 | 47
-
Bài giảng Toán rời rạc - Chương 4: Đồ thị
114 p | 213 | 36
-
Bài giảng Toán rời rạc - Chương 3: Lý thuyết tổ hợp
62 p | 412 | 34
-
Bài giảng Toán rời rạc: Chương 2 - Nguyễn Viết Hưng, Trần Sơn Hải
64 p | 210 | 19
-
Bài giảng Toán rời rạc - Chương 1: Cơ sở logic (Phạm Thế Bảo)
99 p | 96 | 8
-
Bài giảng Toán rời rạc - Chương 4: Đại Số Bool (Phạm Thế Bảo)
78 p | 82 | 7
-
Bài giảng Toán rời rạc - Chương 2: Phép đếm (Phạm Thế Bảo)
68 p | 41 | 6
-
Bài giảng Toán rời rạc: Chương 2 - ThS. Trần Quang Khải
27 p | 55 | 4
-
Bài giảng Toán rời rạc: Chương 5 - Nguyễn Quỳnh Diệp
84 p | 45 | 4
-
Bài giảng Toán rời rạc: Chương 4 - Nguyễn Quỳnh Diệp
71 p | 54 | 3
-
Bài giảng Toán rời rạc: Chương 2 - Nguyễn Quỳnh Diệp
44 p | 40 | 3
-
Bài giảng Toán rời rạc: Chương 5 - Dr. Ngô Hữu Phúc
50 p | 13 | 3
-
Bài giảng Toán rời rạc: Chương 4 - TS. Đặng Xuân Thọ
50 p | 47 | 2
-
Bài giảng Toán rời rạc: Chương 5 - ThS. Trần Quang Khải
14 p | 26 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn