intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập ôn thi Toán: Lượng giác

Chia sẻ: Abcdef_37 Abcdef_37 | Ngày: | Loại File: PDF | Số trang:16

135
lượt xem
33
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong các đề thi Đại học chủ đề này rất được quan tâm vì phần này khá hay và cũng khó, đa phần học sinh thường bỏ qua câu này, nhưng với phần tài liệu này sẽ cung cấp những bài tập điển hình giúp các em đạt được điểm trọn vẹn trong phần này.Mời các bạn tham khảo nhé

Chủ đề:
Lưu

Nội dung Text: Bài tập ôn thi Toán: Lượng giác

  1. C höông 2: PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CÔ BAÛ N ⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π π ⎧ ⎪u ≠ + kπ ( k, k ' ∈ Z ) tgu = tgv ⇔ ⎨ 2 ⎪u = v + k ' π ⎩ ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π π Ñ aë c bieä t : sin u = 0 ⇔ u = kπ cos u = 0 ⇔ u = + kπ 2 π + k2π ( k ∈ Z) cos u = 1 ⇔ u = k2π ( k ∈ Z ) sin u = 1 ⇔ u = 2 π cos u = −1 ⇔ u = π + k2π sin u = −1 ⇔ u = − + k2π 2 C huù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 B aø i 28 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] n ghieä m ñuù ng phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * ) T a coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0 ⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaïi vì cos x ≤ 1) π + kπ ( k ∈ Z ) ⇔ x= 2 π T a coù : x ∈ [ 0,14] ⇔ 0 ≤ + kπ ≤ 14 2 1 14 1 π π ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ − ≈ 3, 9 2 2 2 π2 ⎧ π 3π 5π 7π ⎫ M aø k ∈ Z n eâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ B aø i 29 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) G iaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *)
  2. T a coù (*) ⇔ ( 2 cos x − 1) ( 2 sin x + cos x ) = sin x ( 2 cos x − 1) ⇔ ( 2 cos x − 1) ⎡( 2 sin x + cos x ) − sin x ⎤ = 0 ⎣ ⎦ ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0 1 ⇔ cos x = ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 B aø i 30 : G iaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) T a coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0 5x 3x 5x x ⇔ 2 cos .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ 2 cos ⎜ cos + cos ⎟ = 0 ⇔ 2⎝ 2 2⎠ 5x x 4 cos cos x cos = 0 ⇔ 2 2 5x x cos = 0 ∨ cos x = 0 ∨ cos = 0 ⇔ 2 2 5x π xπ π = + kπ ∨ x = + kπ ∨ = + kπ ⇔ 2 2 2 22 π 2kπ π ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) x= + ⇔ 5 5 2 B aø i 31: G iaûi phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * ) 1 1 1 1 (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) T a coù (*) ⇔ 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x ⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ∨ x = + kπ , k ∈ ⇔ x= + ∨x= + 4 2 10 5 2 B aø i 32 : C ho phöông trình ⎛π x⎞ 7 ( *) sin x.cos 4x − sin 2 2x = 4 sin 2 ⎜ − ⎟ − ⎝4 2⎠ 2 T ìm caù c nghieä m cuû a phöông trình thoû a : x − 1 < 3
  3. 1 ⎤7 ⎡ π (1 − cos 4x ) = 2 ⎢1 − cos ⎛ − x ⎞ ⎥ − T a coù : (*)⇔ sin x.cos 4x − ⎜ ⎟ 2 ⎝2 ⎠⎦ 2 ⎣ 11 3 sin x cos 4x − + cos 4x = − − 2sin x ⇔ 22 2 1 sin x cos 4x + cos 4x + 1 + 2sin x = 0 ⇔ 2 1⎞ 1⎞ ⎛ ⎛ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 ⇔ 2⎠ 2⎠ ⎝ ⎝ 1⎞ ⎛ ( cos 4x + 2) ⎜ sin x + ⎟ = 0 ⇔ 2⎠ ⎝ π ⎡ ⎡cos 4x = −2 ( loaïi ) ⎢ x = − 6 + k 2π ⎢ ⇔ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ x = 7π + 2hπ ⎜ ⎟ ⎢ 2 ⎝ 6⎠ ⎣ ⎢ 6 ⎣ coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4 Ta π V aä y : −2 < − + k2π < 4 6 11 21 π π ⇔ − 2 < 2kπ < 4 + −
  4. 3 sin 4x = sin3 4x ⇔ 4 ⇔ 3sin 4x − 4 sin3 4x = 0 ⇔ s in12x = 0 kπ ( k ∈ Z) ⇔ 12x = kπ ⇔ x= 12 B aø i 34 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2002) G iaû i phöông trình : sin 2 3x − cos2 4x = sin 2 5x − cos2 6a ( * ) T a coù : (*)⇔ 1 1 1 1 (1 − cos 6x ) − (1 + cos 8x ) = (1 − cos10x ) − (1 + cos12x ) 2 2 2 2 ⇔ cos 6x + cos 8x = cos10x + cos12x ⇔ 2 cos7x cos x = 2 cos11x cos x ⇔ 2 cos x ( cos 7x − cos11x ) = 0 ⇔ cos x = 0 ∨ cos7x = cos11x π ⇔ x = + kπ ∨ 7x = ±11x + k 2π 2 kπ kπ π ⇔ x = + kπ ∨ x = − ∨x= ,k ∈ 2 2 9 B aø i 35 : G iaû i phöông trình ( sin x + sin 3x ) + sin 2x = ( cos x + cos 3x ) + cos 2x ⇔ 2 sin 2x cos x + sin 2x = 2 cos 2x cos x + cos 2x ⇔ sin 2x ( 2 cos x + 1) = cos 2x ( 2 cos x + 1) ⇔ ( 2 cos x + 1) ( sin 2x − cos 2x ) = 0 1 2π ⇔ cos x = −= cos ∨ sin 2x = cos 2x 2 3 2π π ⇔ x=± + k2π ∨ tg2x = 1 = tg 3 4 2π π π + k2π ∨ x = + k , ( k ∈ Z ) ⇔ x=± 3 8 2 B aø i 36: G iaû i phöông trình cos 10x + 2 cos2 4x + 6 cos 3x. cos x = cos x + 8 cos x. cos3 3x ( * ) T a coù : (*)⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x ) ⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) B aø i 37 : G iaû i phöông trình
  5. 4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * ) T a coù : (*) ⇔ sin x ( 4 sin 2 x − 3) − cos x ( sin 2 x − 3 cos2 x ) = 0 ⇔ sin x ( 4 sin 2 x − 3) − cos x ⎡sin 2 x − 3 (1 − sin 2 x ) ⎤ = 0 ⎣ ⎦ ⇔ ( 4 sin x − 3) ( sin x − cos x ) = 0 2 ⇔ ⎡ 2 (1 − cos 2x ) − 3⎤ ( sin x − cos x ) = 0 ⎣ ⎦ 1 2π ⎡ cos 2x = − = cos ⇔⎢ 2 3 ⎢ ⎣sin x = cos x π ⎡ 2π x = ± + kπ ⎡ ⎢ ⎢2x = ± 3 + k2π 3 ( k ∈ Z) ⇔ ⇔⎢ ⎢ ⎢ x = π + kπ ⎣ tgx = 1 ⎢ 4 ⎣ B aø i 38 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B naê m 2005) G iaû i phöông trình : sin x + cos x + 1 + sin 2x + cos 2x = 0 ( * ) T a coù : (*) ⇔ sin x + cos x + 2sin x cos x + 2 cos2 x = 0 ⇔ sin x + cos x + 2 cos x ( sin x + cos x ) = 0 ⇔ ( sin x + cos x ) (1 + 2 cos x ) = 0 ⎡sin x = − cos x ⇔⎢ ⎢cos 2x = − 1 = cos 2π 2 3 ⎣ ⎡ tgx = −1 ⇔⎢ ⎢ x = ± 2π + k 2π 3 ⎣ π ⎡ ⎢ x = − 4 + kπ ( k ∈ Z) ⇔⎢ ⎢ x = ± 2π + k2π ⎢ 3 ⎣ B aø i 39 : G iaû i phöông trình ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 cos2 x = 3 ( *) T a coù : (*) ⇔ ( 2 sin x + 1) ( 3 cos 4x + 2 sin x − 4 ) + 4 (1 − sin 2 x ) − 3 = 0 ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + (1 + 2 sin x ) (1 − 2 sin x ) = 0 ⇔ ( 2 sin x + 1) ⎡ 3 cos 4x + 2 sin x − 4 + (1 − 2 sin x ) ⎤ = 0 ⎣ ⎦ ⇔ 3 ( cos 4x − 1)( 2 sin x + 1) = 0 1 ⎛ π⎞ ⇔ cos 4x = 1 ∨ sin x = − = sin ⎜ − ⎟ 2 ⎝ 6⎠
  6. 7π π ⇔ 4x = k2π ∨ x = − + k2π ∨ x = + k2π 6 6 kπ 7π π + k2π, ( k ∈ Z) ⇔ x= ∨ x = − + k2π ∨ x = 2 6 6 B aø i 40: G iaû i phöông trình sin 6 x + cos6 x = 2 ( sin 8 x + cos8 x ) ( * ) T a coù : (*) ⇔ sin6 x − 2sin8 x + cos6 x − 2 cos8 x = 0 ⇔ sin 6 x (1 − 2 sin 2 x ) − cos6 x ( 2 cos2 x − 1) = 0 ⇔ sin6 x cos 2x − cos6 x. cos 2x = 0 ⇔ cos 2x ( sin 6 x − cos6 x ) = 0 ⇔ cos 2x = 0 ∨ sin6 x = cos6 x ⇔ cos 2x = 0 ∨ tg 6 x = 1 π ⇔ 2x = ( 2k + 1) ∨ tgx = ±1 2 π π ⇔ x = ( 2k + 1) ∨ x = ± + kπ 4 4 π kπ ⇔ x= + ,k ∈ 4 2 B aø i 41 : G iaû i phöông trình 1 ( *) cos x.cos 2x.cos 4x.cos 8x = 16 T a thaá y x = kπ k hoâ n g laø nghieä m cuû a (*) vì luù c ñoù cos x = ±1, cos 2x = cos 4x = cos 8x = 1 1 ( *) thaøn h : ±1 = v oâ nghieä m 16 Nhaâ n 2 veá cuû a (*) cho 16sin x ≠ 0 t a ñöôï c (*) ⇔ (16 sin x cos x ) cos 2x.cos 4x.cos 8x = sin x v aø sin x ≠ 0 ⇔ ( 8 sin 2x cos 2x ) cos 4x.cos 8x = sin x v aø sin x ≠ 0 ⇔ ( 4 sin 4x cos 4x ) cos 8x = sin x v aø sin x ≠ 0 ⇔ 2 sin 8x cos 8x = sin x v aø sin x ≠ 0 ⇔ sin16x = sin x v aø sin x ≠ 0 k2π π kπ , ( k ∈ Z) ⇔x = ∨x= + 15 17 17 D o : x = hπ khoâ n g laø nghieä m neâ n k ≠ 15m v aø 2k + 1 ≠ 17n ( n, m ∈ Z ) B aø i 42: G iaû i phöông trình 8cos ⎛ x + π⎞ = cos 3x ( * ) 3 ⎜ ⎟ ⎝ 3⎠ π π Ñ aët t = x + ⇔x=t− 3 3
  7. T hì cos 3x = cos ( 3t − π ) = cos ( π − 3t ) = − cos 3t V aä y (*) thaø n h 8 cos3 t = − cos 3t ⇔ 8 cos3 t = −4 cos3 t + 3 cos t ⇔ 12 cos3 t − 3 cos t = 0 ⇔ 3 cos t ( 4 cos2 t − 1) = 0 ⇔ 3 cos t ⎡2 (1 + cos 2t ) − 1⎤ = 0 ⎣ ⎦ ⇔ cos t ( 2 cos 2t + 1) = 0 1 2π ⇔ cos t = 0 ∨ cos 2t = − = cos 2 3 2π π ⇔ t = ( 2k + 1) ∨ 2t = ± + k2π 2 3 π π ⇔ t = + kπ ∨ t = ± + kπ 2 3 π M aø x = t − 3 2π π + kπ, ( vôùik ∈ Z ) V aä y (*) ⇔ x = + k2π ∨ x = kπ ∨ x = 6 3 G hi chuù : K hi giaû i caù c phöông trình löôï n g giaù c coù chöù a tgu, cotgu, coù aå n ôû maã u , hay chöù a caê n baä c chaü n ... ta phaû i ñaë t ñieà u kieä n ñeå phöông trình xaù c ñònh. Ta seõ duø n g caù c caù c h sau ñaâ y ñeå kieå m tra ñieà u kieä n xem coù nhaä n nghieä m hay khoâ n g. + Thay caùc giaù trò x tìm ñöôï c vaø o ñieà u kieä n thöû laï i xem coù thoû a Hoaë c + Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø caù c ngoï n cung tìm ñöôïc treâ n cuø n g moä t ñöôø n g troø n löôï n g giaù c . Ta seõ loaï i boû ngoï n cung cuû a nghieä m khi coù truø n g vôù i ngoï n cung cuû a ñieà u kieä n . Hoaë c + So vôi caù c ñieà u kieä n trong quaù trình giaûi phöông trình. B aø i 43 : G iaû i phöông trình tg 2 x − tgx.tg3x = 2 ( * ) π hπ ⎧cos x ≠ 0 ⇔ cos3x ≠ 0 ⇔ x ≠ + Ñ ieà u kieä n ⎨ 6 3 ⎩cos 3x = 4 cos x − 3 cos x ≠ 0 3 L uù c ñoù ta coù (*) ⇔ tgx ( tgx − tg3x ) = 2 sin x ⎛ sin x sin 3x ⎞ ⎟=2 ⇔ − ⎜ cos x ⎝ cos x cos 3x ⎠ ⇔ sin x ( sin x cos 3x − cos x sin 3x ) = 2 cos2 x cos 3x ⇔ sin x sin ( −2x ) = 2 cos2 x. cos 3x ⇔ −2 sin2 x cos x = 2 cos2 x cos 3x ⇔ − sin2 x = cos x cos 3x ( do cos x ≠ 0 ) 1 1 ⇔ − (1 − cos 2x ) = ( cos 4x + cos 2x ) 2 2 ⇔ cos 4x = −1 ⇔ 4x = π + k2π
  8. π kπ ( k ∈ Z) ⇔x = + 4 2 s o vôù i ñieà u kieä n π kπ ⎛ 3π 3kπ ⎞ 2 ≠ 0 ( nhaän ) Caù c h 1 : Khi x = + t hì cos 3x = cos ⎜ + ⎟=± 4 2 ⎝4 2⎠ 2 C aù c h 2 : Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø ngoï n cung nghieä m ta thaá y khoâ n g coù ngoï n cung naø o truø n g nhau. Do ñoù : π kπ (*) ⇔ x = + 4 2 L öu yù caù c h 2 raá t maá t thôøi gian Caù c h 3 : 3π 3kπ π Neá u 3x = = + hπ + 4 2 2 T hì 3 + 6k = 2 + 4h ⇔ 1 = 4h − 6k 1 ⇔ = 2h − 3k ( voâ lyù vì k, h ∈ Z ) 2 B aø i 44: G iaûi phöông trình 11 ( *) tg 2 x + cot g 2 x + cot g 2 2x = 3 ⎧cos x ≠ 0 ⎪ Ñ ieà u kieä n ⎨sin x ≠ 0 ⇔ sin 2x ≠ 0 ⎪sin 2x ≠ 0 ⎩ Do ñoù : ⎛1 ⎞⎛1 ⎞⎛ 1 ⎞ 11 − 1⎟ + ⎜ − 1⎟ + ⎜ − 1⎟ = (*) ⇔ ⎜ ⎝ cos x ⎠ ⎝ sin x ⎠ ⎝ sin 2x 3 2 2 2 ⎠ 1 1 1 20 + + = ⇔ cos x sin x 4 sin x cos x 3 2 2 2 2 4 sin x + 4 cos x + 1 20 2 2 = ⇔ 4 sin2 x cos2 x 3 5 20 = ⇔ sin2 2x 3 3 ⇔ sin2 2x = ( nhaä n do sin2x ≠ 0 ) 4 1 3 ⇔ (1 − cos 4x ) = 2 4 1 2π ⇔ cos 4x = − = cos 2 3 2π ⇔ 4x = ± + k2π 3 π kπ ( k ∈ Z) ⇔x = ± + 6 2
  9. 2 C huù yù : Coù theå deã daø n g chöù n g minh : tgx + cot gx = sin 2x ⎞ 11 ⎛1 V aä y (*) ⇔ ( tgx + cot gx ) − 2 + ⎜ 2 − 1⎟ = ⎝ sin x 3 2 ⎠ 5 20 = ⇔ sin 2x 3 2 B aø i 45 : ( Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2003) G iaû i phöông trình ⎛x π⎞ x sin 2 ⎜ − ⎟ tg 2 x − cos2 = 0 ( *) ⎝2 4⎠ 2 Ñ ieà u kieä n : cos x ≠ 0 ⇔ sin x ≠ ±1 luù c ñoù : 1⎡ π ⎞ ⎤ sin 2 x 1 ⎛ − [1 + cos x ] = 0 (*) ⇔ ⎢1 − cos ⎜ x − ⎟ ⎥ 2⎣ 2 ⎠ ⎦ cos2 x 2 ⎝ (1 − sin x ) (1 − cos2 x ) − (1 + cos x ) = 0 ⇔ 1 − sin 2 x 1 − cos2 x − (1 + cos x ) = 0 ⇔ 1 + sin x ⎡ 1 − cos x ⎤ ⇔ (1 + cos x ) ⎢ − 1⎥ = 0 ⎣ 1 + sin x ⎦ ⇔ (1 + cos x ) ( − cos x − sin x ) = 0 ⎡cos x = −1 ( nhaändo cos x ≠ 0 ) ⇔⎢ ⎣ tgx = −1 ⎡ x = π + k2π ⇔⎢ ⎢ x = − π + kπ 4 ⎣ B aø i 46 : G iaû i phöông trình sin 2x ( cot gx + tg2x ) = 4 cos2 x ( * ) ⎧cos x ≠ ±1 ⎧sin x ≠ 0 ⎧sin x ≠ 0 ⎪ Ñ ieà u kieä n : ⎨ ⇔ ⇔ ⎨ 2 ⎨ ⎩cos 2x ≠ 0 ⎩2 cos x − 1 ≠ 0 2 ⎪cos x ≠ ± 2 ⎩ cos x sin 2x T a coù : cot gx + tg2x = + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x cos x ⎛ ⎞ L uù c ñoù : (*) ⇔ 2 sin x cos x ⎜ ⎟ = 4 cos x 2 ⎝ sin x cos 2x ⎠
  10. 2 cos2 x = 4 cos2 x ( Do sin x ≠ 0 ) ⇔ cos 2x ⎡ ⎛ ⎞ 2 ⎡cos x = 0 ⎢cos x = 0 ⎜ Nhaän do cos x ≠ vaø ≠ ±1 ⎟ ⎜ ⎟ 2 ⇔⎢ 1 ⇔⎢ ⎝ ⎠ ⎢ =2 ⎢ 1 π ⎣ cos 2x ⎢cos 2x = = cos , ( nhaän do sin x ≠ 0) 2 3 ⎣ π ⎡ ⎢ x = 2 + kπ ( k ∈ Z) ⇔⎢ ⎢ x = ± π + kπ ⎢ 6 ⎣ B aø i 47 : G iaû i phöông trình: cot g 2 x − tg 2 x = 16 (1 + cos 4x ) cos 2x cos2 x sin 2 x T a coù : cot g 2 x − tg 2 x = − sin2 x cos2 x cos4 x − sin4 x 4 cos 2x = = sin2 x cos2 x sin2 2x ⎧sin 2x ≠ 0 ⇔ sin 4x ≠ 0 Ñ ieà u kieä n : ⎨ ⎩cos 2x ≠ 0 4 = 16 (1 + cos 4x ) L uù c ñoù (*) ⇔ sin2 2x ⇔ 1 = 4 (1 + cos 4x ) sin2 2x ⇔ 1 = 2 (1 + cos 4x ) (1 − cos 4x ) ( ) ⇔ 1 = 2 1 − cos2 4x = 2 sin 2 4x 1 ( nhaän do sin 4x ≠ 0) ⇔ sin2 4x = 2 1 1 ⇔ (1 − cos 8x ) = 2 2 π kπ ⇔ cos 8x = 0 ⇔ x = ,k ∈ + 16 8 7 π⎞ ⎛π ⎛ ⎞ cot g ⎜ x + ⎟ cot g ⎜ − x ⎟ ( *) B aø i 48 : Giaûi phöông trình: sin 4 x + cos4 x = 8 3⎠ ⎝6 ⎝ ⎠ ⎧ ⎧ π⎞ π⎞ ⎛ ⎛ ⎪sin ⎜ x + 3 ⎟ ≠ 0 ⎪sin ⎜ x + ⎟≠0 3⎠ 2π ⎞ ⎪ ⎝ ⎠ ⎪ ⎝ ⎛ ⇔ sin ⎜ 2x + ⎟≠0 Ñ ieà u kieä n ⎨ ⇔ ⎨ 3⎠ ⎪sin ⎛ π − x ⎞ ≠ 0 π⎞ ⎝ ⎪cos ⎛ x + ⎟≠0 ⎜ ⎟ ⎜ ⎪ ⎪ ⎝6 3⎠ ⎠ ⎝ ⎩ ⎩
  11. 1 3 ⇔ − sin 2x + cos 2x ≠ 0 2 2 ⇔ tg2x ≠ 3 1 ( ) 2 T a coù : sin4 x + cos4 x = sin2 x + cos2 x − 2sin2 x.cos2 x = 1 − sin2 2x 2 π⎞ ⎛π π⎞ ⎛π ⎛ ⎞ ⎛ ⎞ V aø : cot g ⎜ x + ⎟ .cot g ⎜ − x ⎟ = cot g ⎜ x + ⎟ .tg ⎜ + x ⎟ = 1 3⎠ ⎝6 3⎠ ⎝3 ⎝ ⎠ ⎝ ⎠ 1 7 L uù c ñoù : (*) ⇔ 1 − sin2 2x = 2 8 1 1 ⇔ − (1 − cos 4x ) = − 4 8 1 ⇔ cos 4x = 2 π kπ π ⇔ 4x = ± + k2π ⇔ x = ± + 3 12 2 3 ( nhaä n do tg2x = ± ≠ 3) 3 1 ( *) Baø i 49: Giaû i phöông trình 2tgx + cot g2x = 2 sin 2x + sin 2x ⎧cos 2x ≠ 0 ⇔ sin 2x ≠ 0 ⇔ cos 2x ≠ ±1 Ñ ieà u kieä n : ⎨ ⎩sin 2x ≠ 0 2 sin x cos 2x 1 = 2 sin 2x + L uù c ñoù : (*) ⇔ + cos x sin 2x sin 2x ⇔ 4 sin x + cos 2x = 2 sin 2x + 1 2 2 ( ) ⇔ 4 sin2 x + 1 − 2 sin 2 x = 8 sin2 x cos2 x + 1 ( ) ⇔ 2 sin2 x 1 − 4 cos2 x = 0 ⇔ 2 sin2 x ⎡1 − 2 (1 + cos 2x ) ⎤ = 0 ⎣ ⎦ ⎡sin x = 0 ( loaïi do sin 2x ≠ 0 ⇒ sin x ≠ 0 ) ⇔⎢ ⎢cos 2x = − 1 = cos 2π ( nhaän do cos 2x ≠ ±1) ⎢ 2 3 ⎣ 2π + k2π ( k ∈ Z ) ⇔ 2x = ± 3 π ⇔ x = ± + kπ, k ∈ 3 3 ( sin x + tgx ) − 2 (1 + cos x ) = 0 ( *) B aø i 51: Giaû i phöông trình: tgx − sin x
  12. sin x Ñ ieà u kieä n : tgx − sin x ≠ 0 ⇔ − sin x ≠ 0 cos x ⎧sin x ≠ 0 sin x (1 − cos x ) ⎪ ≠ 0 ⇔ ⎨cos x ≠ 0 ⇔ sin 2x ≠ 0 ⇔ cos x ⎪cos x ≠ 1 ⎩ 3 ( sin x + tgx ) .cot gx − 2 (1 + cos x ) = 0 L uù c ñoù (*)⇔ ( tgx − sin x ) .cot gx 3 ( cos x + 1) − 2 (1 + cos x ) = 0 ⇔ (1 − cos x ) 3 − 2 = 0 ( do sin x ≠ 0 neân cos x + 1 ≠ 0) ⇔ 1 − cos x ⇔ 1 + 2 cos x = 0 1 ⇔ cos x = − ( nhaä n so vôù i ñieà u kieä n ) 2 2π ⇔ x=± + k2π, k ∈ 3 B aø i 52 : G iaû i phöông trình 2 2 (1 − cos x ) + (1 + cos x ) − tg 2 x sin x = 1 1 + sin x + tg 2 x * ( ) () 4 (1 − sin x ) 2 ⎧cos x ≠ 0 ⇔ cos x ≠ 0 Ñ ieà u kieä n : ⎨ ⎩sin x ≠ 1 2 (1 + cos2 x ) sin 3 x 1 sin 2 x = (1 + sin x ) + L uù c ñoù (*)⇔ − 4 (1 − sin x ) 1 − sin 2 x 2 1 − sin 2 x ⇔ (1 + cos2 x ) (1 + sin x ) − 2 sin 3 x = (1 + sin x ) (1 − sin 2 x ) + 2 sin 2 x ⇔ (1 + sinx ) (1 + cos2 x ) = (1 + sin x ) cos2 x + 2 sin 2 x (1 + sin x ) ⎡1 + sin x = 0 ⇔⎢ ⎣1 + cos x = cos x + 2 sin x 2 2 2 ⎡sin x = −1 ( loaïi do cos x ≠ 0 ) ⇔ c os2x = 0 ⇔⎢ ⎣1 = 1 − cos 2x π ⇔ 2x = + kπ 2 π π ⇔ x = + k ( nhaä n do cosx ≠ 0 ) 4 2 B aø i 53 : G iaû i phöông trình cos 3x.tg5x = sin 7x ( * ) Ñ ieà u kieä n cos 5x ≠ 0 sin 5x Luù c ñoù : (*) ⇔ cos 3x. = sin 7x cos 5x
  13. ⇔ sin 5x.cos 3x = sin 7x.cos 5x 1 1 ⇔ [sin 8x + sin 2x ] = [sin12x + sin 2x ] 2 2 ⇔ sin 8x = sin12x ⇔ 12x = 8x + k2π ∨ 12x = π − 8x + k2π kπ π kπ ⇔x = ∨ x= + 2 20 10 S o laï i vôù i ñieà u kieä n kπ 5kπ kπ x= thì cos 5x = cos = cos ( loaï i neá u k leû ) 2 2 2 kπ ⎛ π kπ ⎞ π x= thì cos 5x = cos ⎜ + ⎟ ≠ 0 nhaän + ⎝4 2⎠ 20 10 π kπ Do ñoù : (*)⇔ x = hπ ∨ x = , v ôù i k, h ∈ + 20 10 B aø i 54 : G iaû i phöông trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Ñieà u kieä n : sin 2x ≠ 0 Ta coù : sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 1 =1− sin2 2x 2 sin x cos 2x tgx + cot g2x = + cos x sin 2x sin 2x sin x + cos x cos 2x = cos x sin 2x cos ( 2x − x ) 1 = = cos x sin 2x sin 2x 1 1 − sin 2 2x 1 2 Do ñoù : (*) ⇔ = sin 2x 2 sin 2x 1 1 ⇔ 1 − sin 2 2x = 2 2 ⇔ sin 2x = 1 ( nhaän do sin 2x ≠ 0 ) 2 ⇔ cos2 2x = 0 π ⇔ 2x = + kπ, k ∈ 2 π kπ ⇔x = + ,k ∈ 4 2 B aø i 55 : G iaû i phöông trình tg 2 x.cot g 2 2x.cot g3x = tg 2 x − cot g 2 2x + cot g3x ( * ) Ñ ieà u kieä n : cos x ≠ 0 ∧ sin 2x ≠ 0 ∧ sin 3x ≠ 0
  14. ⇔ sin 2x ≠ 0 ∧ sin 3x ≠ 0 Luùc ñoù (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x ⎡⎛ 1 − cos 2x ⎞ ⎛ 1 + cos 4x ⎞ ⎤ 1 − cos 2x 1 + cos 4x ⇔ cot g3x ⎢⎜ ⎟ − 1⎥ = − ⎟⎜ ⎣⎝ 1 + cos 2x ⎠ ⎝ 1 − cos 4x ⎠ ⎦ 1 + cos 2x 1 − cos 4x ⇔ cot g3x ⎡(1 − cos 2x ) (1 + cos 4x ) − (1 + cos 2x ) (1 − cos 4x ) ⎤ ⎣ ⎦ = (1 − cos 2x )(1 − cos 4x ) − (1 + cos 4x )(1 + cos 2x ) ⇔ cot g3x [ 2 cos 4x − 2 cos 2x ] = −2 ( cos 4x + cos 2x ) cos 3x [ −4 sin 3x sin x] = −4 cos 3x cos x ⇔ sin 3x ( do sin 3x ≠ 0) ⇔ cos 3x sin x = cos 3x cos x ⇔ cos 3x = 0 ∨ sin x = cos x π ⇔ 3x = + kπ ∨ tgx = 1 2 π kπ π ∨ x = + lπ ( k, l ∈ Z ) ⇔x= + 6 3 4 So vôù i ñ ieà u kieä n : sin 2x.sin 3x ≠ 0 π kπ ⎛ π 2kπ ⎞ ⎛π ⎞ * K hi x = + t hì sin ⎜ + ⎟ .sin ⎜ + kπ ⎟ ≠ 0 6 3 ⎝3 3⎠ ⎝2 ⎠ ⎛ 1 + 2k ⎞ ⇔ sin ⎜ ⎟π ≠ 0 ⎝3⎠ L uoâ n ñuù n g ∀ k thoûa 2k + 1 ≠ 3m ( m ∈ Z ) ⎛ 3π 2 π ⎛π ⎞ ⎞ * Khi x = + lπ t hì sin ⎜ + 2lπ ⎟ sin ⎜ + 3lπ ⎟ = ± ≠0 4 ⎝2 ⎝4 2 ⎠ ⎠ luoâ n ñuù n g π kπ ⎡ ⎢ x = 6 + 3 , k ∈ Z ∧ 2k ≠ 3m − 1 ( m ∈ ) Do ñoù : (*) ⇔ ⎢ ⎢ x = π + lπ, l ∈ ⎢ 4 ⎣ Caù c h khaù c: (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x tg 2 x − cot g 2 2x tg 2 2x.tg 2 x − 1 ⇔ cot g3x = = tg 2 x cot g 2 2x − 1 tg 2 x − tg 2 2x (1 + tg2x.tgx ) (1 − tg2x.tgx ) ⇔ cot g3x = (tg2x − tgx) ( tg2x + tgx) ⇔ cot g3x = cot gx. cotg3x ⇔ cos 3x = 0 ∨ sin x = cos x BAØI TAÄP
  15. ⎛π ⎞ Tìm caù c nghieä m treâ n ⎜ , 3π ⎟ cuû a phöông trình: 1. ⎝3 ⎠ 5π ⎞ 7π ⎞ ⎛ ⎛ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x 2⎠ 2⎠ ⎝ ⎝ ⎛ π⎞ Tìm caù c nghieä m x treâ n ⎜ 0, ⎟ c uû a phöông trình 2. ⎝ 2⎠ sin 4 x − cos 6x = sin (10, 5π + 10x ) 2 2 3. Giaû i caù c phöông trình sau: ( ) a / sin 3 x + cos3 x = 2 sin5 x + cos5 x sin x + sin 2x + sin 3x =3 b/ cos x + cos 2x + cos 3x 1 + cos x c / tg 2 x = 1 − sin x d / tg2x − tg3x − tg5x = tg2x.tg3x.tg5x 4 e / cos x = cos2 x 3 1 1 π⎞ ⎛ f / 2 2 sin ⎜ x + ⎟ = + 4 ⎠ sin x cos x ⎝ 2 i / 2tgx + cot g2x = 3 + sin 2x 2 h / 3tg3x + cot g2x = 2tgx + sin 4x 2 2 2 k / sin x + sin 2x + sin 3x = 2 sin 2x + 2 cos x = 0 l/ 1 + sin x 25 − 4x 2 ( 3sin 2πx + 8 sin πx ) = 0 m/ sin x.cot g5x =1 n/ cos 9x 2 o / 3tg6x − = 2tg2x − cot g4x sin 8x ( ) p / 2 sin 3x 1 − 4 sin 2 x = 1 1 + cos x q / tg 2 x = 1 − sin x 2 r / cos3 x cos 3x + sin 3 x sin 3x = 4 ⎛x⎞ ⎛x⎞ 5 s / sin4 ⎜ ⎟ + cos4 ⎜ ⎟ = ⎝ 3⎠ ⎝ 3⎠ 8 t / cos x − 4 sin x − 3 cos x sin2 x + sin x = 0 3 3 x x u / sin4 + cos4 = 1 − 2sin x 2 2
  16. π⎞ π⎞ ⎛ ⎛ v / sin ⎜ 3x − ⎟ = sin 2x.sin ⎜ x + ⎟ 4⎠ 4⎠ ⎝ ⎝ ( 2 − sin x ) sin 3x 2 4 w / tg x + 1 = cos4 x x ⎛ ⎞ y / tgx + cos x − cos2 x = sin x ⎜ 1 + tg tgx ⎟ 2 ⎝ ⎠ Cho phöông trình: ( 2 sin x − 1) ( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1) 4. a / Giaû i phöông trình khi m = 1 b / Tìm m ñeå (1) coù ñuù n g 2 nghieä m treâ n [ 0, π ] ( ÑS: m = 0 ∨ m < −1 ∨ m > 3 ) 5. Cho phöông trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) B ieá t raè n g x = π l aø moä t nghieä m cuû a (1). Haõ y giaû i phöông trình trong tröôø n g hôï p ñoù . Th.S Phạm Hồ ng Danh T T luy ệ n thi Đ ạ i h ọ c CLC V ĩ nh Vi ễ n
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2