Lý thuyết và bài tập phương trình lượng giác không mẫu mực
lượt xem 16
download
Định nghĩa, dấu của các giá trị lượng giác. Giá trị lượng giác của các cung góc đặc biệt, tính tuần hoàn của các hàm số lượng giác. Các hệ thức lượng giác cơ bản, sự biến thiên của các hàm số lượng giác.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lý thuyết và bài tập phương trình lượng giác không mẫu mực
- CHÖÔNG VIII PHÖÔNG TRÌNH LÖÔÏ N G GIAÙC KHOÂNG MAÃU MÖÏC Tröôø n g hôï p 1: TOÅ N G HAI SOÁ KHOÂ N G AÂ M ⎧A ≥ 0 ∧ B ≥ 0 AÙ p duïn g Neá u ⎨ thì A = B = 0 ⎩A + B = 0 Baø i 156 Giaû i phöông trình: 4 cos2 x + 3tg 2 x − 4 3 cos x + 2 3tgx + 4 = 0 (*) Ta coù : ( ) +( ) 2 2 (*) ⇔ 2 cos x − 3 3tgx + 1 =0 ⎧ 3 ⎪cos x = ⎪ ⇔⎨ 2 ⎪tgx = − 1 ⎪ ⎩ 3 ⎧ π ⎪ x = ± + k2π, k ∈ ⎪ 6 ⇔⎨ ⎪tgx = − 1 ⎪ ⎩ 3 π ⇔x=− + k2π, k ∈ 6 Baø i 157 Giaû i phöông trình: 8 cos 4x.cos2 2x + 1 − cos 3x + 1 = 0 ( *) Ta coù : ( *) ⇔ 4 cos 4x (1 + cos 4x ) + 1 + 1 − cos 3x = 0 ⇔ ( 4 cos2 4x + 4 cos 4x + 1) + 1 − cos 3x = 0 2 ⇔ ( 2 cos 4x + 1) + 1 − cos 3x = 0 ⎧ 1 ⎧ 1 ⎪cos 4x = − ⎪cos 4x = − ⇔⎨ 2⇔ ⎨ 2 ⎪cos 3x = 1 ⎩ ⎪3x = k2π, k ∈ ⎩ ⎧ 1 ⎪cos 4x = − 2 ⎪ ⇔⎨ ⎪ x = k2π , k ∈ (coù 3 ñaàu ngoïn cung) ⎪ ⎩ 3
- ⎧ 1 ⎪ cos 4x = − ⎪ 2 ⇔⎨ ⎪x = − 2π 2π +m2π hay x = m2π hay x = + m2π , m ∈ ⎪ ⎩ 3 3 2π ⇔x=± + m2π, m ∈ 3 (ta nhaä n k = ±1 vaø loaï i k = 0 ) Baø i 158 Giaû i phöông trình: sin 2 3x sin2 x + 3sin 4x ( cos 3x sin3 x + sin 3x cos3 x ) = sin x sin2 3x ( *) Ta coù : cos 3x.sin 3 3x + sin 3x.cos3 x = ( 4 cos3 x − 3 cos x ) sin 3 x + ( 3 sin x − 4 sin3 x ) cos3 x = −3 cos x sin 3 x + 3 sin x cos3 x = 3 sin x cos x ( cos2 x − sin 2 x ) 3 3 = sin 2x. cos 2x = sin 4x 2 4 1 Vaäy: ( *) ⇔ sin 2 x + sin2 3x = sin x sin2 3x vaø sin 4x ≠ 0 4 2 ⎛1 ⎞ 1 1 ⇔ ⎜ sin 2 3x − sin x ⎟ − sin4 3x + sin2 3x = 0 vaø sin 4x ≠ 0 ⎝2 ⎠ 4 4 2 ⎛1 ⎞ 1 ⇔ ⎜ sin 2 3x − sin x ⎟ + sin 2 3x (1 − sin2 3x ) = 0 vaø sin 4x ≠ 0 ⎝2 ⎠ 4 2 ⎛1 ⎞ 1 ⇔ ⎜ sin2 3x − sin x ⎟ + sin2 6x = 0 vaø sin 4x ≠ 0 ⎝2 ⎠ 16 ⎧sin 4x ≠ 0 ⎪1 ⎪ ⇔ ⎨ sin 2 3x = sin x ⎪2 ⎪sin 3x = 0 ∨ cos 3x = 0 ⎩ ⎧sin 4x ≠ 0 ⎧sin 4x ≠ 0 ⎪ ⎪ ⎪1 ⇔ ⎨sin 3x = 0 ∨ ⎨ = sin x ⎪sin x = 0 (VN) ⎪ 2 ⎩ ⎪sin 3x = ±1 ⎩ ⎧sin 4x ≠ 0 ⎪ 1 ⎪ ⇔ ⎨sin x = ⎪ 2 ⎪3 sin x − 4 sin 3 x = ±1 ⎩
- ⎧sin 4x ≠ 0 ⎪ ⇔⎨ 1 ⎪sin x = 2 ⎩ ⎧sin 4x ≠ 0 ⎪ ⇔⎨ π 5π ⎪ x = 6 + k2π ∨ 6 + k2π, k ∈ ⎩ π 5π ⇔ x = + k2π ∨ x = + k2π, k ∈ 6 6 Tröôøng hôïp 2 Phöông phaùp ñoái laäp ⎧A ≤ M ≤ B Neáu ⎨ thì A = B = M ⎩A = B Baø i 159 Giaû i phöông trình: sin4 x − cos4 x = sin x + cos x (*) Ta coù : (*) ⇔ sin2 x − cos2 x = sin x + cos x ⇔ − cos 2x = sin x + cos x ⎧cos 2x ≤ 0 ⎪ ⇔⎨ 2 ⎪cos 2x = 1 + 2 sin x cos x ⎩ ⎧cos 2x ≤ 0 ⎪ ⎧cos 2x ≤ 0 ⇔⎨ ⇔⎨ ⎪− sin 2x = 2 sin 2x ⎩sin 2x = 0 (cos 2x = ± 1 ) 2 ⎩ ⇔ cos 2x = −1 π ⇔x= + kπ, k ∈ 2 Caù c h khaù c Ta coù sin 4 x − cos4 x ≤ sin4 x ≤ sin x ≤ sin x + cos x ⎧cos x = 0 ⎪ π Do ñoù (*) ⇔ ⎨ 4 ⇔ cos x = 0 ⇔ x = + kπ, k ∈ ⎪sin x = sin x ⎩ 2 2 Baø i 160: Giaû i phöông trình: ( cos 2x − cos 4x ) = 6 + 2 sin 3x (*) Ta coù : (*) ⇔ 4 sin 2 3x.sin 2 x = 6 + 2 sin 3x • Do: sin 2 3x ≤ 1 vaø sin 2 x ≤ 1 neâ n 4 sin 2 3x sin 2 x ≤ 4 • Do sin 3x ≥ −1 neâ n 6 + 2 sin 3x ≥ 4 Vaä y 4 sin 2 3x sin 2 x ≤ 4 ≤ 6 + 2 sin 3x Daá u = cuû a phöông trình (*) ñuù n g khi vaø chæ khi
- ⎧sin2 3x = 1 ⎪ 2 ⎧sin2 x = 1 ⎨sin x = 1 ⇔ ⎨ ⎪sin 3x = −1 ⎩sin 3x = −1 ⎩ ⎧ π ⎪ x = ± + k2π, k ∈ π ⇔⎨ 2 ⇔ x = + k2π, k ∈ ⎪sin 3x = −1 2 ⎩ cos3 x − sin 3 x Baø i 161 Giaû i phöông trình: = 2 cos 2x (*) sin x + cos x Ñieà u kieä n : sin x ≥ 0 ∧ cos x ≥ 0 Ta coù : (*) ( ⇔ ( cos x − sin x )(1 + sin x cos x ) = 2 ( cos2 x − sin 2 x ) sin x + cos x ) ⎡cos x − sin x = 0 (1) ⇔⎢ ( ⎢1 + sin x cos x = 2 ( cos x + sin x ) sin x + cos x ⎣ ) (2) π Ta coù : (1) ⇔ tgx = 1 ⇔ x = + kπ, k ∈ 4 Xeùt (2) Ta coù : khi sin x ≥ 0 thì sin x ≥ sin x ≥ sin 2 x Töông töï cos x ≥ cos x ≥ cos2 x Vaä y sin x + cos x ≥ 1 vaø sin x + cos x ≥ 1 Suy ra veá phaûi cuû a (2) thì ≥ 2 1 3 Maø veá traù i cuû a (2): 1 + sin 2x ≤ 2 2 Do ñoù (2) voâ nghieä m π Vaä y : (*) ⇔ x = + kπ, k ∈ 4 Baø i 162: Giaû i phöông trình: 3 − cos x − cos x + 1 = 2 (*) Ta coù : (*) ⇔ 3 − cos x = 2 + cos x + 1 ⇔ 3 − cos x = 5 + cos x + 4 cos x + 1 ⇔ −2 ( cos x + 1) = 4 cos x + 1 Ta coù : −2 ( cos x + 1) ≤ 0 ∀x maø 4 cos x + 1 ≥ 0 ∀x Do ñoù daá u = cuû a (*) xaû y ra ⇔ cos x = −1 ⇔ x = π + k2π , k ∈
- Baø i 163: Giaû i phöông trình: cos 3x + 2 − cos2 3x = 2 (1 + sin2 2x ) (*) Do baá t ñaú n g thöù c Bunhiacoá p ski: AX + BY ≤ A 2 + B2 . X 2 + Y 2 neâ n : 1 cos 3x + 1 2 − cos2 3x ≤ 2. cos2 3x + ( 2 − cos2 3x ) = 2 Daá u = xaû y ra ⇔ cos 3x = 2 − cos2 3x ⎧cos 3x ≥ 0 ⇔⎨ 2 ⎩cos 3x = 2 − cos 3x 2 ⎧cos 3x ≥ 0 ⇔⎨ ⇔ cos 3x = 1 ⎩cos 3x = ±1 Maë t khaù c : 2 (1 + sin 2 2x ) ≥ 2 daá u = xaû y ra ⇔ sin 2x = 0 Vaä y : cos 3x + 2 − cos2 3x ≤ 2 ≤ 2 (1 + sin2 2x ) daá u = cuû a (*) chæ xaû y ra khi: cos 3x = 1 ∧ sin 2x = 0 ⎧cos 3x = 1 ⎪ ⇔⎨ kπ ⎪ x = 2 , k ∈ ( coù 4 ñaàu ngoïn cung ) ⎩ ⇔ x = 2mπ , m ∈ ⎛ π⎞ Baø i 164: Giaû i phöông trình: tg 2 x + cotg 2 x = 2 sin 5 ⎜ x + ⎟ (*) ⎝ 4⎠ Ñieà u kieä n : sin 2x ≠ 0 • Do baá t ñaú n g thöù c Cauchy: tg 2 x + cotg 2 x ≥ 2 daá u = xaû y ra khi tgx = cotgx ⎛ π⎞ • Maë t khaù c : sin ⎜ x + ⎟ ≤ 1 ⎝ 4⎠ ⎛ π⎞ neâ n 2 sin5 ⎜ x + ⎟ ≤ 2 ⎝ 4⎠ ⎛ π⎞ daá u = xaû y ra khi sin ⎜ x + ⎟ = 1 ⎝ 4⎠ ⎛ π⎞ Do ñoù : tg 2 x + cotg 2 x ≥ 2 ≥ 2 sin5 ⎜ x + ⎟ ⎝ 4⎠ ⎧tgx = cotgx ⎪ Daá u = cuû a (*) xaû y ra ⇔ ⎨ ⎛ π⎞ ⎪sin ⎜ x + 4 ⎟ = 1 ⎩ ⎝ ⎠
- ⎧tg 2 x = 1 ⎪ ⇔⎨ π ⎪ x = + k2π , k ∈ ⎩ 4 π ⇔ x = + k2π, k ∈ 4 Tröôøng hôïp 3: ⎧ A ≤ M vaø B ≤ M ⎧A = M AÙp duïn g: Neáu ⎨ thì ⎨ ⎩A + B = M + N ⎩B = N ⎧sin u = 1 sin u + sin v = 2 ⇔ ⎨ ⎩sin v = 1 ⎧sin u = 1 sin u − sin v = 2 ⇔ ⎨ ⎩sin v = − 1 ⎧sin u = − 1 sin u + sin v = − 2 ⇔ ⎨ ⎩sin v = − 1 Töông töï cho caù c tröôø n g hôïp sau sin u ± cos v = ± 2 ; cos u ± cos v = ± 2 3x Baø i 165: Giaû i phöông trình: cos 2x + cos − 2 = 0 ( *) 4 3x Ta coù : ( *) ⇔ cos 2x + cos =2 4 3x Do cos 2x ≤ 1 vaø cos ≤1 4 neâ n daá u = cuû a (*) chæ xaû y ra ⎧cos 2x = 1 ⎧ x = kπ , k ∈ ⎪ ⎪ ⇔⎨ 3x ⇔⎨ 8hπ ⇔ x = 8mπ, m ∈ ⎪cos 4 = 1 ⎩ ⎪x = 3 , h ∈ ⎩ 8hπ 8h Do : kπ = ⇔k= 3 3 ñeå k nguyeân ta choïn h = 3m ( m ∈ Ζ ) ( thì k = 8m ) Caù c h khaù c ⎧cos 2x = 1 ⎧ x = kπ , k ∈ ⎪ ⎪ ⎨ 3x ⇔ ⎨ 3kπ ⇔ x = 8mπ, m ∈ ⎪cos 4 = 1 ⎩ ⎪cos 4 = 1 ⎩ Baø i 166: Giaû i phöông trình: cos 2x + cos 4x + cos 6x = cos x.cos 2x.cos 3x + 2 ( *)
- cos 2x + cos 4x + cos 6x = 2 cos 3x cos x + 2 cos2 3x − 1 = 2 cos 3x ( cos x + cos 3x ) − 1 = 4 cos 3x.cos 2x.cos x − 1 1 Vaä y : cos 3x.cos 2x.cos x = ( cos 2x + 6 cos 4x + cos 6x + 1) 4 Do ñoù : 1 9 ( *) ⇔ cos 2x + cos 4x + cos 6x = ( cos2x + cos 4x + cos6x ) + 4 4 3 9 ⇔ ( cos 2x + cos 4x + cos 6x ) = 4 4 ⇔ cos 2x + cos 4x + cos 6x = 3 ⎧cos 2x = 1 ⎧2x = k2π, k ∈ (1) ⎪ ⎪ ⇔ ⎨cos 4x = 1 ⇔ ⎨cos 4x = 1 (2) ⎪cos 6x = 1 ⎪cos 6x = 1 (3) ⎩ ⎩ ⇔ 2x = k2π, k ∈ ⇔ x = kπ, k ∈ ( Theá (1) vaø o (2) vaø (3) ta thaá y hieå n nhieâ n thoû a ) Baø i 167: Giaû i phöông trình: cos 2x − 3 sin 2x − 3 sin x − cos x + 4 = 0 ( *) Ta coù : ⎛ 1 3 ⎞ ⎛ 3 1 ⎞ ( *) ⇔ 2 = ⎜ − ⎜ cos 2x + sin 2x ⎟ + ⎜ ⎟ ⎜ 2 sin x + cos x ⎟ ⎟ ⎝ 2 2 ⎠ ⎝ 2 ⎠ ⎛ π⎞ ⎛ π⎞ ⇔ 2 = sin ⎜ 2x − ⎟ + sin ⎜ x + ⎟ ⎝ 6⎠ ⎝ 6⎠ ⎧ ⎛ π⎞ ⎧ π π ⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪2x − 6 = 2 + k2π, k ∈ ⎪ ⎝ ⎠ ⎪ ⇔⎨ ⇔⎨ ⎪sin ⎛ x + π ⎞ = 1 ⎪ x + π = π + h2π, h ∈ ⎪ ⎜ ⎟ ⎪ 6 2 ⎩ ⎝ 6⎠ ⎩ ⎧ π ⎪ x = 3 + kπ, k ∈ ⎪ π ⇔⎨ ⇔ x = + hπ, h ∈ ⎪ x = π + h2π, h ∈ 3 ⎪ ⎩ 3 Caù c h khaù c ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪ ⎝ ⎠ ⎪ ⎝ ⎠ ( *) ⇔ ⎨ ⇔⎨ ⎪sin ⎛ x + π ⎞ = 1 ⎪ x + π = π + h2π, h ∈ ⎪ ⎜ ⎟ ⎪ ⎩ ⎝ 6⎠ ⎩ 6 2
- ⎧ ⎛ π⎞ ⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪ π ⇔⎨ ⎝ ⎠ ⇔x= + hπ, h ∈ ⎪ x = π + h2π, h ∈ 3 ⎪ ⎩ 3 Baø i 168: Giaû i phöông trình: 4 cos x − 2 cos 2x − cos 4x = 1 ( *) Ta coù : ( * ) ⇔ 4 cos x − 2 ( 2 cos2 x − 1 ) − (1 − 2 sin 2 2x ) = 1 ⇔ 4cosx − 4 cos2 x + 8 sin2 x cos2 x = 0 ⇔ cos x = 0 hay 1 − cos x + 2 sin 2 x cos x = 0 ⇔ cos x = 0 hay 1 + cos x ( 2 sin 2 x − 1) = 0 ⇔ cos x = 0 hay 1 − cos x cos 2x = 0 ( * *) 1 ⇔ cos x = 0 hay 1 − ( cos 3x + cos x ) = 0 2 ⇔ cos x = 0 ∨ cos 3x + cos x = 2 ⎧cos 3x = 1 ⇔ cos x = 0 ∨ ⎨ ⎩cos x = 1 ⎧cos x = 1 ⇔ cos x = 0 ⇔ ⎨ ⎩4 cos x − 3 cos x = 1 3 ⇔ cos x = 0 ∨ cos x = 1 π ⇔x= + kπ ∨ x = k2π, k ∈ 2 Caù c h khaù c ( * *) ⇔ cos x = 0 hay cos x cos 2x = 1 ⎧cos x = 1 ⎧cos x = − 1 ⇔ cos x = 0 ∨ ⎨ ∨⎨ ⎩cos 2x = 1 ⎩cos 2x = − 1 π ⎧ x = k2π, k ∈ ⎧ x = π + k2π, k ∈ ( loaïi ) ⇔ x = + kπ, k ∈ ∨ ⎨ ∨⎨ 2 ⎩cos 2x = 1 ⎩cos 2x = − 1 π ⇔ x = + kπ ∨ x = k2π, k ∈ 2 Baø i 169: Giaû i phöông trình: 1 tg2x + tg3x + = 0 ( *) sin x cos 2x cos 3x Ñieà u kieä n : sin 2x cos 2x cos 3x ≠ 0 Luù c ñoù : sin 2x sin 3x 1 ( *) ⇔ + + =0 cos 2x cos 3x sin x.cos 2x.cos 3x ⇔ sin 2x sin x cos 3x + sin 3x sin x.cos 2x + 1 = 0 ⇔ sin x ( sin 2x cos 3x + sin 3x cos 2x ) + 1 = 0
- ⇔ sin x.sin 5x = −1 1 ⇔ − ( cos 6x − cos 4x ) = −1 2 ⇔ cos 6x − cos 4x = 2 ⎧t = cos 2x ⎧t = cos 2x ⎧cos 6x = 1 ⎪ 3 ⎪ 3 ⇔⎨ ⇔ ⎨4t − 3t = 1 ⇔ ⎨4t − 3t = 1 ⎩cos 4x = −1 ⎪ 2 ⎪ ⎩2t − 1 = −1 ⎩t = 0 Do ñoù : (*) voâ nghieä m . Caù c h khaù c ⎧sin x = 1 ⎧sin x = − 1 ⇔ sin x. sin 5x = −1 ⇔ ⎨ hay ⎨ ⎩sin 5x = − 1 ⎩sin 5x = 1 ⎧ π ⎧ π ⎪ x = + k2π, k ∈ ⎪ x = − + k2π, k ∈ ⇔⎨ 2 hay ⎨ 2 ⎪sin 5x = − 1 ⎩ ⎪sin 5x = 1 ⎩ ⇔ x ∈∅ Baø i 170: Giaû i phöông trình: cos2 3x.cos 2x − cos2 x = 0 ( *) 1 1 Ta coù : ( * ) ⇔ (1 + cos 6x ) cos 2x − (1 + cos 2x ) = 0 2 2 ⇔ cos 6x cos 2x = 1 1 ⇔ ( cos 8x + cos 4x ) = 1 2 ⇔ cos 8x + cos 4x = 2 ⎧cos 8x = 1 ⇔⎨ ⎩cos 4x = 1 ⎧2 cos2 4x − 1 = 1 ⇔⎨ ⎩cos 4x = 1 ⎧cos2 4x = 1 ⇔⎨ ⎩cos 4x = 1 ⇔ cos 4x = 1 ⇔ 4x = k2π, k ∈ kπ ⇔x= ,k ∈ 2 Caù c h khaù c ⇔ cos 6x cos 2x = 1 ⎧cos 2x = 1 ⎧cos 2x = −1 ⇔⎨ hay ⎨ ⎩cos 6x = 1 ⎩cos 6x = −1
- ⎧2x = k2π, k ∈ ⎧2x = π + k2π, k ∈ ⇔⎨ hay ⎨ ⎩cos 6x = 1 ⎩cos 6x = −1 kπ x= ,k ∈ 2 Caù c h khaù c ⎧cos 8x = 1 ⎧cos 8x = 1 ⎨ ⇔⎨ ⎩cos 4x = 1 ⎩4x = k2π, k ∈ kπ ⇔x= ,k ∈ 2 Tröôøng hôïp 4: DUØNG KHAÛO SAÙT HAØM SOÁ x y = a laø haøm giaûm khi 0< a m, ∀x ≠ + kπ , k ∈ 2 π cos x m < co s x n ⇔ n > m, ∀x ≠ + kπ , k ∈ 2 sin x m ≤ sin x n ⇔ n ≥ m, ∀x cos x m ≤ co s x n ⇔ n ≥ m, ∀x x2 Baø i 171: Giaû i phöông trình: 1 − = cos x ( *) 2 x2 Ta coù : ( *) ⇔ 1 = + cos x 2 x2 Xeù t y= + cos x treân R 2 Ta coù : y ' = x − sin x vaø y '' = 1 − cos x ≥ 0 ∀x ∈ R Do ñoù y’(x) laø haø m ñoà n g bieá n treâ n R Vaä y ∀x ∈ ( 0, ∞ ) : x > 0 neân y ' ( x ) > y ' ( 0) = 0 ∀x ∈ ( −∞, 0) : x < 0 neân y ' ( x ) < y ' ( 0) = 0 Do ñoù : x2 Vaä y : y = + cos x ≥ 1 ∀x ∈ R 2 Daá u = cuû a (*) chæ xaû y ra taï i x = 0 Do ñoù ( *) ⇔ x = 0 •
- Baø i 172: Giaû i phöông trình sin 4 x + sin 6 x = sin 8 x + sin10 x (*) Ta coù ⎧sin 4 x ≥ sin 8 x vaø daáu =xaûy ra khi vaø chæ khi sin 2 x = 1hay sinx = 0 ⎪ ⎨ 6 ⎪ sin x ≥ sin x vaø daáu =xaûy ra khi vaø chæ khi sin x = 1 hay sinx = 0 10 2 ⎩ ⇔ sin 2 x = 1 ∨ sinx = 0 π ⇔ x = ± + k 2π ∨ x = k 2π , k ∈ 2 Caù c h khaù c (*) ⇔ sin 4 x = 0 hay 1+ sin 2 x = sin 4 x + sin 6 x ⇔ sin x = 0 hay sin 2 x =1 BAØI TAÄP Giaû i caù c phöông trình sau 1. lg ( sin2 x ) − 1 + sin 3 x = 0 ⎛ π⎞ 2. sin 4x − cos 4x = 1 + 4 2 sin ⎜ x − ⎟ ⎝ 4⎠ 1 3. sin 2 x + sin 2 3x = sin x. sin 2 3x 4 4. πsin x = cos x 5. 2 cos x + 2 sin 10x = 3 2 + 2 cos 28x. sin x 2 6. ( cos 4x − cos 2x ) = 5 + sin 3x 7. sin x + cos x = 2 ( 2 − sin 3x ) 8. sin 3x ( cos 2x − 2 sin 3x ) + cos 3x (1 + sin 2x − 2 cos 3x ) = 0 9. tgx + tg2x = − sin 3x cos 2x 10. 2 log a ( cot gx ) = log 2 ( cos x ) ⎡ π⎤ 11. 2sin x = cos x vôùi x ∈ ⎢0, ⎥ ⎣ 2⎦ 12. cos x + sin x = 1 13 14 13. cos 2x − cos 6x + 4 ( sin 2x + 1) = 0 14. sin x + cos x = 2 ( 2 − cos 3x ) 15. sin3 x + cos3 x = 2 − sin4 x 16. cos2 x − 4 cos x − 2x sin x + x 2 + 3 = 0 sin x 17. 2 + sin x = sin 2 x + cos x 18. 3 cot g 2 x + 4 cos2 x − 2 3 cot gx − 4 cos x + 2 = 0 Th.S Phạm Hồng Danh (TT luyện thi Vĩnh Viễn)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Lý thuyết và bài tập Vật lý 10 - Vũ Đình Hoàng
266 p | 451 | 70
-
Lý thuyết và bài tập Vật lý 10-Động học chất điểm
10 p | 294 | 50
-
Lý thuyết và bài tập ứng dụng cực trị hàm bậc ba
7 p | 145 | 12
-
Thực hành luyện giải nhanh các câu hỏi lý thuyết và bài tập trắc nghiệm Hóa học: Phần 1
131 p | 108 | 10
-
Lý thuyết và bài tập về Đồng dư thức
7 p | 20 | 6
-
Bài tập trắc nghiệm phần Sóng cơ Vật lý lớp 12
215 p | 99 | 6
-
Lý thuyết và bài tập trắc nghiệm Phương trình đường thẳng có lời giải chi tiết
40 p | 98 | 6
-
Tổng hợp lý thuyết và các dạng bài tập phần tử hữu hạn: Phần 1
98 p | 47 | 6
-
Lý thuyết và bài tập Phương pháp lượng giác
100 p | 101 | 6
-
Tổng hợp Lý thuyết và trắc nghiệm Toán lớp 11: Phần 1 - Doãn Thịnh
229 p | 46 | 5
-
Lý thuyết và bài tập hàm số lượng giác và phương trình lượng giác
64 p | 18 | 5
-
Lý thuyết và bài tập hệ thức vi-ét
9 p | 21 | 4
-
Lý thuyết và bài tập Giải tích 12 - Chương 4: Số phức
45 p | 33 | 4
-
Lý thuyết và bài tập Điều kiện cần và đủ
4 p | 15 | 4
-
Lý thuyết, các dạng toán và bài tập vectơ
92 p | 24 | 3
-
Tóm tắt lý thuyết và bài tập Phương trình chứa ẩn ở mẫu thức
16 p | 24 | 3
-
Tóm tắt lý thuyết và bài tập trắc nghiệm Biểu đồ cột
26 p | 50 | 2
-
Lý thuyết và bài tập: Đường thẳng song song mặt phẳng
14 p | 105 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn