intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Những bài tập hệ phương trình lượng giác

Chia sẻ: Ngoclan Lan | Ngày: | Loại File: PDF | Số trang:14

115
lượt xem
10
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

đẳng thức lượng giác là các phương trình chứa các hàm lượng giác, đúng với một dải lớn các giá trị của biến số. Các đẳng thức này hữu ích cho việc rút gọn các biểu thức chứa hàm lượng giác. Ví dụ trong việc tính tích phân với các hàm không phải là lượng giác: có thể thay chúng bằng các hàm lượng giác và dùng các đẳng thức lượng giác để đơn giản hóa phép tính.

Chủ đề:
Lưu

Nội dung Text: Những bài tập hệ phương trình lượng giác

  1. CHÖÔNG IX: HEÄ PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C I. GIAÛI HEÄ BAÈNG PHEÙP THEÁ ⎧2 cos x − 1 = 0 (1) ⎪ Baø i 173: Giaû i heä phöông trình: ⎨ 3 ⎪sin 2x = ( 2) ⎩ 2 1 Ta coù : (1) ⇔ cos x = 2 π ⇔x=± + k2π ( k ∈ Z ) 3 π Vôù i x= + k 2π thay vaø o (2), ta ñöôï c 3 ⎛ 2π ⎞ 3 sin 2x = sin ⎜ + k4π ⎟ = ⎝ 3 ⎠ 2 π Vôù i x = − + k2π thay vaø o (2), ta ñöôï c 3 ⎛ 2π ⎞ 3 3 sin 2x = sin ⎜ − + k4 π ⎟ = − ≠ (loaï i ) ⎝ 3 ⎠ 2 2 π Do ñoù nghieä m của heä laø : x = + k 2π, k ∈ 3 ⎧sin x + sin y = 1 ⎪ Baø i 174: Giaû i heä phöông trình: ⎨ π ⎪x + y = 3 ⎩ Caù c h 1: ⎧ x+y x−y ⎪2 sin 2 .cos 2 = 1 ⎪ Heä ñaõ cho ⇔ ⎨ ⎪x + y = π ⎪ ⎩ 3 ⎧ π x−y ⎧ x−y ⎪2.sin 6 .cos 2 = 1 ⎪ ⎪cos 2 = 1 ⎪ ⇔⎨ ⇔⎨ ⎪x + y = π ⎪x + y = π ⎪ ⎩ 3 ⎪ ⎩ 3
  2. ⎧x− y ⎧ π ⎪ 2 = k 2π ⎧ x − y = 4k π ⎪ x = + k 2π ⎪ ⎪ ⎪ 6 ⇔⎨ ⇔⎨ π ⇔⎨ (k ∈ Z ) ⎪x + y = π ⎪ x+ y = π ⎪ y = − k 2π ⎪ ⎩ 3 ⎪ ⎩ 3 ⎩ 6 Caù c h 2: Heä ñaõ cho ⎧ π ⎧ π ⎪y = 3 − x ⎪ ⎪y = 3 − x ⎪ ⇔⎨ ⇔⎨ ⎪sin x + sin ⎛ π − x ⎞ = 1 ⎪ 3 cos x + 1 sin x = 1 ⎜ ⎟ ⎪ ⎩ ⎝3 ⎠ ⎪ ⎩ 2 2 ⎧ π ⎧ π ⎪y = 3 − x ⎪ ⎪y = 3 − x ⎪ ⇔⎨ ⇔⎨ ⎪sin ⎜ π + x ⎟ = 1 ⎛ ⎞ ⎪ π + x = π + k 2π ⎪ ⎝3 ⎩ ⎠ ⎪3 ⎩ 2 ⎧ π ⎪ x = 6 + k 2π ⎪ ⇔⎨ k∈ ⎪ y = π − k 2π ⎪ ⎩ 6 ⎧sin x + sin y = 2 (1) ⎪ Baø i 175: Giaû i heä phöông trình: ⎨ ⎪cos x + cos y = 2 (2) ⎩ Caù c h 1: ⎧ x+y x−y ⎪2 sin 2 cos 2 = 2 (1) ⎪ Heä ñaõ cho ⇔⎨ ⎪2 cos x + y cos x − y = 2 (2) ⎪ ⎩ 2 2 Laá y (1) chia cho (2) ta ñöôï c : ⎛x+ y⎞ x−y tg ⎜ ⎟ = 1 ( do cos = 0 khoâ n g laø nghieä m cuû a (1) vaø (2) ) ⎝ 2 ⎠ 2 x+ y π ⇔ = + kπ 2 4 π π ⇔ x + y = + k 2π ⇔ y = − x + k 2π 2 2 ⎛π ⎞ thay vaø o (1) ta ñöôï c : sin x + sin ⎜ − x + k2π ⎟ = 2 ⎝2 ⎠ ⇔ sin x + cos x = 2
  3. ⎛ π⎞ ⇔ 2 cos ⎜ x − ⎟ = 2 ⎝ 4⎠ π ⇔ x − = h 2π, h ∈ 4 ⎧ π ⎪ x = 4 + h2π, h ∈ ⎪ Do ñoù : heä ñaõ cho ⇔ ⎨ ⎪ y = π + ( k − h ) 2π, k , h ∈ ⎪ ⎩ 4 ⎧A = B ⎧A + C = B + D Caù c h 2: Ta coù ⎨ ⇔⎨ ⎩C = D ⎩A − C = B − D Heä ñaõ cho ⎧( sin x − cos x ) + ( sin y − cos y ) = 0 ⎪ ⇔⎨ ⎪( sin x + cos x ) + ( sin y − cos y ) = 2 2 ⎩ ⎧ ⎛ π⎞ ⎛ π⎞ ⎪ 2 sin ⎜ x − ⎟ + 2 sin ⎜ y − ⎟ = 0 4⎠ 4⎠ ⎪ ⎝ ⎝ ⇔⎨ ⎪ 2 sin ⎛ x + π⎞ ⎛ π⎞ ⎪ ⎜ ⎟ + 2 sin ⎜ y + ⎟ = 2 2 ⎩ ⎝ 4⎠ ⎝ 4⎠ ⎧ ⎛ π⎞ ⎛ π⎞ ⎪sin ⎜ x − 4 ⎟ + sin ⎜ y − 4 ⎟ = 0 ⎧ ⎛ π⎞ ⎛ π⎞ ⎪ ⎝ ⎠ ⎝ ⎠ ⎪sin ⎜ x − 4 ⎟ + sin ⎜ y − 4 ⎟ = 0 ⎪ ⎛ ⎪ ⎝ ⎠ ⎝ ⎠ π⎞ ⇔⎨ ⇔ ⎨sin ⎜ x + ⎟ = 1 ⎪sin ⎛ x + π ⎞ + sin ⎛ y + π ⎞ = 2 ⎪ ⎝ 4⎠ ⎪ ⎜ ⎟ ⎜ ⎟ ⎪ ⎛ ⎩ ⎝ 4⎠ ⎝ 4⎠ π⎞ ⎪sin ⎜ y + ⎟ = 1 ⎩ ⎝ 4⎠ ⎧ π π ⎪ x + = + k 2π ⎪ 4 2 ⎪ π π ⇔ ⎨ y + = + h 2π ⎪ 4 2 ⎪ ⎛ π⎞ ⎛ π⎞ ⎪sin ⎜ x − 4 ⎟ + sin ⎜ y − 4 ⎟ = 0 ⎩ ⎝ ⎠ ⎝ ⎠ ⎧ π ⎪ x = 4 + k2π ⎪ ⇔⎨ ⎪ y = π + h2π, h, k ∈ Z ⎪ ⎩ 4 ⎧ tgx − tgy − tgxtgy = 1 ⎪ (1) Baø i 176: Giaû i heä phöông trình: ⎨ ⎪cos 2y + 3 cos 2x = −1 ⎩ (2)
  4. Ta coù : tgx − tgy = 1 + tgxtgy ⎧1 + tgxtgy = 0 ⎧tg ( x − y ) = 1 ⎪ ⎪ ⇔⎨ ∨ ⎨tgx − tgy = 0 ⎪1 + tgxtgy ≠ 0 ⎪ ⎩ ⎩1 + tg x = 0 (VN) 2 π π ⇔ x − y = + kπ ( k ∈ Z ) , vôù i x, y ≠ + kπ 4 2 π π ⇔ x = y + + kπ, vôù i x, y ≠ + kπ 4 2 ⎛ π ⎞ Thay vaø o (2) ta ñöôï c : cos 2y + 3 cos ⎜ 2y + + k2π ⎟ = −1 ⎝ 2 ⎠ ⇔ cos 2 y − 3 s in2 y = −1 3 1 1 ⎛ π⎞ 1 ⇔ s in2 y − cos 2 y = ⇔ sin ⎜ 2 y − ⎟ = 2 2 2 ⎝ 6⎠ 2 π π π 5π ⇔ 2 y − = + h 2π hay 2 y − = + h 2π ( h ∈ Z ) 6 6 6 6 π π ⇔ y = + hπ, h ∈ hay y = + hπ, h ∈ ( loïai) 6 2 Do ñoù : ⎧ 5π ⎪ x= + ( k + h) π ⎪ 6 Heä ñaõ cho ⇔⎨ ( h, k ∈ Z ) π ⎪ y = + hπ ⎪ ⎩ 6 ⎧cos3 x − cos x + sin y = 0 (1) ⎪ Baø i 177: Giaû i heä phöông trình ⎨ 3 ⎪sin x − sin y + cos x = 0 (2) ⎩ Laáy (1) + (2) ta ñöôï c : sin 3 x + cos3 x = 0 ⇔ sin 3 x = − cos3 x ⇔ tg 3 x = −1 ⇔ tgx = −1 π ⇔ x = − + kπ (k ∈ Z) 4 Thay vaø o (1) ta ñöôï c : sin y = cos x − cos3 x = cos x (1 − cos2 x ) 1 = cos x. sin 2 x =sin 2x sin x 2 1 ⎛ π⎞ ⎛ π ⎞ = sin ⎜ − ⎟ sin ⎜ − + kπ ⎟ 2 ⎝ 2⎠ ⎝ 4 ⎠ 1 ⎛ π ⎞ = − sin ⎜ − + kπ ⎟ 2 ⎝ 4 ⎠
  5. ⎧ 2 ⎪ (neáu k chaün) ⎪ 4 =⎨ ⎪− 2 (neáu k leû) ⎪ 4 ⎩ 2 Ñaët sin α = (vôù i 0 < α < 2π ) 4 ⎧ π ⎧ π ⎪ x = − 4 + 2mπ, m ∈ ⎪ x = − 4 + ( 2m + 1) π, m ∈ ⎪ ⎪ Vaä y nghieä m heä ⎨ ∨⎨ y = α + h2π, h ∈ y = −α + 2hπ, h ∈ ⎪⎡ ⎪⎡ ⎪⎣⎢ y = π − α + h2π, h ∈ ⎪⎣⎢ y = π + α + h2π, h ∈ ⎩ ⎩ II. GIAÛI HEÄ BAÈNG PHÖÔNG PHAÙP COÄNG ⎧ 1 ⎪sin x.cos y = − (1 ) Baø i 178: Giaû i heä phöông trình: ⎨ 2 ⎪tgx.cotgy = 1 ⎩ ( 2) Ñieà u kieä n : cos x.sin y ≠ 0 ⎧1 1 ⎪ 2 ⎡sin ( x + y ) + sin ( x − y ) ⎤ = − 2 ⎪ ⎣ ⎦ Caù c h 1: Heä ñaõ cho ⇔ ⎨ ⎪ sin x.cos y − 1 = 0 ⎪ cos x.sin y ⎩ ⎧sin ( x + y ) + sin ( x − y ) = −1 ⎪ ⇔⎨ ⎪sin x cos y − sin y cos x = 0 ⎩ ⎧sin ( x + y ) + sin ( x − y ) = −1 ⎪ ⇔⎨ ⎪sin ( x − y ) = 0 ⎩ ⎧sin ( x + y ) = −1 ⎪ ⇔⎨ ⎪sin ( x − y ) = 0 ⎩ ⎧ π ⎪ x + y = − + k2π, k ∈ ⇔⎨ 2 ⎪ x − y = hπ, h ∈ ⎩ ⎧ π π ⎪ x = − 4 + ( 2k + h ) 2 , k, h ∈ ⎪ ⇔⎨ ⎪ y = − π + ( 2k − h ) π , k, h ∈ ⎪ ⎩ 4 2 (nhaän do sin y cos x ≠ 0)
  6. sin x cos y Caù c h 2: ( 2) ⇔ = 1 ⇔ sin x cos y = cos x sin y cos x sin y ⎧ 1 ⎪sin x cos y = − 2 ⎪ ( 3) Theá (1) vaøo ( 2 ) ta ñöôïc: ⎨ ⎪cos x sin y = − 1 ( 4) ⎪ ⎩ 2 ⎧sin ( x + y ) = −1 ⎪ ( 3) + ( 4 ) ⇔⎨ ⎪sin ( x − y ) = 0 ⎩ ( 3) − ( 4 ) ⎧ π ⎪ x + y = − + k 2π, k ∈ ⇔⎨ 2 ⎪ x − y = hπ, h ∈ ⎩ ⎧ π π ⎪ x = − 4 + ( 2k + h ) 2 ⎪ ⇔⎨ ( h, k ∈ Z ) ⎪ y = − π + ( 2k − h ) π ⎪ ⎩ 4 2 III. GIAÛ I HEÄ BAÈN G AÅ N PHUÏ Baø i 179: Giaû i heä phöông trình: ⎧ 2 3 ⎪tgx + tgy = ⎪ (1) 3 ⎨ ⎪cotgx + cotgy = −2 3 ⎪ ( 2) ⎩ 3 Ñaët X = tgx, Y = tgy ⎧ 2 3 ⎧ 2 3 ⎪X + Y = ⎪X + Y = ⎪ 3 ⎪ 3 Heä ñaõ cho thaø n h: ⎨ ⇔⎨ ⎪1 + 1 = −2 3 ⎪Y + X = − 2 3 ⎪X Y ⎩ 3 ⎪ YX ⎩ 3 ⎧ 2 3 ⎧ 2 3 ⎪X + Y = ⎪X + Y = ⎪ 3 ⇔⎨ 3 ⇔⎨ ⎪ XY = −1 ⎪X 2 − 2 3 X − 1 = 0 ⎩ ⎪ ⎩ 3 ⎧X = 3 ⎧ 3 ⎪ ⎪X = − ⇔⎨ 3∨⎨ 3 ⎪ Y=− ⎪Y = 3 ⎩ 3 ⎩ Do ñoù :
  7. ⎧tgx = 3 ⎧ 3 ⎪ ⎪tgx = − Heä ñaõ cho : ⇔ ⎨ 3∨⎨ 3 ⎪tgy = − ⎪tgy = 3 ⎩ 3 ⎩ ⎧ π ⎧ π ⎪ x = 3 + k π, k ∈ ⎪ ⎪ x = − 6 + k π, k ∈ ⎪ ⇔⎨ ∨⎨ ⎪ y = − π + hπ, h ∈ ⎪ y = π + hπ, h ∈ ⎪ ⎩ 6 ⎪ ⎩ 3 ⎧ 1 ⎪sin x + sin y = Baø i 180: Cho heä phöông trình: ⎨ 2 ⎪cos 2x + cos 2y = m ⎩ 1 a/ Giaû i heä phöông trình khi m = − 2 b/ Tìm m ñeå heä coù nghieä m . ⎧ 1 ⎪sin x + sin y = 2 Heä ñaõ cho ⇔⎨ ⎪(1 − 2 sin 2 x ) + (1 − 2 sin2 y ) = m ⎩ ⎧ 1 ⎪sin x + sin y = 2 ⎪ ⇔⎨ ⎪sin2 x + sin 2 y = 2 − m ⎪ ⎩ 2 ⎧ 1 ⎪sin x + sin y = 2 ⎪ ⇔⎨ ⎪( sin x + sin y )2 − 2 sin x sin y = 1 − m ⎪ ⎩ 2 ⎧ 1 ⎪sin x + sin y = 2 ⎪ ⇔⎨ ⎪ 1 − 2 sin x sin y = 1 − m ⎪4 ⎩ 2 ⎧ 1 ⎪sin x + sin y = 2 ⎪ ⇔⎨ ⎪sin x sin y = − 3 + m ⎪ ⎩ 8 4 Ñaët X = sin x, Y = sin y vôùi X , Y ≤ 1 thì X, Y laø nghieä m cuû a heä phöông trình 1 m 3 t2 − t + − = 0 ( *) 2 4 8 1 a/ Khi m = − thì ( *) thaønh : 2
  8. 1 1 t2 − t− =0 2 2 ⇔ 2t − t − 1 = 0 2 1 ⇔ t =1∨ t = − 2 ⎧sin x = 1 ⎧ 1 ⎪ ⎪sin x = − Vaä y heä ñaõ cho ⇔ ⎨ 1∨⎨ 2 ⎪ sin y = − ⎩ 2 ⎪sin y = 1 ⎩ ⎧ π ⎧ h π ⎪ x = 2 + k 2π, k ∈ ⎪ ⎪ x = −(−1) 6 + hπ, h ∈ ⎪ ⇔⎨ ∨⎨ ⎪ y = −(−1) h π + hπ, h ∈ ⎪ y = π + k 2π, k ∈ ⎪ ⎩ 6 ⎪ ⎩ 2 m 1 3 b/ Ta coù : ( *) ⇔ = −t 2 + t + 4 2 8 1 3 Xeù t y = − t 2 + t + ( C ) treân D = [ −1,1] 2 8 1 thì: y ' = −2t + 2 1 y' = 0 ⇔ t = 4 Heä ñaõ cho coù nghieä m ⇔ ( *) coù 2 nghieäm treân [ -1,1] m ⇔ (d ) y = caé t (C) taï i 2 ñieå m hoặc tiếp xúc treân [ -1,1] 4 1 m 7 ⇔− ≤ ≤ 8 4 16 1 7 ⇔− ≤m≤ 2 4 Caù c h khaù c ycbt ⇔ f (t ) = 8t 2 − 4t − 3 + 2m = 0 coù 2 nghieä m t 1 , t 2 thoû a ⇔ −1 ≤ t1 ≤ t2 ≤ 1
  9. ⎧ Δ / = 28 − 16m ≥ 0 ⎪ ⎪ af (1) = 1 + 2m ≥ 0 ⎪ 1 7 ⇔ ⎨ af (−1) = 9 + 2m ≥ 0 ⇔ − ≤ m ≤ ⎪ 2 4 S 1 ⎪ −1 ≤ = ≤ 1 ⎪ ⎩ 2 4 ⎧sin 2 x + mtgy = m ⎪ Baø i 181: Cho heä phöông trình: ⎨ 2 ⎪ tg y + m sin x = m ⎩ a/ Giaû i heä khi m = -4 b/ Vôù i giaù trò naø o cuû a m thì heä coù nghieä m . Ñaët X = sin x vôù i X ≤ 1 Y = tgy ⎧ X 2 + mY = m ⎪ (1 ) Heä thaø nh: ⎨ 2 ⎪ Y + mX = m ⎩ ( 2) Laáy (1) – (2) ta ñöôï c : X 2 − Y 2 + m ( Y − X ) = 0 ⇔ ( X − Y )( X + Y − m ) = 0 ⇔ X = Y∨Y =m−X ⎧X = Y ⎧Y = m − X ⎪ Heä thaø nh ⎨ 2 hay ⎨ 2 ⎩ X + mX = m ⎪X + m(m − X ) = m ⎩ ⎧X = Y ⎪ ⎧Y = m − X ⎪ ⇔⎨ 2 ∨⎨ 2 ⎪ X + mX − m = 0 ( * ) ⎪ X − mX + m − m = 0 ( * *) 2 ⎩ ⎩ a/Khi m = -4 ta ñöôï c heä ⎧X = Y ⎧ Y = −4 − X ⎪ ⎨ 2 ∨⎨ 2 ⎩ X − 4X + 4 = 0 ⎪ X + 4X + 20 = 0 ( voâ nghieäm ) ⎩ ⎧ X = 2 ( loaïi do X ≤ 1) ⎪ ⇔⎨ ⎪Y = 2 ⎩ Vaä y heä ñaõ cho voâ nghieä m khi m = 4. b/ Ta coù (*) ⇔ X 2 + mX − m = 0 vôùi X ≤ 1 ⇔ X 2 = m (1 − X ) X2 ⇔ = m ( do m khoâng laø nghieäm cuûa *) 1−X X2 − X 2 + 2X Xeù t Z = treân [ −1,1) ⇒ Z ' = ; 1− X (1 − X ) 2 Z' = 0 ⇔ X = 0 ∨ X = 2
  10. ⎧ X = Y ( X ≤ 1) ⎪ Do ñoù heä ⎨ 2 coù nghieä m ⇔ m ≥ 0 ⎪ X + mX − m = 0 ⎩ Xeù t (**): X 2 − mX + m 2 − m = 0 Ta coù Δ = m 2 − 4 ( m 2 − m ) = −3m 2 + 4m 4 Δ≥0⇔0≤m≤ 3 Keá t luaä n : Khi m ≥ 0 thì (I) coù nghieä m neâ n heä ñaõ cho coù nghieä m Khi m < 0 thì (I) voâ nghieä m maø (**) cuø n g voâ nghieä m (do Δ < 0) neâ n heä ñaõ cho voâ nghieä m Do ñoù : Heä coù nghieä m ⇔ m ≥ 0 Caù c h khaù c Heä coù nghieä m ⇔ f (X) = X 2 + mX − m = 0 (*)hay g(X) = X 2 − mX + m2 − m = 0 (**) coù nghieä m treâ n [-1,1] ⎧Δ1 = m 2 + 4m ≥ 0 ⎪ ⎪af (1) ≥ 0 ⎪ ⇔ f ( −1) f (1) ≤ 0 hay ⎨af (−1) ≥ 0 ⎪ ⎪−1 ≤ S = − m ≤ 1 ⎪ ⎩ 2 2 ⎧Δ 2 = −3m + 4m ≥ 0 2 ⎪ ⎪ag (−1) = m + 1 ≥ 0 2 ⎪ hay g (−1) g (1) ≤ 0 hay ⎨ag ( 1) = (m − 1) 2 ≥ 0 ⎪ ⎪−1≤ S = m ≤ 1 ⎪ ⎩ 2 2 ⎧Δ1 = m + 4m ≥ 0 2 ⎪ 4 ⇔ 1 − 2m ≤ 0 hay ⎨1 − 2m ≥ 0 hay m = 1 hay 0 ≤ m ≤ ⎪−2 ≤ m ≤ 2 3 ⎩ ⇔m≥0
  11. IV. HEÄ KHOÂNG MAÃU MÖÏC ⎧ ⎛ π⎞ ⎪tgx + cotgx = 2sin ⎜ y + 4 ⎟ (1) ⎪ ⎝ ⎠ Baø i 182: Giaû i heä phöông trình: ⎨ ⎪ tgy + cotgy = 2sin ⎛ x - π ⎞ (2) ⎪ ⎜ ⎟ ⎩ ⎝ 4⎠ Caù c h 1: sinα cos α sin2 α + cos2 α 2 Ta coù : tgα + cotgα= + = = cosα sin α sin α cos α sin 2α ⎧ 1 ⎛ π⎞ ⎪ sin 2x = sin ⎜ y + 4 ⎟ (1) ⎪ ⎝ ⎠ Vaä y heä ñaõ cho ⇔ ⎨ ⎪ 1 = sin ⎛ x − π ⎞ (2) ⎪ sin 2y ⎜ ⎟ ⎩ ⎝ 4⎠ ⎧ ⎛ π⎞ ⎪1 = sin 2x sin ⎜ y + 4 ⎟ (1) ⎪ ⎝ ⎠ ⇔⎨ ⎪1 = sin 2y. sin ⎛ x − π ⎞ (2) ⎪ ⎜ ⎟ ⎩ ⎝ 4⎠ ⎧sin 2x = 1 ⎧sin 2x = −1 ⎪ ⎪ Ta coù : (1) ⇔ ⎨ ⎛ π⎞ ∨⎨ ⎛ π⎞ ⎪sin ⎜ y + 4 ⎟ = 1 ⎪sin ⎜ y + 4 ⎟ = −1 ⎩ ⎝ ⎠ ⎩ ⎝ ⎠ ⎧ π ⎧ π ⎪ x = 4 + kπ, k ∈ ⎪ ⎪ x = − 4 + kπ, k ∈ ⎪ ⇔⎨ ∨⎨ ⎪ y = π + h2π, h ∈ ⎪ y = − 3π + h2π, h ∈ ⎪ ⎩ 4 ⎪ ⎩ 4 ⎧ π ⎪ x = 4 + kπ, k ∈ ⎪ Thay ⎨ vaø o (2) ta ñöôï c π ⎪ y = + h2π, h ∈ ⎪ ⎩ 4 ⎛ π⎞ π sin 2y.sin ⎜ x − ⎟ = sin .sin kπ = 0 ≠ 1 (loaï i ) ⎝ 4⎠ 2 ⎧ −π ⎪ x= + kπ, k ∈ Thay ⎨ ⎪ 4 vaø o (2) ta ñöôï c ⎪y = − 3π + h2π, h ∈ ⎪ ⎩ 4 ⎛ π⎞ ⎛ 3π ⎞ ⎛ π ⎞ sin 2y. sin ⎜ x − ⎟ = sin ⎜ − ⎟ sin ⎜ − + kπ ⎟ ⎝ 4⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ π ⎞ ⎧1 ( neáu k leû) = sin ⎜ − + kπ ⎟ = ⎨ ⎝ 2 ⎠ ⎩−1 ( neáu k chaün)
  12. Do ñoù heä coù nghieä m ⎧ π ⎪ x = − 4 + ( 2m + 1) π ⎪ ⎨ ( m, h ∈ Z) • ⎪ y = − 3π + h2π ⎪ ⎩ 4 Caù c h 2: Do baá t ñaú n g thöù c Cauchy tgx + cotgx ≥ 2 1 daá u = xaû y ra ⇔ tgx = cotgx ⇔ tgx= tgx ⇔ tgx = ±1 Do ñoù : ⎛ π⎞ tgx+cotgx ≥ 2 ≥ 2 sin ⎜ y + ⎟ ⎝ 4⎠ Daá u = taï i (1) chæ xaû y ra khi ⎧tgx = 1 ⎧tgx = −1 ⎪ ⎪ ⇔⎨ ⎛ π⎞ ∨⎨ ⎛ π⎞ ⎪sin ⎜ y + 4 ⎟ = 1 ⎪sin ⎜ y + 4 ⎟ = −1 ⎩ ⎝ ⎠ ⎩ ⎝ ⎠ ⎧ π ⎧ π ⎪ x = 4 + kπ, k ∈ ⎪ ⎪ x = − 4 + kπ, k ∈ ⎪ ⇔⎨ (I) ∨ ⎨ (II) ⎪ y = π + h2π, h ∈ ⎪ y = − 3π + h2π, h ∈ ⎪ ⎩ 4 ⎪ ⎩ 4 ⎛ π⎞ thay (I) vaø o (2): tgy + cotgy=2sin ⎜ x - ⎟ ⎝ 4⎠ ta thaá y 2 = 2sin kπ = 0 khoâ n g thoû a ⎛ π ⎞ thay (II) vaø o (2) ta thaá y 2 = 2 sin ⎜ − + k π ⎟ ⎝ 2 ⎠ chæ thoû a khi k leû ⎧ π ⎪ x = − 4 + ( 2m + 1) π ⎪ Vaä y : heä ñaõ cho ⇔ ⎨ , m, h ∈ ⎪y = − 3π + 2hπ ⎪ ⎩ 4 Baø i 183: Cho heä phöông trình: ⎪x − y = m ⎧ (1) ⎨ ⎪2 ( cos 2x + cos 2y ) − 1 − 4 cos m = 0 (2) 2 ⎩ Tìm m ñeå heä phöông trình coù nghieä m . ⎧x − y = m ⎪ Heä ñaõ cho ⇔ ⎨ ⎪4 cos ( x + y ) cos ( x − y ) = 1 + 4 cos m 2 ⎩
  13. ⎧x − y = m ⎪ ⇔⎨ ⎪−4 cos ( x + y ) cos m + 4 cos m + 1 = 0 2 ⎩ ⎧x − y = m ⎪ ⇔⎨ ⎪[2 cos m − cos ( x + y )] + 1 − cos ( x + y ) = 0 2 2 ⎩ ⎧x − y = m ⎪ ⇔⎨ ⎪[2 cos m − cos ( x + y )] + sin ( x + y ) = 0 2 2 ⎩ ⎧x − y = m ⎪ ⇔ ⎨cos ( x + y ) = 2 cos m ⎪ ⎩sin ( x + y ) = 0 ⎧x − y = m ⎪ ⇔ ⎨ x + y = kπ , k ∈ ⎪cos(kπ) = 2 cos m ⎩ π 2π Do ñoù heä coù nghieä m ⇔ m = ± + h2π ∨ m = ± + h2π, h ∈ 3 3 BAØI TAÄP 1. Giaû i caù c heä phöông trình sau: ⎧sin x + sin y = 2 ⎧tgx + tgy + tgxtgy = 1 a/ ⎨ 2 f /⎨ ⎩sin x + sin y = 2 ⎩3sin 2y − 2 = cos 4x 2 ⎧ 1 ⎧ 3 ⎪sin x sin y = − 2 ⎪ ⎪sin x − sin 2y = ⎪ 2 b/⎨ g/⎨ ⎪cos x cos y = 1 ⎪cos x + cos 2y = 1 ⎪ ⎩ 2 ⎪ ⎩ 2 ⎧ 2 cos x = 1 + cos y ⎧cos ( x + y ) = 2 cos ( x − y ) ⎪ ⎪ c/⎨ h/⎨ 3 ⎪ 2 sin x = sin y ⎩ ⎪cos x.cos y = ⎩ 4 ⎧ 1 ⎪sin x cos y = ⎧sin x = 7 cos y d/⎨ 4 k/⎨ ⎪3tgx = tgy ⎩5 sin y = cos x − 6 ⎩ ⎧sin 2 x = cos x cos y ⎧tgx + tgy = 1 ⎪ ⎪ e/ ⎨ 2 l/⎨ x y ⎪cos x = sin x sin y ⎩ ⎪tg 2 + tg 2 = 2 ⎩ ⎧ cos x cos y = m + 1 2.Cho heä phöông trình: ⎨ ⎩sin x sin y = 4m + 2m 2 1 a/ Giaû i heä khi m = − 4
  14. ⎛ 3 1 ⎞ b/ Tìm m ñeå heä coù nghieä m ⎜ ÑS − ≤ m ≤ − hay m=0 ⎟ ⎝ 4 4 ⎠ 3. Tìm a ñeå heä sau ñaâ y coù nghieä m duy nhaá t : ⎧ y 2 + tg 2 x = 1 ⎪ ⎨ ⎪ y + 1 = ax + a + sin x ⎩ 2 ( ÑS a= 2) 4. Tìm m ñeå caù c heä sau ñaâ y coù nghieä m . ⎪cos x = m cos y 3 ⎧ ⎧sin x cos y = m 2 a/⎨ b/⎨ ⎪sin x = m cos y ⎩sin y cos x = m 3 ⎩ ⎛ 1- 5 1+ 5 ⎞ ( ÑS 1 ≤ m ≤ 2) ⎜ ÑS ⎜ 2 ≤m≤ 2 ⎟ ⎟ ⎝ ⎠ Th.S Phạm Hồng Danh TT luyện thi đại học Vĩnh Viễn
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2