intTypePromotion=3

Bộ đề thi học sinh giỏi lớp 9 môn Toán

Chia sẻ: Bút Màu | Ngày: | Loại File: PDF | Số trang:23

0
411
lượt xem
74
download

Bộ đề thi học sinh giỏi lớp 9 môn Toán

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Gửi đến các bạn Bộ đề thi học sinh giỏi môn Toán. Hi vọng tài liệu sẽ cung cấp những kiến thức bổ ích cho các bạn trong quá trình học tập nâng cao kiến thức trước khi bước vào kì thi học sinh giỏi của mình. Để nắm vững nội dung chi tiết cũng như cấu trúc đề thi mời các bạn cùng tham khảo tài liệu

Chủ đề:
Lưu

Nội dung Text: Bộ đề thi học sinh giỏi lớp 9 môn Toán

  1. ĐỀ ĐỀ NGHỊ ĐỀ THI HỌC SINH GIỎI MÔN: TOÁN 9 –Thời gian: 150 phút NĂM HỌC 2012 – 2013 NGƯỜI RA ĐỀ: HUỲNH MINH HUỆ Câu 1: (2điểm) Chứng minh rằng với mọi số nguyên x, y thì: A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương. Câu 2: (5điểm) a/ (2điểm) Phân tích đa thức sau ra thành nhân tử: A = x4 + 6x3 + 7x2 - 6x + 1 b/ Cho biểu thức(3điểm): x y xy P=   ( x  y )(1  y ) ( x y )( x  1) ( x  1)(1  y ) ( x  0 , y  0 , y  1, x + y  0 * Rút gọn P(2,0điểm). * Tìm x, y nguyên thoả mãn phương trình P = 2.(1,0điểm) Câu 3: (5điểm) a/ (2,5điểm) Tìm giá trị nhỏ nhất của A = (x-1)(x-4)(x-5)(x-8)+2002( b/ (2,5điểm) Giải phương trình: x 2  3x  2  x  3  x  2  x 2  2 x  3 Câu 4: Cho tam giác ABC cân tại A, BC = 3 5 cm, gọi I là giao điểm của các đường phân giác. Biết IA = 2 5 cm, IB = 3cm. Tính độ dài AB. Câu 5:(4điểm) Cho đường tròn t âm O, điểm K nằm bên ngoài đường tròn. Kẻ các tiếp tuyến KA, KB với đường tròn ( A,B là các tiếp điểm). Kẻ đường kính AOC. Tiếp tuyến của đường tròn (O) tại C cắt AB ở E. Chứng minh rằng a/ Tam giác KBC đồng dạng tam giác OBE. b/ CK vuông góc OE. ...........................Hết.............................
  2. PHÒNG GD&ĐT ĐẠI LỘC KỲ THI HỌC SINH GIỎI LỚP 9 Năm học : 2012-2013 MÔN THI : TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài : 150 phút (Không tính thời gian phát đề) Bài 1 (3 điểm). Cho x, y, z là các số nguyên thỏa mãn phương trình x2 + y2 = z2 Chứng minh rằng: a. Trong hai số x, y có ít nhất một số chia hết cho 3 b. Tích xy chia hết cho 12 Bài 2 (4 điểm). 1) Cho biểu thức A = x + 2y + 1 – 2 x – 2 xy . Tìm x, y để A đạt giá trị nhỏ nhất ?  1 1  x 1    ; x  1; x  2 . 2) Cho b`iểu thức M =  1  x  1 1 x  1  : x 1  1   2 a. Chứng minh rằng: M= x 1 1 b. Với giá trị nguyên nào của x thì M có giá trị nguyên. Bài 3 (4 điểm). 1) Cho  a  a 2  5  b  b 2  5   5 . Tính a + b       1 1 1 1 2) Cho 3 số dương a, b, c thỏa mãn a 2  b 2  c 2  3 . Chứng minh:    a b c abc Bài 4 (4 điểm). Cho tam giác ABC cân tại A. Từ trung điểm H của BC, kẻ HK  AB. Gọi M là trung điểm của HK. Chứng minh góc KCB = góc MAH và AM vuông góc với CK . Bài 5 (5 điểm). Cho hình vuông OABC có độ dài cạnh bằng r, vẽ đường tròn tâm O bán kính r. Trên đường tròn (O) lấy điểm M (M nằm trong hình vuông OABC). Tiếp tuyến của đường tròn qua M cắt AB tại D và cắt BC tại E. a. Chứng minh AB và BC là các tiếp tuyến của (O) b. Tính chu vi (theo r) của tam giác BDE c. Tìm giá trị lớn nhất của diện tích tam giác BDE. HẾT
  3. PHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012 - 2013) ĐỀ ĐỀ NGHỊ Môn: TOÁN (Thời gian: 150 phút) Họ và tên GV ra đề: HỒ THỊ SONG Đơn vị: Trường THCS HOÀNG VĂN THỤ Bài 1 : (4 đ) a) Chứng minh rằng : 3  32  33  34  ...  328  329  330 chia hết cho 13. b) Giải phương trình nghiệm nguyên : xy = x + y Bài 2 : (6 đ) a) Cho  x  x 2  2012  y  y 2  2012   2012 . Tính x + y.       b) Cho 10  2 21  a  b . Tính a – b. a b c  1 1 1 c) Cho a,b,c >0. Chứng minh :    2    bc ca ab a b c x 8  3x 4  4 Bài 3 : (1 đ) Rút gọn : x4  x2  2 Bài 4 (2 đ)         Tính S = 1  2  3  4  ...  1012  1   Bài 5 : (3 đ) Cho hình chữ nhật ABCD. Kẻ BH vuông góc với AC. Gọi M là trung điểm của AH, K là trung điểm của CD. Chứng minh BM vuông góc với MK. Bài 6 : (4 đ) Cho đường tròn tâm O bán kính là 1cm. Tam giác ABC thay đổi và luôn ngoại tiếp đường tròn tâm O. Một đường thẳng đi qua tâm O cắt các đoạn AB, AC lần lượt tại M,N. AM  AN a) Chứng minh S AMN  2 b) Xác định giá trị nhỏ nhất của diện tích tam giác AMN.
  4. PHÒNG GD&ĐT ĐẠI ĐỀ THI HỌC SINH GIỎI NĂM HỌC 2012-2013 LỘC MÔN : TOÁN 9 ========== Thời gian: 150 phút (Không kể thời gian giao đề) ---------------------------------------------- Họ và tên GV ra đề: Lâm Thanh Tuấn ĐỀ ĐỀ NGHỊ Đơn vị: Trường THCS Lê Lợi Câu 1: (2,0 điểm): a) Chứng minh rằng với n là số tự nhiên lẻ thì n3 + 3n2 - n - 3 chia hết cho 48. b) Tìm nghiệm nguyên dương của phương trình: 5 x  7 y  112 Câu 2: (5,0 điểm) a) Rót gän c¸c biÓu thøc sau : (Không sử dụng máy tính bỏ túi) 1 1 1 1 1 A= + + ..... + + 1 5 5 9 9  13 2005  2009 2009  2013 B = x3 - 3x + 2006 víi x = 3 3  2 2 + 3 3  2 2 b) Phân tích đa thức thành nhân tử: M = xy(x - 2)(y + 6) + 12x2 - 24x + 3y2 + 18y + 36. Câu 3: (5,0 điểm) a) Giải phương trình sau: 3x2 + 4x + 10 = 2 14 x 2  7 x  3 x 1  1 b) Tìm giá trị nhỏ nhất của biểu thức: N = ; (x  1) x  4 x 1  2 c) Cho x, y, z d­¬ng tho¶ m·n: x + y + z = 1. Chứng minh: x y  y z  z x  6 Câu 4: (4,5 điểm) Cho hình thang vuông ABCD (AB//CD, Â = 900) đường cao BH. Điểm M thuộc đoạn HC. Từ D kẻ đường thẳng vuông với BM, đường thẳng này cắt BH và BM theo thứ tự ở E và F. a) Chứng minh bốn điểm B, F, H, D cùng nằm trên một đường tròn và EB.EH = ED.EF. b) Cho AB = 10 cm, BM = 13 cm, DM = 15 cm.Tính độ dài của các đoạn thẳng AD, DF và BF (làm tròn đến chữ số thập phân thứ hai). c) Khi M di chuyển trên đoạn HC thì F di chuyển trên đường nào? Câu 5: ( 3,5 điểm) Cho h×nh thoi ABCD c¹nh a, gäi R vµ r lÇn l­ît lµ c¸c b¸n kÝnh c¸c ®­êng trßn ngo¹i tiÕp c¸c tam gi¸c ABD vµ ABC. 1 1 4 a) Chøng minh : 2  2  2 R r a
  5. 8 R3r 3 b) Chøng minh : S ABCD  ; ( KÝ hiÖu S ABCD lµ diÖn tÝch tø gi¸c ABCD ) ( R 2  r 2 )2 ===================== Hết ====================
  6. PHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012-2013) MÔN: TOÁN (Thời gian làm bài 150 phút) Họ và tên GV ra đề: Phan Thị Thu ĐỀ ĐỀ NGHỊ Đơn vị: Trường THCS Lý Thường Kiệt Câu 1 (3 điểm) Cho đa thức f(x) = x 4 + 6x 3 + 11x 2 + 6x a) Phân tích đa thức f(x) thành nhân tử. b) Chứng minh rằng với mọi số nguyên x thì f(x) + 1 luôn có giá trị là một số chính phương. Câu 2 (4 điểm) a)Tìm nghiệm nguyên của phương trình: 11x – 20y = 49. b) Cho x  3  5  2 3  3  5  2 3 . Tính giá trị của biểu thức 2 A  x  2x  2 Câu 3 (5 điểm) 3x 2 a) Cho x, y, z là các số thực thỏa mãn y 2 + yz + z 2 = 1 - . Tìm giá trị nhỏ nhất 2 và giá trị lớn nhất của biểu thức P = x + y + z . b) Chứng minh rằng: Nếu các số dương a, b, c có tổng a + b + c = 1 thì 1 1 1   9 a b c Câu 4: (8 điểm) 1. Cho hình vuông ABCD và điểm P nằm trong tam giác ABC. a) Giả sử BPC = 1350. Chứng minh rằng AP2 = CP2 + 2BP2. b) Các đường thẳng AP và CP cắt các cạnh BC và AB tương ứng tại các điểm M và N. Gọi Q là điểm đối xứng với B qua trung điểm của đoạn MN. Chứng minh rằng khi P thay đổi trong tam giác ABC, đường thẳng PQ luôn đi qua D. 2. Cho tam giác ABC, lấy điểm C1 thuộc cạnh AB, A1 thuộc cạnh BC, B1 thuộc cạnh AC. Biết rằng độ dài các đoạn thẳng AA1, BB1, CC1 không lớn hơn 1. 1 Chứng minh rằng SABC  (SABC là diện tích tam giác ABC). 3 . ……Hết……
  7. PHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI (NĂM HỌC 2012 - 2013) Môn: TOÁN 9 (Thời gian: 150 phút) Họ và tên GV ra đề: Nguyễn Cúc ĐỀ ĐỀ NGHỊ Đơn vị: Trường THCS Lý Tự Trọng Câu I`/ (2đ) 1/ Cho P  (a 2  ab  1) 3  (b 2  3ab  1) 3  (a  b) 2 . Chứng minh rằng P chia hết cho 6 với mọi số nguyên a,b. 2/Tìm số tự nhiên n sao cho số n2 + 2n + 12 là số chính phương Câu II/(5đ) 1/ Cho biểu thức :  x   1 2 x  P = 1   :   1  x 1   x 1 x x  x  x 1     a) Tìm điều kiện của x để P có nghĩa và rút gọn P. b) Tìm các giá trị nguyên của x để biểu thức Q = P - x nhận giả trị nguyên. 2/Cho biểu thức A = x – 2 xy + 3y - 2 x + 1. Tìm giá trị nhỏ nhất mà A có thể đạt được. Câu III/(5đ) 1/Giải phương trình: x 2  5 x  x 2  5 x  4  2 2/Cho ba số thực a, b, c không âm sao cho a  b  c  1 . Chứng minh: b  c  16abc . Dấu đẳng thức xảy ra khi nào ? 3/Tìm x để biểu thức A  x  x  2012 có giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó Câu IV/ (3đ) Cho hình chữ nhật ABCD, đường thẳng vuông góc với AC tại C cắt các đường thẳng AB, AD lần lượt tại E, F. Chứng minh:: BE CF  DF CE  AC EF Câu V/ (5đ) Cho (O; R), AB và CD là hai đường kính cố định vuông góc với nhau. M là một điểm thuộc cung nhỏ AC, K, H lần lượt là hình chiếu của M trên CD, AB. 1/ Tính Sin 2 MBA  Sin 2 MAB  Sin 2 MCD  Sin 2 MDC 2/ Chứng minh: OK 2  AH (2 R  AH ) 3/ Tìm vị trí điểm H để giá trị của P = MA.MB.MC.MD lớn nhất .......................................
  8. PHÒNG GIÁO DỤC & ĐÀO TẠO ĐẠI LỘC TRƯỜNG THCS MỸ HOÀ CẤU TRÚC ĐỀ THI HỌC SINH GIỎI TOÁN 9 Năm học: 2012- 2013 Câu Phân Thành Nội dung Điểm môn phần của từng câu câu 1 Số học 1 - Toán số chính phương 2 (C.2) 2 Đại số 2  Thực hiện phép biến đổi về căn bậc hai. 5 (C.1.1;2)  Rút gọn biểu thức đại số . Tìm giá trị nguyên, điều kiện để có giá trị nguyên.  Phân tích thành nhân tử 3 Đại số 2 - Giải phương trình vô tỉ một hoặc hai căn thức 5 (C.3.1;2) - Chứng minh bất đẳng thức. Toán áp dụng bất đẳng thức Cô – si cho 2 số -Tìm GTLN, GTNN của một biểu thức . 4 Hình 2  Các bài toán có liên quan đến tam giác , tứ giác . chu vi, 4 học (C.5.1;2) diện tích  Các bài toán có liên quan đến hệ thức lượng trong tam giác, tỉ số lượng giác 5 Hình 2  Các bài toán hình học có liên quan đến đường tròn 4 học (C.4.1;2)  Toán cực trị hình học – Bất đẳng thức hình học
  9. PHÒNG GIÁO DỤC & ĐÀO TẠO ĐẠI LỘC Trường THCS MỸ HOÀ KỲ THI CHỌN HỌC SINH GIỎI LỚP 9 NĂM HỌC 2012-2013 ĐỀ ĐỀ NGHỊ MÔN TOÁN Thời gian 150 phút (không kể thời gian giao đề) Câu 1( 5 điểm ) :  2 2  x 1    ; x  1; x  2 . 1. Cho biểu thức M =  1 x  1 1  x  1  : x 1  1   4 a. Chứng minh rằng: M= . 1 x 1 b. Với giá trị nguyên nào của x thì M có giá trị nguyên. 2. Phân tích đa thức thành nhân tử : a) x3 + 4x - 16 b) x4 + 6x3 + 7x2 - 6x – 24 Câu 2 (2 điểm ): Tìm x,y  N biết : 2013x + 440 = y2 Câu 3 ( 4 điểm ): 2 2011 2 2012 2 2013 1. Chứng minh rằng : 1  2011    2 2  2 2012 2 2012  2 2013 2 2013  2 2011 2. Tìm x biết: ( x  2013) (2 x  1)  2013x  2013  2 x  2012 Câu 4 ( 4 điểm ): Cho đường tròn ( O ; R ), đường kính BC = 2R. Lấy điểm A bất kì thuộc (O); A  B; C. Vẽ AH  BC tại H; HE  AB tại E; HF  AC tại F. 1. Chứng minh AE.AB = AF.AC. 2. Chứng minh rằng EF 2  R 2 . Câu 5 ( 4 điểm ): 1. Cho tam giác nhọn ABC có số đo góc A bằng 600, các đường cao BD, CE. Gọi M là trung điểm của BC. Tam giác MDE là tam giác gì, chứng minh. 2. Cho tam giác nhọn ABC. Trên các cạnh BC, CA, AB lần lượt lấy các điểm M, N, P sao OM ON OP cho AM, BN, CP cắt nhau tại O. Tính   AM BN CP .................... Hết ......................
  10. PHÒNG GD & ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012 - 2013) Môn: TOÁN 9 - Thời gian: 150 phút ĐỀ ĐỀ NGHỊ Họ và tên GV ra đề: Lê Thị Ngọc Bích Đơn vị: Trường THCS NGUYỄN HUỆ a3 a2 a Bài 1( 2 đ) . Cho biểu thức A = + + với a là số tự nhiên chẵn. 24 8 12 Hãy chứng tỏ A có giá trị nguyên. Bài 2( 3 đ) 1. Rút gọn biểu thức sau B = 3 5  3 5  2 x4 x4  x4 2. Cho biểu thức: A  x 1  2 x  1  1 a/ Rút gọn A. b/ Tìm x  Z để A  Z Bài 3 (6đ) 1. Phân tích đa thức sau thành nhân tử: 2x3 – 9x2 + 13x – 6 2. Tìm giá trị nhỏ nhất của các biểu thức sau với x >1 9 P = x+ +3 x 1 3. Giải phương trình: x - 2 + 6 - x = x 2 - 8x + 24 Bài 4 (4đ) 1.Cho ΔABC cân ở A, đường cao thuộc cạnh bên bằng h, góc ở đáy bằng α. Chứng minh rằng: h2 SABC = 4 sin  cos 2. Cho tam giác ABC nhọn và O là một điểm nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N, P. Chứng minh : OM ON OP   1 AM BN CP Bài 5(5đ) Cho đường tròn(O; R) và điểm A nằm ngoài đường tròn sao cho OA=R 2 .Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Lấy D thuộc AB, E thuộc AC sao cho chu vi của tam giác ADE bằng 2R. 1. Chứng minh tứ giác ABOC là hình vuông. 2. Chứng minh DE là tiếp tuyến của đường tròn (O;R). 3. Tìm giá trị lớn nhất của diện tích  ADE. ------------------------HẾT--------------------------
  11. TRƯỜNG THCS NGUYỄN TRÃI GV RA ĐỀ: PHẠM VĂN THANH ĐỀ THI ĐỀ NGHỊ HỌC SINH GIỎI LỚP 9 MÔN: TOÁN ĐỀ ĐỀ NGHỊ Thời gian: 150 phút Bài 1: (3 điểm) a) Cho a là số nguyên. Chứng minh a3 – a chia hết cho 6. b) Cho ba số nguyên a, b, c. Chứng minh rằng: Nếu a + b + c chia hết cho 6 thì a3 + b3 + c3 cũng chia hết cho 6. Bài 2: (3 điểm) Rút gọn các biểu thức sau: a) A = 5  21  5  21  2 4  7  2 2  3  6  8  16 b) B = 2 3 4 Bài 3: (3 điểm) Giải các phương trình sau: 7 a) x2  x  2 5 b) x 2  5 x  8  2 x  3 x  x 1 Bài 4: (3 điểm) a) Tìm giá trị nhỏ nhất của biểu thức sau: M = x2 + 5y2 + 4xy + 2x + 2018 b) Chứng minh rằng: a2  b2 2 2 với a > b > 0 và a.b =1 ab Bài 5: (3 điểm) Cho tam giác ABC cân tại A, đường cao AH và BK. 1 1 1 Chứng minh: 2  2  BK BC 4 AH 2 Bài 6: (5 điểm) Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi C là điểm bất kì trên tia tiếp tuyến Ax vẽ tiếp tuyến CM (M là tiếp điểm, M khác A) cắt tiếp tuyến By ở D. a) Cho AB = 4cm, xác định vị trí của điểm C trên tia Ax để chu vi tứ giác ABDC bằng 14cm.
  12. b) Đặt AB = 2R và bán kính đường tròn nội tiếp tam giác COD bằng r. 1 r 1 Chứng minh    3 R 2
  13. Phòng GD&ĐT Đại Lộc ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2012– 2013 Thời gian làm bài : 150 phút (Không kể thời gian phát đề ) Môn : Toán Lớp : 9 Người ra đề : Nguyễn Văn Tiến Đơn vị : THCS Phan Bội Châu ĐỀ ĐỀ NGHỊ ĐỀ BÀI. Bài 1: ( 4 điểm) Cho biểu thức  a3 a   a 2 a 3 9a  A  1   :     a 9   a 3 2 a a  a 6 a) Rút gọn A. b. Tìm các số nguyên của a để A là số nguyên Bài 2 (1 điểm): Chứng minh rằng tích của bốn số tự nhiên liên tiếp cộng với 1, luôn là số chính phương Bài 3 (4 điểm) giải phương trình 1 1 1 1)   1 x 3  x 2 x  2  x 1 x 1  x 2) x  3 2 x  4  2 x  4  3 Bài 4: (4điểm) Chứng minh đẳng thức: abc  4 bc 4 a a 1  với a > 0, b > 0 và abc  2 abc  2 a Bài 5: (4điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm tùy ý thuộc nửa đường tròn (khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax tại D và cắt By tại E. a) Chứng minh rằng:  DOE là tam giác vuông. b) Chứng minh rằng: AD  BE = R 2 . c) Xác định vị trí của điểm M trên nửa đường tròn (O) sao cho diện tích của tứ giác ADEB nhỏ nhất. Bài 6 ( 3 điểm) Cho đường tròn ( O, 15 cm) dây BC = 20 cm các tiếp tuyến của đường tròn tại B và C cắt nhau tại A. Gọi H là giao điểm OA và BC a. Chứng minh rằng: HB = HC b. Tính độ dài OH c. Tính độ dài OA 1
  14. PHÒNG GD – ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012-2013) Môn: Toán (Thời gian: 150 phút) Họ tên người ra đề: Phạm Thị Lệ Dung ĐỀ ĐỀ NGHỊ Đơn vị: Trường THCS Quang Trung Bài 1: 2 điểm a) Chứng minh rằng: n4 + 6n3 + 11n2 + 6n chia hết cho 24 với mọi số tự nhiên n. b) Tìm nghiệm nguyên của phương trình: 2x + 3y = 11 Bài 2: 5 điểm 1. a) Rút gọn: A = 5  3  29  12 5 b) Cho x, y thỏa mãn 3x + 4y = 5. Chứng minh rằng x2 + y2  1 a 6 2. Cho M = ( a  0) a 1 Tìm các số nguyên a để M là số nguyên. Bài 3: 3điểm a) Giải phương trình: 2 x  1  x  2  x  1 b)Cho A (3; -1); B (-1;-3); C (2;-4). Xác định dạng của tam giác ABC và tính diện tích của tam giác đó. Bai 4:(2điểm) Tìm giá trị nhỏ nhất của biểu thức: A= 9 x 2  6 x  1  9 x 2  30 x  25 Bài 5: 3 điểm Tính diện tích hình thang ABCD có đường cao bằng 12cm, hai đường chéo AC và BD vuông góc với nhau, BD bằng 15cm Bài 6 : 5 điểm Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn tâm O cắt các cạnh AB, AC ở M, N. a) Cho góc B = góc C =  . Tính góc MON. b)Cho BC = 2a. Tính tích BM.CN. c)Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất? ----Hết----
  15. PHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI 9(NĂM HỌC:2012-2012) Môn:Toán.Thời gian:150 phút Người ra đề:Nguyễn Thị Bảo Duyên ĐỀ ĐỀ NGHỊ Trường THCS Tây Sơn Câu 1: (4điểm) a/So sánh: 2011  2013 với 2 2012 b/Cho a, b là 2 số tự nhiên lẻ. Chứng minh rằng: a2 – b2 chia hết cho 8 Câu 2:( 4 điểm ) 2  x 2 x  2  1 x  Cho biểu thức : P    x 1  x  2 x  1    2    ( với x  0; x  1 )    a) Rút gọn P b) Chứng minh rằng : nếu 0 < x < 1 thì P > 0 c) Tìm giá trị lớn nhất của P Câu 3: (3 điểm) Cho hàm số: y = mx +m + 1 (d) (m là tham số) a) Tìm m để đồ thị hàm số (d) cắt đường thẳng y = -2 tại điểm có hoành độ bằng 1 ? b) Tìm m để khoảng cách từ gốc toạ độ đến đồ thị hàm số (d) bằng (đơn vị đo trên các trục toạ độ là centimet) Câu 4 :(3 điểm ) a/Giải phương trình sau x 2  3x  2 x  1  4 . b/Cho ba số a, b, c thoả a + b+ c = 0. CMR: a3 + a2c – abc + b2c + b3 = 0 Câu 5: (3 ®iÓm) Cho tam gi¸c ABC cã AB = c; AC = b; BC = a, ph©n gi¸c AD a) Chøng minh hÖ thøc AD2 = AB.AC – BD.DC b) TÝnh ®é dµi ph©n gi¸c AD. ? Câu 6:(3 điểm) Cho nửa đường (O, R) đường kính AB, bán kính OC vuông góc với AB. M là điểm di chuyển trên nửa đường tròn (O) ( M khác A và B). Tiếp tuyến của nửa đường tròn (O) tại M cắt OC, cắt tiếp tuyến tại A và cắt tiếp tuyến tại B của nửa đường tròn (O) lần lượt tại D, E và H. Gọi F là giao điểm của AE và BD. a) Xác định vị trí của M trên nửa đường tròn (O) để diện tích tứ giác ABHE là nhỏ nhất. AB 2 b) Chứng minh EA. EF= . 4 **********************&&&**********************
  16. TRƯỜNG THCS TRẦN HƯNG ĐẠO ĐỀ THI HSG MÔN TOÁN :9 ĐỀ ĐỀ NGHỊ NĂM HỌC 2012-2013 Bài 1 (2 điểm). a) Chứng minh rằng với mọi số n nguyên dương, ta có: 5n(5n + 1) – 6n(3n + 2n) chia hết cho 91. b/ Phân tích đa thức Q = 2x2 - 9x + 9 thành nhân tử. Bài 2 (2,0 điểm). Tính: B = 3 20  14 2  3 20  14 2 2 2 C = (- x3 + 3x2 - 1)2011 biết x =  3 5 3 5  x x  x4 Bài 3 (4,0 điểm). Cho biểu thức: S =      x 2 x  2  4x  a) Rút gọn biểu thức S. b) Tìm x để S - 3 < 0. 3 c) Tìm số nguyên x để biểu thức H = có giá trị nguyên S 1 Câu 3: (4 điểm). Tìm giá trị bé nhất của biểu thức: P = 3x 2 -18x+28 + 4x 2 - 2x + 45 . 2 Áp dụng hãy giải phương trình: 3x 2 -18x+28 + 4x 2 - 2x + 45 = -5 – x + 6x Câu 4: (2 điểm). Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5 Chứng minh rằng: a2 + b2  1 + ab. Câu 5: (6 điểm). Cho hình bình hành ABCD có AC > BD; kẻ CH vuông góc với AD ( H  AD); kẻ CK vuông góc với AB ( K  AB). Chứng minh rằng: a) Hai tam giác KBC và HDC đồng dạng b) Hai tam giác CKH và BCA đồng dạng c) AB. AK + AD. AH = AC2 d) HK = AC.cosKCB
  17. PHÒNG GD&ĐT ĐẠI LỘC ĐỀ THI HỌC SINH GIỎI LỚP 9 (NĂM HỌC 2012 - 2013) Môn: TOÁN (Thời gian: 150 phút) ĐỀ ĐỀ NGHỊ Họ và tên GV ra đề : Nguyễn Văn Tân Đơn vị : Trường THCS Võ Thị Sáu 5125  1 Bài 1(2đ): Chứng minh rằng số N  là hợp số. 5 25  1 Bài 2 (5đ): 2 3 2 3 a) Tính S   . 2 3 2 3 2 2 4 2 b) Cho B   a 2  2   8 a    48 (a  0)      a   a 1) Rút gọn B. 2) Tìm giá trị nhỏ nhất của B. Bài 3 (5đ): 1 1 a) Giải phương trình: x  x   x   2. 2 4 b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác thì: a b c   2 bc ac ab Bài 4 (4đ): a) Cho tam giác ABC có BC=a, AC=b, AB=c nội tiếp đường tròn (O; R). Biết a2+b2+c2=8R2. Tam giác ABC là tam giác gì ? b) Cho góc xOy. Hai điểm A, B thuộc tia Ox; hai điểm C, D thuộc tia Oy. Tìm tập hợp những điểm M nằm trong góc xOy sao cho hai tam giác MAB và MCD có cùng diện tích ? Bài 5 (4đ): Cho tam giác ABC cân tại A. Từ H là trung điểm của BC, kẻ HI  AC. Gọi D là trung điểm của HI. a) Chứng minh hai tam giác AHD và BCI đồng dạng. b) Chứng minh AD  BI. ========= HẾT =========
  18. UBND TỉNH Thừa Thiên Huế Kỳ thi chọn học sinh giỏi tỉnh Sở Giáo dục và đào tạo LỚP 9 THCS năm học 2008 - 2009 Môn : toán Đáp án và thang điểm: Bài Câu Nội dung Điểm 1 (4 điểm) 1.1 (2 đ) 2 4  5  21  80 A 10  2 2 0,5 21  80  1  4 5  2 5    1 2 5 5  21  80  6  2 5  1  5 0,5 2 A 2 3 5  62 5   5 1  1 1,0 2( 5  1) 5 1 5 1 1.2 x 2  x  6  x 2  x  18  0 . (2 đ) 0,25 Điều kiện để phương trình có nghĩa: x 2  x  6  0 Đặt t  x 2  x  6  t  0   x 2  x  18  t 2  12  t  0  0,5 Khi đó phương trình đã cho trở thành: t 2  t  12  0  t  0   t  3 (t  4  0 loại) 0,5 1  61 1  61 t  3  x 2  x  6  9  0  x 2  x  15  0  x1  ; x2  2 2 0,5 1  61 Vậy phương trình đã cho có hai nghiệm: x1,2  2 0,25 2 (3 điểm) 2.1  m  1 x 3   3m  1 x 2  x  4m  1  0 (1) 0,5   m  1 x 3   m  1 x 2  4mx 2  x  4m  1  0   m  1 x 2  x  1  4m  x 2  1   x  1  0 0,5   x  1  m  1 x 2  4mx  4m  1  0   0,25 2.2 Ta có:  x  1  m  1 x 2  4mx  4m  1  0    x 1 (a )  2  g ( x )   m  1 x  4mx  4m  1  0 (b) 0,5
  19. Để phương trình (1) có ba nghiệm phân biệt thì phương trình (b) phải có hai 0,25 nghiệm phân biệt khác 1, tương đương với:  m  1  m  1    1 1   '  1  3m  0   m   m  1, m  0, m  (*) 0,50  g (1)  0  3 3  9m  0  Với điều kiện (*), phương trình (1) có 3 nghiệm phân biệt, trong đó có một nghiệm x = 1 > 0 và hai nghiệm còn lại x1 và x2 (x1 < x2 ) là nghiệm của (b). Do đó để (1) có 3 nghiệm phân biệt trong đó có hai nghiệm âm thì x1 < x2
  20. 2 P   sin 2   cos 2    3sin 2  cos 2   1  3sin 2  cos 2  0,25 áp dụng kết quả câu 3.1, ta có: 2 1 0,25  sin 2   cos 2    4sin 2  cos 2   1  4sin 2  cos 2   sin 2  cos 2   4 3 1 0,25 Suy ra: P  1  3sin 2  cos 2   1   4 4 1 Do đó: Pmin  khi và chỉ khi: sin 2   cos 2   sin   cos  (vì  là góc 4 sin  nhọn)   1  tg  1    450 0,5 cos  4 (6,0 điểm) 4.1.a + Ta có: BD = BF, CD = CE và AE = AF (Tính chất của hai tiếp tuyến cắt nhau). Do đó: 0,5 BC  x  y , AC  y  z , AB  x  z Theo định lí Pytago: BC 2  AB 2  AC 2 0,5 2 2 2   x  y   x  z    y  z 0,5  2 xy  2 z  x  y   2 z 2  xy  z  x  y  z  (a) 4.1.b Gọi r là bán kính, I là tâm đường tròn nội tiếp tam giác ABC. 1 1 1 1 0,5 Ta có: S ABC  AB  AC  BC  r  CA  r  AB  r   x  y  z  r (b) 2 2 2 2 Tứ giác AEIF có 3 góc vuông, nên là hình chữ nhật. Nhưng AE = AF (cm trên), nên AEIF là hình vuông, 0,5 Do đó: z  EI  r (c) Từ (a), (b), (c) suy ra: AB  AC  2 xy  AB  AC  2 DB  DC 0,5 4.2 + Theo giả thiết: AM  2MC và AN  2 NC Suy ra: AM AN 2 MN AM 2    MN // BC    . 0,5 AC AB 3 BC AC 3 + Gọi E là giao điểm của BM và CN, theo định lí Ta-lét, EM EN MN 2 ta có:    . EB EC BC 3 0,5 Gọi BK là đường cao hạ từ B của tam giác ABC, ta có: 1 AC  BK S ABC AC  2   3  S ABC  3S BCM 1,0 S BCM 1 CM  BK CM 2 2

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản