BỘ ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN 2009
lượt xem 207
download
Tài liệu tham khảo dành cho giáo viên, học sinh đang trong giai đoạn ôn thi đại học chuyên môn toán - Một số đề thi tham khảo, giúp học sinh củng cố kiến thức toán.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: BỘ ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN 2009
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN ĐỀ THAM KHẢO 2 Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = – x3 – 3x2 + mx + 4, trong đó m là tham số thực. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 1. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∝). 2. Câu II. (2,0 điểm) Giải phương trình: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 1. Giải phương trình: log 2 (x + 2) + log 4 (x − 5) + log 1 8 = 0 2 2. 2 Câu III. (1,0 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x + 1 , trục hoành và hai đường thẳng x = ln3, x = ln8. Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. Câu V. (1,0 điểm) Xét các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 1. x 2 (y + z) y 2 (z + x) z 2 (x + y) Tìm giá trị nhỏ nhất của biểu thức: P = + + yz zx xy II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: =x = 1 + 2t = =y = −1 + t =z = − t = Viết phương trình tham số của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIa. (1,0 điểm) Tìm hệ số của x2 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1) 6 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600. 2. Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x −1 y +1 z = = . −1 2 1 Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIb. (1,0 điểm) Tìm hệ số của x3 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1)5
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 ĐỀ THAM KHẢO 1 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) I. Câu I. (2,0 điểm) 2x + 3 Cho hàm số y = . x−2 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng y = 2x + m cắt (C) tại hai điểm phân biệt mà hai tiếp tuyến của (C) tại hai điểm đó song song với nhau. Câu II. (2,0 điểm) π� � Giải phương trình: (1 + 2cos3x)sinx + sin2x = 2sin2 � + � 2x 1. 4 � � Giải phương trình: log 2 x − 2 + log 2 x + 5 + log 1 8 = 0 2. 2 Câu III. (1,0 điểm) x ln 2 (x 2 + 1) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = , trục hoành, trục tung và đường x2 + 1 thẳng x = e −1 . Câu IV. (1,0 điểm) Cho hình lăng trụ ABC.A′ B′ C′ có đáy ABC là tam giác đều cạnh a, AA ′ = 2a và đường thẳng AA′ tạo với mặt phẳng (ABC) một góc bằng 600. Tính thể tích khối tứ diện ACA′ B′ theo a. Câu V. (1,0 điểm) ( ) 3 Tìm tất cả các giá trị của tham số a để bất phương trình x 3 + 3x 2 −x a x − x − 1 có nghiệm 1 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) x −1 y − 7 z − 3 = = Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình : và mặt 2 1 4 phẳng (P) có phương trình : 3x – 2y – z + 5 = 0. 1. Tính khoảng cách giữa đường thẳng d và mặt phẳng (P). 2. Kí hiệu l là hình chiếu vuông góc của d trên (P). Viết phương trình tham số của đường thẳng l. Câu VIIa. (1,0 điểm) Tìm số thực x, y thỏa mãn đẳng thức : x(3 + 5i) + y(1 – 2i)3 = 9 + 14i 2. Theo chương trình Nâng cao Câu VIb. (2,0 điểm) x −1 y − 7 z − 3 = = Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình : và mặt 2 1 4 phẳng (P) có phương trình : 3x – 2y – z + 5 = 0. 1.Tính khoảng cách giữa đường thẳng d và mặt phẳng (P). 2. Kí hiệu l là giao tuyến của (P) và mặt phẳng chứa d và vuông góc với (P). Viết phương trình chính tắc của đường thẳng l. Câu VIIb. (1,0 điểm) Cho số phức z = 1 + 3 i. Hãy viết dạng lượng giác của số phức z5.
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 3 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = mx4 + (m2 – 9).x2 + 10 (1) Khảo sát hàm số khi m = 1 1. Tìm m để hàm số (1) có 3 điểm cực trị 2. Câu II. (2,0 điểm) 1. Giải phương trình : ( 2sin x − 1) ( 2cos 2x + 2sin x + 3) = 4sin x − 1. 2 2. Giải phương trình : log4x8 – log2x2 + log9243 = 0 Câu III. (1,0 điểm) Tính thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường y = x , = 3 x = 0 xung quanh trục Ox. x vy Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành . Biết rằng góc nhọn tạo bởi hai đường chéo AC và BD là 600, các tam giác SAC và SBD đều có cạnh bằng a. Tính thể tích hình chóp theo a. Câu V. (1,0 điểm) 5 Giả sử x, y là hai số dương thay đổi thỏa mãn điều kiện x + y = .Tìm giá trị nhỏ nhất của biểu thức: 4 41 S= + . x 4y II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng Oxy , cho đường tròn (C) : x2 + y2 – 8x + 6y + 21 = 0 và đường thẳng d: x + y – 1 = 0 . Xác định toạ độ các đỉnh hình vuông ABCD ngoại tiếp (C) biết A thuộc d x +1 y −1 z − 3 x −1 y +1 z − 2 2. Trong không gian với hệ trục tọa độ Oxyz cho ( d1 ) : ;( d2 ) : = = = = . −1 −1 1 2 3 2 a) Tính khoảng cách giữa hai đường thẳng (d1) và (d2). b) Gọi (∆ ) là đường thẳng qua điểm M ( 1,1,1) vuông góc với (d1) và cắt (d2). Hãy viết phương trình tắc chính của đường thẳng (∆ ). Câu VIIa. (1,0 điểm) 0 ( ) Tính tích phân I = =x e + x + 1 dx 2x 3 −1 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng Oxy , cho (P): y2 = x và điểm I(0 , 2) . Tìm toạ độ hai điểm M , N thuộc (P) sao uuu r uu r cho : IM = 4IN 2. Trong không gian với hệ tọa độ Oxyz cho 4 điểm S ( 2,2,6 ) ,A ( 4,0,0 ) ,B ( 4,4,0 ) ,C ( 0,4,0 ) a) Chứng minh rằng hình chóp S.ABCO là hình chóp tứ giác đều. b) Viết phương trình mặt cầu ngoại tiếp hình chóp S.ABCO. Câu VIIb. (1,0 điểm) ln 3 e x dx Tính tích phân I = ∫ ( )3 ex +1 0
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 4 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) x có đồ thị là (C) Cho h/s y = x −1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số 2. Lập phương trình tiếp tuyến d của (C) sao cho d và hai tiệm cận của (C) cắt nhau tạo thành một tam giác cân Câu II. (2,0 điểm) ( ) 1. Giải phương trình : cos 2x + cos x 2 tan x − 1 = 2 2 2. Giải bất phương trình : 3logx4 + 2log4x4 + 3log16x4 ≤ 0 Câu III. (1,0 điểm) 3x 2 − 1 + 2x 2 + 1 3 Tìm giới hạn lim 1 − cos x x1 0 Câu IV. (1,0 điểm) Trong mặt phẳng (P) , cho một hình vuông ABCD có cạnh bằng a. S là một điểm bất kì nằm trên đường thẳng At vuông góc với mặt phẳng (P) tại A.Tính theo a thể tích hình cầu nôi tiêp khôi chóp ̣ ́ ́ S.ABCD khi SA = 2a. Câu V. (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = x 6 + 4 ( 1 − x 2 ) trên đoạn [ −1,1] . 3 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy , cho đường tròn (C) : x2 + y2 = 1 . Đường tròn (C/) tâm I(2 ; 2) cắt (C) tại hai điêm A , B sao cho AB = 2 . Viết ph/tr đường thẳng AB x−3 y+2 z +1 = = 2. Trong k/g Oxyz cho đường thẳng d: và mặt phẳng (P) : x + y + z + 2 = 0 −1 2 1 a) Tìm giao điểm M của đường thẳng d và mặt phẳng (P) b) Viết phương trình đường thẳng (D) thuộc (P) sao cho (D) vuông góc d và khoảng cách từ M đến (D) là 42 Câu VIIa. (1,0 điểm) 1 x 3 dx Tính tích phân : I = ∫ 2 0 x +1 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mpOxy cho đường tròn (C) : x2 + y2 – 2x + 4y + 2 = 0 . Viết phương trình đường tròn (C/) tâm M(5 , 1) biết (C/) cắt (C) tại các điểm A , B sao cho AB = 3 2. Trong k/g Oxyz cho 2 điểm A((– 1 ; 3 ; – 2 ) ; B(– 3 ; 7 ; – 18 ) và mặt phẳng (P) : 2x – y + z + 1 = 0 a) Viết ph/tr mp chứa AB và vuông góc với mp(P) b) Tìm toạ độ điểm M thuộc (P) sao cho MA + MB nhỏ nhất Câu VIIb. (1,0 điểm)
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ) ( x 2 − 2 x + 2 + 1 + x.(2 − x) ≤ 0 có nghiệm x thuộc đoạn [0 ; 1+ Tìm m để bất phương trình m. 3] ĐỀ THAM KHẢO 5 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho h/s y = – 2x3 + 6x2 – 5 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số 2. Lập ph/tr tiếp tuyến của (C) biết tiếp tuyến đó đi qua điểm A(– 1 ; – 13) Câu II. (2,0 điểm) 1. Giải bất phương trình : ( log x 8 + log 4 x 2 ). log 2 2 x ≥ 0 1 1 2. Giải phương trình : sin 2 x + sin x − − = 2 cot 2x 2 sin x sin 2 x Câu III. (1,0 điểm) x(1 − x) Tính diện tích hình phẳng giới hạn bới các đường y = 0 ; y = x2 +1 Câu IV. (1,0 điểm) Cho lăng trụ đứng ABCA1 B1 C1 có AB = a ; AC = 2a ; AA1 = 2a 5 và góc BAC = 120o . Gọi M là trung điểm của CC1 . Chứng minh rằng MB vuông góc với MA1 và tính khoảng cách từ điểm A đến mp(A1BM) Câu V. (1,0 điểm) Cho x , y . z là các biến số dương . Tìm giá trị nhỏ nhất của biểu thức x z y P = 3 4( x + y ) + 3 4( y + z ) + 3 4( z + x ) + 2 2 + 2 + 2 3 3 3 3 3 3 y x z II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy cho tam giác ABC có trọng tâm G(– 2 ; 0) . Biết phương trình các cạnh AB và AC lần lượt là 4x + y + 14 = 0 ; 2x + 5y – 2 = 0 . Tìm toạ độ các đỉnh A , B , C ? 2) Cho mp(P): x – 2y + 2z – 1 = 0 và các đường thẳng x −1 y−3 x−5 z+5 z y = = = = (d1) : ; (d2) : −3 −5 2 2 6 4 a) Viết phương trình mp(Q) chứa (d1) và vuông góc với (P) b) Tìm các điểm M thuộc (d 1) ; N thuộc (d2) sao cho MN song song với (P) và cách (P) một khoảng bằng 2 Câu VIIa. (1,0 điểm) 2x + 1 4 Tính tích phân I = ∫ .dx 0 1+ 2x + 1 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mpOxy cho điểm A(2 ; 1) . Lấy điểm B thuộc trục Ox có hoành độ không âm và điểm C thuộc trục Oy có tung độ không âm sao cho tam giác ABC vuông tại A . Tìm B , C sao cho diện tích tam giác ABC lớn nhất 2. Trong k/g Oxyz cho 2 điểm A((– 3 ; 5 ; – 5 ) ; B(5 ; – 3 ; 7) và mặt phẳng (P) : x + y + z = 0 a) Tìm giao điểm I của đường thẳng AB và mặt phẳng (P) b) Tìm điểm M thuộc (P) sao cho MA2 + MB2 nhỏ nhất Câu VIIb. (1,0 điểm)
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm Ax + C y = 22 2 3 Tìm x , y thuộc N thoả mãn hệ : 3 Ay + C x = 66 2
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 6 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) − x +1 có đồ thị là (C) Cho h/s y = 2x + 1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số 2. Lập phương trình tiếp tuyến của (C) biết tiếp tuyến đó đi qua giao điểm của tiệm cận đứng và trục Ox Câu II. (2,0 điểm) 1 1 2 x 2 − 3x + 1 + . log 2 ( x − 1) 2 ≥ 1. Giải bất phương trình : log 1 2 2 2 5x π x π 3x − − cos − = 2. Giải phương trình : sin 2 cos 2 4 2 4 2 Câu III. (1,0 điểm) e x 2 +1 ∫ . ln x.dx Tính tích phân I = x 1 Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O , SA ⊥ (ABCD) .Cho AB = a , SA=a 2 . Gọi H , K lần lượt là hình chiếu của A trên SB , SD . Chứng minh SC vuông góc với mp(AHK) và tính thể tích hình chóp OAHK Câu V. (1,0 điểm) 3a 3b ab 3 + + ≤ a2 + b2 + Cho a , b là các số dương thoả ab + a + b = 3 . Chứng minh b +1 a +1 a + b 2 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mp Oxy cho các đường thẳng d1: (m – 1).x + (m – 2).y + 2 – m = 0 ; d2 : (2 – m).x + (m – 1).y + 3m – 5 = 0 Chứng minh d1 và d2 luôn cắt nhau , ∀m∈R . x y−2 z+4 2. Trong không gian Oxyz , cho A(1 , 2 , 1) , B(2 ,– 1 , 2) đường thẳng (d) : = = và mặt −1 1 2 phẳng (P) có phương trình ; 2x – y + z + 1 = 0 . a) Tìm toạ độ điểm C đối xứng với điểm A qua mặt phẳng (P) b) Viết ph/tr đường thẳng (D) đi qua A , cắt (d) và song song với mặt phẳng (P) Câu VIIa. (1,0 điểm) Trong mpOxy cho hình phẳng (H) giới hạn bởi các đường thẳng 4y = x 2 ; y = x . Tính thể tích vật tròn xoay khi (H) quay một vòng quanh trục Ox 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mpOxy , cho d: x – y + 1 = 0 và đường tròn (C) : x2 + y2 + 2x – 4y = 0 . Tìm toạ độ điểm M thuộc đường thẳng d mà qua đó ta kẻ được hai đường thẳng tiếp xúc với (C) tại A và B sao cho góc AMB bằng 600 2. Trong k/g Oxyz cho 2 điểm A((2 ; 0 ; 0 ) ; M(0 ; – 3 ; 6 ) a) Chứng minh mp(P): x + 2y – 9 = 0 tiếp xúc với mặt cầu tâm M bán kính MO . Tìm toạ độ tiếp điểm ? b) Viết phương trình mphẳng (Q) chứa A, M và cắt các trục Oy, Oz tại các điểm tương ứng B,C sao cho VOABC = 3 Câu VIIb. (1,0 điểm)
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm Tìm hệ số của x8 trong khai triển ( x2 + 2 ) n biết An − 8C n + C n = 49 3 2 1
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 7 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số: y = x3 + 3x2 + 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Đường thẳng (d) đi qua điểm A(-3 ; 1) có hệ góc là k. Xác định k để (d) cắt đồ thị hàm số (1) tại ba điểm phân biệt. Câu II. (2,0 điểm) 4 1. Giải phương trình : ( 2 − log 3 x ) log 9 x 3 − =1 1 − log 3 x (2 − sin 2 2 x) sin 3x 2. Giải phương trình : tan x + 1 = 4 cos 4 x Câu III. (1,0 điểm) 2 − x2 Tính diện tích hình phẳng giới hạn bới các đường y = x2 ; y = Câu IV. (1,0 điểm) Trong mp(P) cho nửa đường tròn đường kính AB = 2R và điểm C thuộc nửa đường tròn đó sao cho AC = R . Trên đường thẳng vuông góc với (P) tại A lấy điểm S sao cho góc (SAB, SBC) = 60o . Gọi H , K lần lượt là hình chiếu vuông góc của A trên SB , SC . Chứng minh rằng tam giác AHK vuông và tính thể tích hình chóp S.ABC Câu V. (1,0 điểm) 1 1 1 1 1 1 Cho tam giác ABC có diện tích là 3/2 . CMR: + + h +h +h ≥ 3 a b c a c b II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy cho tam giác ABC có A(1 , 0) và hai đường thẳng chứa các đường cao kẻ từ B và C có phương trình: x – 2y + 1 = 0 ; 3x + y – 1 = 0 . Tính diện tích tam giác ABC 2. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và chiều cao bằng h . Gọi I là trung điểm cạnh bên SC . Tính khoảng cách từ S đến mp (ABI) . Câu VIIa. (1,0 điểm) n −2 3 n −3 Tìm số tự nhiên n thỏa : C n .Cn + 2Cn Cn + Cn C n = 100 2 23 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng Oxy , cho d: x – 7y + 10 = 0 . Viết phương trình đường tròn có tâm thuộc đường thẳng : 2x + y = 0 và tiếp xúc với d tại A( 4 , 2 ) x = −1 − 2t xyz ; (d2) : y = t 2. Trong không gian Oxyz , cho 2 đường thẳng (d1) : = = 112 z = 1+ t a) Xét vị trí tương đối của (d1) và (d2) b) Tìm tọa độ điểm M thuộc (d1) và N thuộc (d2) sao cho đường thẳng MN song song với mp(P): x– y + z = 0 và độ dài đoạn MN bằng 2 Câu VIIb. (1,0 điểm) x −3− 2 x − 4 + x − 6 x − 4 + 5 = m có đúng 2 nghiệm Tìm m để phương trình :
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 8 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) −x Cho hàm số y = Câu I. (2,0 điểm) x +1 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số x 2. Biện luận theo m số nghiệm thực của phương trình : =m x +1 Câu II. (2,0 điểm) π 1 1 − = 2 2 cos( x + ) 1. Giải phương trình : cos x sin x 4 2 2 + x −1 +x−2 − 10.3x ++ 2. Giải bất phương trình : 9 x 1 0 Câu III. (1,0 điểm) π 4 x Tính tích phân I = ∫ .dx 1 + cos 2 x 0 Câu IV. (1,0 điểm) Cho lăng trụ đứng ABC.A1B1C1 có đáy ABC là tam giác vuông , AB = AC = a AA 1 = a 2 . Gọi M, N lần lượt là trung điểm của AA1 và BC1. Chứng minh MN là đường vuông góc chung của AA1 và BC1. Tính thể tích hình chóp MA1 BC1 Câu V. (1,0 điểm) Tìm các góc của tam giác ABC để biểu thức sau đạt giá trị nhỏ nhất : Q = sin2A + sin2B – sin2C II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy cho ∆ ABC vuông tại C , biết A(– 2 ; 0) ; B(2 ; 0) và khoảng cách từ trọng tâm G của 1 ∆ ABC đến trục hoành là . Tìm tọa độ đình C. 3 2. Trong kgOxyz cho 3 điểm A(1 , 1 , 0) ; B(0 , 2 , 0) : C(0 , 0 , 2) a) Viết ph/tr mặt phẳng (P) qua gốc tọa độ O và vuông góc với BC . Tìm toạ độ giao điểm của đt AC với mp(P) b) CMR: Tam giác ABC vuông . Viết ph/tr mặt cầu ngoại tiếp tứ diện OABC Câu VIIa. (1,0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = (x + 1). 1 − x 2 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mpOxy cho 2 đ/ thẳng (d1) : 2x – y + 5 = 0 (d2) : x + y – 3 = 0 và điểm I(– 2 , 0) . Viết phương trình đường thẳng (d) đi qua điểm I và cắt 2 đường thẳng (d1) , (d2) lần lượt tại A và B sao cho IA = 2.IB x − 3 y − 6 z −1 = = 2. Trong không gian Oxyz, cho A(4 , 2 , 2) , B(0 , 0 , 7) và đường thẳng (d) : . CMR: −2 2 1 2 đường thẳng (d) và AB thuộc cùng một mặt phẳng. Tìm điểm C thuộc đường thẳng (d) sao cho tam giác ABC cân tại đỉnh A. Câu VIIb. (1,0 điểm) Từ các chữ số 1 , 2 , 3 , 4 , 5 , 6 lập được bao nhiêu số tự nhiên , mỗi số có 6 chữ số và thỏa điều kiện : sáu chữ số của mỗi số là khác nhau và trong mỗi số đó , tổng của 3 chữ số đầu nhỏ hơn tổng của 3 chữ số cuối một đơn vị
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 9 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = x4 – 6x2 + 5 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 2. Tìm m để ph/tr sau có 4 nghiệm phân biệt : x4 – 6x2 – log 2 m = 0 Câu II. (2,0 điểm) 1. Giải phương trình : 2sinx.cos2x + sin2x.cos2x = sin4x.cosx x2 + y = y2 + x 2. Giải hệ phương trình : x + y 2 − 2 x −1 = x − y Câu III. (1,0 điểm) 3x − 2 + x − 1 = 4 x − 9 + 2 3x 2 − 5x + 2 Giải phương trình : Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, cạnh SA vuông góc với a3 đáy, cạnh SB tạo với đáy một góc 60 o . Trên cạnh SA lấy điểm M sao cho AM = . Mặt phẳng 3 (BCM) cắt cạnh SD tại N. Tính thể tích khối chóp S.BCMN Câu V. (1,0 điểm) 3 . CMR : 3 a + 3b + 3 b + 3c + 3 c +c Cho a ,b, c là 3 số dương thoả mãn: a + b + c = 3. 3a 4 Khi nào dấu bằng xảy ra ? II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy , cho tam giác ABC cân tại B với A(1 ; – 1) , C(3 ; 5) . Đỉnh B thuộc đ/thẳng d: 2x – y = 0 . Viết phương trình các đường thẳng AB , BC =x = 7 + 3t x −1 y + 2 z − 5 = và (d2) : =y = 2 +2 , (t R) .Chứng minh hai đường = = 2t 2. Cho hai đường thẳng (d1) : −3 2 4 =z = 1 − 2t = thẳng trên cùng nằm trên một mp (α) . Viết phương trình mp (α). Câu VIIa. (1,0 điểm) 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mpOxy cho điểm và Elip (E) : 9x 2 + 64y2 = 576 . Viết ph/tr tiếp tuyến d của (E) biết d cắt 2 trục Ox, Oy lần lượt tại A, B sao cho AO = 2.BO 2. Trong không gian Oxyz , cho điểm A(4 , 0 , 0) ; B(0 , 4 , 0) và mặt phẳng (P): 3x + 2y – z + 4 = 0 . Gọi I là trung điểm của đoạn thẳng AB. a) Tìm toạ độ giao điểm của đường thẳng AB với mp(P) b) Xác định toạ độ điểm K sao cho KI vuông góc với mp(P) đồng thời K cách đều gốc toạ độ O và mp(P). Câu VIIb. (1,0 điểm) e 3 − 2 ln x Tính tích phân I = ∫ .dx 1 x. 1 + 2. ln x
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 10 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = x3 + (1 – 2m).x2 + (2 – m).x + m + 2 1. Khảo sát hàm số khi m = 2 2. Tìm các giá trị của m để đồ thị hàm số có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1 Câu II. (2,0 điểm) 1. Giải phương trình : (2sin2x – 1).tan22x + 3.(2.cos2x – 1) = 0 ( x − y ).( x 2 + y 2 ) = 13 2. Giải hệ phương trình : ( x + y ).( x 2 − y 2 ) = 25 Câu III. (1,0 điểm) 10 dx ∫ x−2 Tính tích phân I = x −1 5 Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a . Góc BAD = 60 o . SA vuông góc với mp(ABCD) và SA = a . Gọi C/ là trung điểm của SC. Mặt phẳng (P) đi qua AC / và song song với BD , cắt các cạnh SB, SD tại B/, D/. Tính thể tích khối chóp S.AB/C/D/ Câu V. (1,0 điểm) 3x 2 + 4 2 + y 3 + Cho 2 số dương x , y thay đổi thoả x + y ≥ 4 .Tìm GTNN của biểu thức A = y2 4x II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mpOxy , cho tam giác ABC có A(2 , 1) , đường cao qua B có phương trình: x – 3y – 7 = 0 và trung tuyến qua C có phương trình : x + y +1 = 0 . Xác định toạ độ các đỉnh B và C của tam giác 2. Trong không gian Oxyz, cho mp(P) : 2x + y – z + 5 = 0 và các điểm A(0 , 0 , 4) ; B(2 , 0 , 0) a) Viết phương trình hình chiếu vuông góc của đường thẳng AB trên mp(P) b) Viết phương trình mặt cầu đi qua O, A, B và tiếp xúc với mp(P) Câu VIIa. (1,0 điểm) Giải phương trình : log x 2 + 2 log 2x 4 + log 2x 8 = 6 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy , cho ∆ ABC với A(–1; 1) ; B(–2; 0) ; C(2 ; 2) a) Viết phương trình tham số của đường thẳng (d) qua hai điểm A, B b) Tìm điểm M trên (d) cách điểm C một khoảng là 34 2. Trong không gian Oxyz , cho lăng trụ đứng ABC.A/ B/ C/ có A(0 , 0 , 0) ; B(2 , 0 , 0) ; C(0 , 2 , 0) ; A/ (0 , 0 , 2) a) CMR: A/C vuông góc với BC/ . Viết phương trình mặt phẳng (ABC/) b) Viết phhương trình hình chiếu vuông góc của đường thẳng B/C/ trên mặt phẳng (ABC/) Câu VIIb. (1,0 điểm) 1 Giải bất phương trình 2.(log 2 x + 1).log 4 x +(log 2 0 4
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 11 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = ( x – 1 ).( x2 + mx + m ) Tìm m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt 1. Khảo sát hàm số trên khi m = 4 2. Câu II. (2,0 điểm) Giải phương trình : 2cos2x + 2 3 .sinxcosx + 1 = 3( sinx + 3 .cosx ) 1. 2. Giải phương trình : x + 2. 7 − x = 2. x − 1 + − x 2 + 8x − 7 + 1 Câu III. (1,0 điểm) ln(1 + x) − ln(1 + y ) = x − y Giải hệ phương trình : 2 x − 12 xy + 20 y = 0 2 Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O , BD = a ; AC = a 3 ; và đường cao hình chóp là ể SO = a 3 . Trên cạnh SB lấy điểm M sao cho MOD = 1200 . Tính thể tích khối tứ diện M.ABC Câu V. (1,0 điểm) 7 11 Tìm giá trị nhỏ nhất của hàm số y = x + + 41 + 2 với x > 0 x 2x II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Một hình chữ nhật ABCD có đỉnh A(5 ; 1) ; C(6 ; 0) và một cạnh có phương trình : x + 2y – 12 = 0 .Tìm phương trình các cạnh còn lại của hình chữ nhật 2. . Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(0 ; 0 ; 3 ) ; B(1 ; 0 ; 0) ; C(0 ; 3 ; 0) ; D( 1 ; 1 ; 1) và mặt phẳng (P) : x – 2y + 2z – 1 = 0 a) Tìm tọa độ hình chiếu của gốc tọa độ lên mặt phẳng (ABC) b) Lập phương trình đường thẳng (d) đi qua điểm B , nằm trong (P) và cách D một khoảng bằng 1 Câu VIIa. (1,0 điểm) 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Cho tam giác ABC với B(3 ; 5) ; C(4 ; – 3), phân giác trong của góc A có phương trình : x + 2y – 8 = 0. Tìm phương trình các cạnh của ∆ ABC 2. Trong k/g Oxyz cho hai điểm A( 0 ; 0 ; 4) ; B(2 ; 0 ; 0) và mặt phẳng (P) : 2x + y – z + 5 = 0 a) Viết phương trình mặt cầu (S) đi qua ba điểm O, A , B và có khoảng cách từ tâm I của (S) đến (P) 5 là 6 b) Viết phương trình đường thẳng (D) qua A , song song với (P) và cắt đường thẳng OB Câu VIIb. (1,0 điểm) π 2 cot x +sin 2 x + 1 dx Tính tích phân I = π 6
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 12 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) 2x −1 Cho hàm số y = x −1 Khảo sát hàm số . Gọi đồ thị là (C) a) b) Gọi I là tâm đồi xứng của (C) . Tìm điểm M thuộc (C) sao cho tiếp tuyến của (C) tại M vuông góc với đường thẳng IM Câu II. (2,0 điểm) sin 2x cos 2x + = tan x − cot x Giải phương trình : 1. cos x sin x x −1 2. Giải bất phương trình : x 2 + (x +x 1) 3 x +1 Câu III. (1,0 điểm) Cho 2 đường thẳng song song d1 , d2 . Trên d1 có 10 điểm phân biệt , trên d2 có n điểm phân biệt ( n ≥ 2 ) . Biết rằng có 2800 tam giác có 3 đỉnh lấy từ tất cả các điểm đã cho . Tìm số n ? Câu IV. (1,0 điểm) Cho khối lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a , đỉnh A’ cách đều các đỉnh A,B,C .Cạnh bên AA’ tạo với đáy một góc 600 . Tính thể tích lăng trụ Câu V. (1,0 điểm) 2 xy x+3 2 = x2 + y x − 2x + 9 Giải hệ phương trình : 2 xy y+ = y2 + x y − 2y + 9 2 3 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1.Viết phương trình đường tròn đi qua A(4 ; 2) và tiếp xúc với hai đ.thẳng (d1) : x – 3y – 2 = 0 ;(d2) : x – 3y – 18 = 0 2. Cho mặt cầu (S): (x + 2)2 + (y –1)2 + z2 = 26 và đường thẳng (d): x = 1 ; y = 2 – 5t; z = –4 + 5t. a) Tìm tọa độ giao điểm A, B của (d) với (S). b) Lập phương trình các mặt phẳng tiếp xúc với (S) tại A, B. Câu VIIa. (1,0 điểm) Giải phương trình : 2log 2 (2x + 2) + log 1 (9x − 1) = 1 2 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Tùy theo m biện luận sự tương giao giữa đ.thẳng (d) : mx – y – 2m + 3 = 0 và đường tròn (C) : x2 + 4 y2 – 2x + = 0 5 x y −1 z +1 2. Cho đường thẳng (d) : = = và hai mp (P) : 2x – y + z + 2 = 0 ; (Q) : x + y – 2z + 5 = 0 . 2 1 2 Viết phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với cả hai mp (P) và (Q) . Câu VIIb. (1,0 điểm) Giải phương trình : 4x – 2x+1 + 2.(2x – 1).sin(2x + y – 1) + 2 = 0
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 13 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = x3 – 3(m + 1)x2 + 3m(m + 2)x + 1 (1) 1. Khảo sát hàm số (1) khi m = 1 . 2. CMR: hàm số (1) luôn luôn có cực đại và cực tiểu . xác định các giá trị của m để hàm số (1) đạt cực đại và cực tiểu tại các điểm có hoành độ dương . Câu II. (2,0 điểm) π 1. Giải phương trình : 2 2 . sin x − . cos x = 1 12 x4 − x3 y + x2 y 2 = 1 2. Giải hệ phương trình : 3 x y − x 2 + xy = − 1 Câu III. (1,0 điểm) x2 +1 − x = m có nghiệm Tìm m để phương trình : 4 Câu IV. (1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a và SA = h ; SA ⊥ (ABC) . Gọi H và I lần lượt là trực tâm ∆ ABC và ∆ SBC a) Chứng minh IH ⊥ (SBC) b) Tính thể tích khối chóp HIBC theo a và h Câu V. (1,0 điểm) Cho các số thực x , y , z thoả :3-x + 3-y + 3-z = 1 3x + 3y + 3z 9x 9y 9z +y +z ≥ CMR : x 3 + 3 y + z 3 + 3 z+ x 3 + 3 x+ y 4 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Cho tam giác ABC cân đỉnh A với phương trình hai cạnh bên (AB) : 2x – y + 5 = 0 ; (AC) : 3x + 6y – 1 = 0 . Cạnh đáy BC đi qua M(2 ; – 1 ) . Viết phương trình cạnh BC . 2. Trong k/g Oxyz , cho A(2 , 3 , 2) ; B(6 ,– 1 , – 2) ; C(– 1 ,– 4 , 3) ; D(1 , 6 ,– 5) . Tính góc giữa hai đường thẳng AB và CD . Tìm toạ độ điểm M thuộc CD sao cho tam giác ABM có chu vi nhỏ nhất Câu VIIa. (1,0 điểm) 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Một hình thoi ABCD với đường chéo AC có phương trình : x + 2y – 7 = 0 , một cạnh là : x + 7y – 7 =0 và một đỉnh (0 ; 1) . Tìm phương trình các cạnh của hình thoi 2. Trong không gian Oxyz , cho đường thẳng (dm) là giao tuyến của hai mp (P) : mx + y – mz – 1 = 0 ; (Q) : x – my + z – m = 0 a) Chứng minh góc giữa (dm) và trục Oz không đổi , khoảng cách giữa (dm) và trục Oz không đổi b) Tìm tập hợp các giao điểm M của (dm) và mp (Oxy) khi m thay đổi Câu VIIb. (1,0 điểm) 2x −1 = 1 + x − 2x log 2 Giải phương trình : x
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 14 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) x Cho hàm số y = (1) , có đồ thị (C) x +1 1. Khảo sát hàm số (1) 2. Tìm các điểm M thuộc (C) có khoảng cách đến đ/th : 3x + 4y = 0 bằng 1 Câu II. (2,0 điểm) π 3 1. Giải phương trình : 2 2 . cos x − − 3 cos x − sin x = 0 4 2. Tìm m để phương trình : 4 x 2 + 2x + 4 − x + 1 = m có đúng 1 nghiệm thực . Câu III. (1,0 điểm) Tìm m để hệ bất phương trình sau có nghiệm : + 72x+ x+1 − 72+ x+1 ++ − 2009x 2009 −2 − x − (m+ 2).x + 2m+) 30 Câu IV. (1,0 điểm) Cho khối nón đỉnh S , đường cao SO = 6 cm và bán kính đáy R = 2 cm. Mặt phẳng (P) song song với đáy cắt khối nón theo thiết diện là hình tròn (C) tâm I . Tính độ dài đoạn OI để thể tích của khối nón đỉnh O , đáy là đường tròn (C) lớn nhất . Câu V. (1,0 điểm) Cho bốn số thực dương x , y , z, t thỏa x.y.z.t = 1 . Tìm GTNN của biểu thức : 1 1 1 1 +4 +4 4 +4 P= 4 x + y + z + 1 y + z + t + 1 z + t + x + 1 t + x + y4 + 1 4 4 4 4 4 4 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Cho hai đường thẳng (d1) : x – 3y + 6 = 0 ; (d2) : 2x – y – 3 = 0 . Viết phương trình đường thẳng (d) đối xứng (d2) qua (d1) 2. Trong không gian với hệ tọa độ Oxyz , cho điểm M(1 ; 2 ; 3) a) Viết phương trình mặt phẳng (P) qua điểm M và cắt các trục Ox , Oy , Oz tại các điểm A , B, C sao cho M là trọng tâm của tam giác ABC b) Viết phương trình mặt phẳng (Q) qua điểm M và cắt các trục Ox , Oy , Oz tại các điểm A , B, C sao cho M là trực tâm của tam giác ABC Câu VIIa. (1,0 điểm) Có bao nhiêu số tự nhiên chẵn lớn hơn 2009 mà mỗi số gồm 4 chữ số khác nhau 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Cho tam giác ABC với B(2 ; – 7) , phương trình đường cao vẽ từ A là (d) : 3 x + y + 11 = 0 , trung tuyến vẽ từ C là (D) : x + 2y + 7 = 0 . Tìm phương trình các cạnh của ∆ ABC 2. Cho tứ diện ABCD với A(3 ; 5 ; -1) ; B(7 ; 5 ; 3) ; C(9 ; -1 ;5) ; D( 5 ; 3 ; -3) . Viết phương trình mặt phẳng cách đều bốn đỉnh của tư diện đó. Câu VIIb. (1,0 điểm) Trên các cạnh AB , BC , CD , DA của hình vuông ABCD lần lượt cho 1 , 2 , 3 và n điểm phân biệt khác A , B , C , D Tìm n biết số tam giác có 3 đỉnh lấy từ n + 6 điểm đã cho là 439
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 15 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = x4 – 2m2x2 + 1 (1) 1. Khảo sát hàm số (1) khi m = 1 2. Tìm m để đồ thị h/s (1) có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân Câu II. (2,0 điểm) 3π x 1. Tìm nghiệm thuộc khoảng ( 0 , π ) − 3 cos 2 x = 1 + 2. cos 2 x − 2 của ph/trình : 4 sin 4 2 2 2 2. Giải phương trình : 2.3x − 2x + 3x − 3− x + 3x + 3 − 54 = 0 Câu III. (1,0 điểm) x 2 − xy + y 2 = 3 ( x − y ) Giải hệ phương trình : 2 x + xy + y 2 = 7( x − y ) 2 Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật ; AB = a ; SA ⊥ (ABCD) ; SC hợp với đáy một góc 300 và với mặt bên (SAB) một góc 450 . Tính thể tích khối chóp S.ABCD Câu V. (1,0 điểm) 2 y 9 CMR: Với mọi x , y > 0 ta có : (1 + x ) 1 + 1 + ≥ 256 . Đẳng thức xảy ra khi nào ? x y II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Lập phương trình đường tròn qua A(1 ; 2) ; B(3 ; 4) và tiếp xúc với đường thẳng (d) : y = 3 (1 – x ) x+1 y−1 z− 2 = = 2. Trong không gian với hệ tọa độ Oxyz , cho đt (d): & mp(P): x – y + z –1 = 0 2 1 3 a) Viết pt đường thẳng (∆ ) qua M(1 , 1 , –2) song song với (P) và vuông góc với (d). b) Gọi N là giao điểm của (P) và (d) . Tìm điểm K trên (d) sao cho KM = KN. Câu VIIa. (1,0 điểm) e (x 2 − 2)ln x Tính tích phân I = − dx x 1 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Lập phương trình đường tròn qua A(4 ; 2) và tiếp xúc với hai đường thẳng (d1) : x – 3y – 2 = 0 ; (d2) :x – 3y +18 = 0 2. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0 ; 0 ; 0) ; B(a ; 0 ; 0) ; D( 0 ; a ; 0) ; A’(0 ; 0 ; b) với a , b là những số dương và M là trung điểm của CC’ a) Tính thể tích tứ diện BDA’M a b) Tìm tỉ số để mp (A’BD) ⊥ (MBD) b Câu VIIb. (1,0 điểm) 1 x Tính tích phân I = + 4 dx 0 x + x +1 2
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 16 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = – x3 + (2m + 1).x2 – m – 1 (1) 1. Khảo sát sự biến thiên , vẽ đồ thị h/s (1) khi m = 1 2. Tìm m để (Cm) tiếp xúc với đường thẳng (d) : y = 2mx – m – 1 Câu II. (2,0 điểm) � π� cos 2x − 1 1. Giải phương trình : tan � + � 3.tan x = − 2 x cos 2 x � 2� x + 1 − log 1 (3 − x) − log 8 ( x − 1) 3 = 0 2. Giải phương trình : log 2 2 Câu III. (1,0 điểm) Áp dụng khai triển nhị thức Newton của (x2 + x)100 . CMR : 99 100 198 199 1 1 1 1 1 100.C − 101.C100 + .... − 199.C + 200.C =0 0 99 100 100 100 100 2 2 2 2 Câu IV. (1,0 điểm) Cho khối lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a , tâm O . Hình chiếu của A’ trên đáy ABC ớ trùng với O và BAA ' = 450 a) Chứng minh BCC’B’là hình chữ nhật b) Tính thể tích khối lăng trụ đó Câu V. (1,0 điểm) Cho x , y , z là 3 số dương thoả mãn x + y + z = 0 . CMR : 3 + 4 x + 3 + 4 y + 3 +4 Z 6 4 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Lập phương trình đường thẳng (d) qua điểm A(3 ; 0) và cắt các đường thẳng (d1): 2x – y – 2 = 0 ; (d2): x + y + 3 = 0 tại hai điểm B , C sao cho A là trung điểm BC . 2. Cho ba điểm A(a ; 0 ;0) ; B(0 ; b ;0) ; C (0 ; 0 ; c) , với a , b , c là các số dương thay đổi sao cho a2 + b2 + c2 = 3 . Xác định a , b , c để khoảng cách từ O đến mp (ABC) lớn nhất. Câu VIIa. (1,0 điểm) 2 1 x+ 1 Tính tích phân I = + (1 + x − )e x dx x 1 2 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Lập phương trình đường thẳng (d) qua điểm A(2 ; 1) và tạo với đường thẳng (d’) : 2 x + 3y + 4 = 0 một góc 450 . 2. Trong không gian với hệ tọa độ Oxyz , tìm pt đường vuông góc chung của hai đường thẳng: =x = 1+ t x = 12 + 4t = (d1) =y = 2 − 3t (d2) y = 9 + 3t (t ∈ R) =z = 3− t z = 1+ t = Câu VIIb. (1,0 điểm) x 2 − 2(m + 2)x + 6m + 3 Cho họ đường cong (Cm) : y = , với m là tham số . Tìm trên Ox những điểm x−2 mà đồ thị không đi qua
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 17 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) x3 11 Cho hàm số y = − + x 2 + 3x − 3 3 1. Khảo sát và vẽ đồ thị (C) của hàm số 2. Tìm trên (C) hai điểm phân biệt M , N đối xứng với nhau qua trục tung Câu II. (2,0 điểm) 1. Giải phương trình : sinx.cos2x + cos2x.(tan2x – 1) + 2.sin3x = 0 2 2. Giải bất phương trình : 3log3 x +2 log3 x 243 2x Câu III. (1,0 điểm) Tìm các giá trị của tham số m để bất phương trình : x 2 + 2 4 − x 2 − x 2 + 5 + 4 −4 2 m có nghiệm x thực . Câu IV. (1,0 điểm) Cho hình chóp đều SABCD, đáy ABCD là hình vuông có cạnh 2a.Cạnh bên SA = a 5 .Một mặt phẳng (P) đi qua A,B và vuông góc với m¨t ph¼ng (SCD),(P) lần lượt cát SC,SD tại C1 và D1. Tính diện tích của tứ giác ABC1D1 a) Tính thể tích của khối đa diện ABCDD1C1 b) Câu V. (1,0 điểm) y xx = e = 2009 − y2 − 1 − CMR hệ phương trình : − có đúng 2 nghiệm thoả mãn x > 0 , y > 0 x − ey = 2009 − = x2 − 1 − II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Lập phương trình đường tròn có tâm thuộc (d) : x = 5 và tiếp xúc với hai đường thẳng (d1) : 3x – y + 3=0; (d2) :x – 3y +9 = 0 2. Cho ba mặt phẳng (P) : x + y + z – 6 = 0 ; (Q) : mx – 2y + z + m – 1 = 0 ; (R) : mx + (m – 1) y – z + 2m =0. Xác định giá trị m để ba mặt phẳng đó đôi một vuông góc với nhau và tìm điểm chung của ba mặt phẳng đó . Câu VIIa. (1,0 điểm) Tìm hệ số của số hạng chứa x5 trong khai triển nhị thức Newton của (1+3x)2n , biết rằng : A n + 2A n = 3 2 100 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Lập phương trình đường tròn qua A(1 ; – 2) và qua giao điểm B , C của đường thẳng (d) : x – 7y + 10 = 0 với đường tròn (C’) : x2 + y2 – 2x + 4y – 20 = 0 2. Trong không gian Oxyz, xét mặt phẳng (Pm) : 3mx + 5 1 − m 2 y + 4mz + 20 = 0 , m∈ [-1 ; 1] a) Tính khoảng cách từ gốc tọa độ O đến mp (Pm) b) CMR với mọi m∈ [-1 ; 1] , (Pm) tiếp xúc với một mặt cầu cố định Câu VIIb. (1,0 điểm) 2n 2n +1 Tìm số nguyên dương n sao cho : C 2n +1 − 2.2C 2n +1 + 3.2 C 2n +1 − .......... + (2n + 1)2 C2n +1 = 2009 1 2 23
- ÔN THI ĐẠI HỌC 2010 Giáo viên: Trần Văn Hùng - THPT Nguyễn Bỉnh Khiêm ĐỀ THAM KHẢO 18 ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian làm bài : 180 phút, không kể thời gian phát đề I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) x+3 Cho hàm số y = x −1 1. Khảo sát và vẽ đồ thị (C) của hàm số 2. Cho điểm M(xo , yo) thuộc (C) . Tiếp tuyến của (C) tại M cắt các tiệm cận của (C) tại A và B . Chứng minh rằng M là trung điểm của đoạn AB Câu II. (2,0 điểm) 1. Giải phương trình : sin2x + cos2x + 3.sinx – cosx – 2 = 0 x x 2 + 2 + x + y2 + 3 + y = 5 + 2. Giải hệ phương trình : + + x 2 + 2 − x + y2 + 3 − y = 2 + Câu III. (1,0 điểm) π 4 sin 4x Tính tích phân sau : I = +cos dx x tan 4 x + 1 2 0 Câu IV. (1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a ; cạnh bên SA = h và SA ⊥ (ABCD) . M là điểm thay đổi trên cạnh CD , đặt CM = x . Hạ SH ⊥ BM a) Tính SH theo a , h , và x b) Xác định vị trí của M để thể tích SABH đạt giá trị lớn nhất và tính GTLN đó Câu V. (1,0 điểm) x2 y2 z2 3 + + ≥ Cho x , y , z là 3 số dương thoả mãn x.y.z = 1 . CMR: 1+ y 1+ z 1+ x 2 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn làm một trong hai phần (phần 1 hoặc phần 2) 1.Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Viết phương trình đường thẳng (d) qua A(8 ; 6) và tạo với hai trục tọa độ một tam giác có diện tích là 12 (đvdt) 2. Viết phương trình mp (P) chứa trục Oz và tạo với mp (α) : 2x + y – 5 z = 0 môt góc 600 . Câu VIIa. (1,0 điểm) Giải bất phương trình : log2(x – 5) + log2(x + 2 ) < 3 2. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Lập phương trình các cạnh của ∆ ABC biết C(– 3; 1) ; phân giác trong AD : x + 3y + 12 = 0 ; đường cao AH : x + 7y + 32 = 0 2. Viết phương trình mp (Q) đi qua A(3 ; 0 ; 0) ; B(0 ; 0 ; 1) và tạo với mp (Oxy) một góc 600 Câu VIIb. (1,0 điểm) Giải phương trình : log7 x = log3 ( 2 + x )
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bộ đề ôn thi Đại học môn Hóa học
25 p | 3910 | 2292
-
Chuyên đề ôn thi đại học môn toán - lượng giác (Có bổ sung)
13 p | 1153 | 608
-
BỘ ĐỀ LUYỆN THI ĐẠI HỌC CẤP TỐC 2010 - MÔN: HÓA HỌC (ĐỀ SỐ 31)
4 p | 880 | 223
-
BỘ ĐỀ ÔN THI ĐẠI HỌC CAO ĐẲNG MÔN HÓA HỌC
153 p | 144 | 48
-
Đáp án chuyên đề ôn thi Đại học: Chuyên đề 3 - Sự điện li
14 p | 175 | 37
-
BỘ ĐỀ ÔN THI ĐẠI HỌC – ĐỀ 1
63 p | 113 | 31
-
Đáp án chuyên đề ôn thi Đại học: Chuyên đề 3 - Phản ứng oxi hoá - khử, tốc độ phản ứng và cân bằng hoá học
14 p | 222 | 29
-
Bộ đề ôn thi ĐH-CĐ môn Toán (Tự luận) - Kèm Đ.án
0 p | 136 | 20
-
Bộ đề luyện thi Đại học môn Hóa học - Đề 13 đến đề 20
38 p | 112 | 11
-
Bộ đề luyện thi đại học 2011
3 p | 99 | 11
-
Đề ôn thi Đại học - Cao đẳng môn Vật lý năm học 2012
5 p | 120 | 9
-
Bộ đề luyện thi Đại học môn Hóa học - Đề số 1 đến đề 10
30 p | 121 | 7
-
Trung bộ đề ôn thi Đại học, Cao đẳng môn Vật lí (Đề 20 - 30)
47 p | 59 | 5
-
Bộ đề ôn thi Đại học, Cao đẳng môn Vật lí
50 p | 99 | 5
-
Bộ đề luyện thi Đại học môn Hóa - Đề 11 đến đề 20
29 p | 107 | 3
-
Đáp án bộ đề luyện thi Đại học môn Hóa - Đề 1 đến đề số 10
4 p | 93 | 3
-
Chuyên đề ôn thi Đại học môn Hóa học phần nhận biết
5 p | 43 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn