Các bài toán chọn và sắp xếp người, đồ vật - GV. Đặng Việt Hùng
lượt xem 20
download
Tài liệu "Các bài toán chọn và sắp xếp người, đồ vật" giới thiệu đến các bạn 15 câu hỏi bài tập ví dụ về chọn và sắp xếp người, đồ vật. Với các bạn đang học và ôn thi môn Toán thì đây là tài liệu tham khảo hữu ích.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán chọn và sắp xếp người, đồ vật - GV. Đặng Việt Hùng
- Khóa học CHINH PHỤC TỔ HỢP – XÁC SUẤT – Thầy ĐẶNG VIỆT HÙNG www.Moon.vn CÁC BÀI TOÁN CHỌN VÀ SẮP XẾP NGƯỜI, ĐỒ VẬT Thầy Đặng Việt Hùng [ĐVH] Ví dụ 1. [ĐVH]: Một học sinh có 12 cuốn sách đôi một khác nhau, trong đó có 2 cuốn sách Toán, 4 cuốn sách Văn và 6 cuốn sách Anh. Hỏi có bao nhiêu cách xếp tất cả các cuốn sách lên một kể sách dài, nếu các cuốn sách cùng môn được xếp kề nhau? Đ/s: 207360 cách Lời giải: Hoán vị 2 cuốn sách Toán với nhau có 2! cách Hoán vị 4 cuốn sách Văn với nhau có 4! cách Hoán vị 6 cuốn sách Anh với nhau có 6! cách Hoán vị 3 nhóm sách của 3 môn có 3! cách Vậy số cách xếp tất cả các cuốn sách đó là 2!.4!.6!.3! = 207360 Ví dụ 2. [ĐVH]: Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy có 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 học sinh trường A và 6 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp trong mỗi trường hợp sau: a) Bất cứ 2 học sinh nào ngồi cạnh nhau hoặc đối diện nhau thì khác trường với nhau. b) Bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau. Đ/s: a) 1036800 cách b) 33177600 cách Lời giải: a) Xếp chỗ ngồi cho 2 nhóm học sinh có 2 cách xếp Trong nhóm học sinh trường A, có 6! cách xếp 6 học sinh vào 6 chỗ ngồi Trong nhóm học sinh trường B, có 6! cách xếp 6 học sinh vào 6 chỗ ngồi Vậy có 2.6!.6! = 1036800 cách xếp b) Học sinh thứ nhất của trường A có 12 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thứ nhất trường A có 6 cách Chọn học sinh thức hai trường A có 10 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thức hai trường A có 5 cách Chọn học sinh thức ba trường A có 8 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thức ba trường A có 4 cách Chọn học sinh thức tư trường A có 6 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thức tư trường A có 3 cách Chọn học sinh thức năm trường A có 4 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thức năm trường A có 2 cách Chọn học sinh thức sáu trường A có 2 cách chọn ghế Chọn học sinh trường B ngồi đối diện học sinh thức sáu trường A có 1 cách Vậy có 12.6.10.5.8.4.6.3.4.2.2.1 = 33177600 cách xếp Ví dụ 3. [ĐVH]: Xếp 3 viên bi đỏ có bán kính khác nhau và 3 viên bi xanh giống nhau vào một dãy 7 ô trống. Hỏi: a) Có bao nhiêu cách xếp khác nhau? b) Có bao nhiêu cách xếp khác nhau sao cho 3 viên bi đỏ xếp cạnh nhau và 3 viên bi xanh xếp cạnh nhau? Đ/s: a) 840 cách b) 36 cách Lời giải: a) Xếp 3 viên bi đỏ có bán kính khác nhau vào 7 ô trống có A73 cách Xếp 3 viên bi xanh giống nhau vào 4 ô còn lại có C43 Vậy có A73 .C43 = 840 cách xếp b) Xem 3 viên bi đỏ là 1 bộ, 3 viên bi xanh là 1 bộ, còn ô trống còn lại là 1 bộ ⇒ có 3! cách xếp các bộ Mà 3 viên bi đỏ có bán kính khác nhau nên hoán bị 3 viên bi đỏ có 3! Tham gia trọn vẹn các khóa Luyện thi môn Toán tại MOON.VN để hướng đến kì thi THPT Quốc gia 2015
- Khóa học CHINH PHỤC TỔ HỢP – XÁC SUẤT – Thầy ĐẶNG VIỆT HÙNG www.Moon.vn Vậy có 3!.3! = 36 cách xếp Ví dụ 4. [ĐVH]: Một nhóm gồm 10 học sinh, trong đó có 7 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp 10 học sinh trên thành một hàng dài sao cho 7 học sinh nam phải đứng liền nhau? Đ/s: 120960 cách Lời giải: Xem 7 nam là 1 bộ, hoán vị 3 nữ và 1 bộ học sinh nam có 4! cách Hoán vị 7 nam trong bộ đó có 7! cách Vậy có 4!.7! = 120960 cách xếp Ví dụ 5. [ĐVH]: Có 6 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để có đúng 2 học sinh nam đứng xen kẽ 3 học sinh nữ. (Khi đổi chỗ 2 học sinh bất kì cho nhau ta được một cách xếp mới). Đ/s: 21600 cách Lời giải: Đánh số từ 1 đến 9 Để có đúng 2 học sinh nam đứng xen kẽ 3 học sinh nữ thì mỗi học sinh nữ đứng cách nhau một tức là 3 học sinh nữ đứng ở các vị trí (1,3,5 ) ; ( 2, 4, 6 ) ; ( 3,5, 7 ) ; ( 4, 6,8) ; ( 5, 7,9 ) Có 5 cặp ba vị trí của 3 học sinh nữ suy ra cách sắp xếp 3 bạn nữ vào mỗi cặp 3 vị trí của các bạn nữ là 3! Cách sắp xếp sáu bạn nam vào sáu vị trí còn lại là 6! Vậy số cách xếp thỏa mãn là 5.3!.6! = 21600 Ví dụ 6. [ĐVH]: Một thầy giáo có 12 cuốn sách đôi mọt khác nhau trong đó có 5 cuốn sách Văn, 4 cuốn sách Nhạc và 3 cuốn sách Hoạ. Ông muốn lấy ra 6 cuốn và tặng cho 6 học sinh A, B, C, D, E, F mỗi em một cuốn. a) Giả sử thầy giáo chỉ muốn tặng cho các học sinh trên những cuốn sách thuộc 2 thể loại Văn và Nhạc. Hỏi có bao nhiêu cách tặng? b) Giả sử thầy giáo muốn rằng sau khi tặng sách xong, mỗi một trong ba loại sách trên đều còn lại ít nhất một cuốn. Hỏi có bao nhiêu cách chọn? Đ/s: a) 60480 cách b) 579600 cách Lời giải: a) Số cách tặng là số sách chọn 6 cuốn sách từ 9 cuốn có kể thứ tự, suy ra số cách tặng là A96 = 60480 cách b) Tổng 2 bộ sách bất kỳ đều vượt quá 6 cuốn, nên không thể chọn sao cho cùng hết 2 loại sách Số cách chọn 6 quyển sách từ 12 quyển là A126 = 665280 Số cách chọn sao cho không còn sách Văn A65 = 5040 Số cách chọn sao cho không còn sách Nhạc A64 . A82 = 20160 Số cách chọn sao cho không còn sách Họa A63 . A93 = 60480 Số cách chọn cần tìm là 665280 − 85680 = 579600 Ví dụ 7. [ĐVH]: Một lớp có 18 nam và 12 nữ. Có bao nhiêu cách chọn 5 bạn làm ban cán sự lớp sao cho: a) Mọi người đều vui vẻ tham gia. b) Bạn A và B không thể làm việc chung với nhau. c) Bạn C và D từ chối tham gia. Đ/s: a) 142506 cách b) 1139230 cách c) 98280 cách Lời giải: a) Chọn 5 bạn làm ban cán sự lớp khi mọi người vui vẻ tham gia sẽ có C305 = 142506 Tham gia trọn vẹn các khóa Luyện thi môn Toán tại MOON.VN để hướng đến kì thi THPT Quốc gia 2015
- Khóa học CHINH PHỤC TỔ HỢP – XÁC SUẤT – Thầy ĐẶNG VIỆT HÙNG www.Moon.vn 5 b) Khi có 2 bạn A, B không thể làm việc chung với nhau thì ta sẽ có C28 + 2.C294 = 145782 5 c) Khi C, D từ chối thì sẽ còn 28 người, do đó số cách chọn là C28 = 98280 Ví dụ 8. [ĐVH]: Có 5 nam và 5 nữ ngồi vào hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Hỏi: a) Có bao nhiêu cách sắp xếp sao cho hai người đối diện khác phái? b) Có bao nhiêu cách sắp xếp mà nam và nữ ngồi xen kẽ và đối diện? Đ/s: a) 46080 cách b) 28800 cách Lời giải: a) Có 5! = 120 cách chia 5 nam, 5 nữ thành 5 cặp nam – nữ Có 5! = 120 cách chọn 5 cặp ghế đối diện cho 5 cặp nam – nữ Có 2 cách xếp mỗi cặp nam nữ vào cặp ghế đã chọn ⇒ Có 120.120.25 = 46080 cách b) Để nam nữ ngồi xen kẽ thì nam ngồi vào 6 vị trí chẵn và nữ ngồi vào 6 vị trí lẻ mà 2 người đối diện và xen kẽ có thể đổi chỗ cho nhau nên có 2.5!.5! = 28800 Ví dụ 9. [ĐVH]: Cần xếp 3 nam và 2 nữ vào 1 hàng ghế có 7 chỗ ngồi sao cho 3 nam ngồi kề nhau và 2 nữ ngồi kề nhau. Hỏi có bao nhiêu cách. Đ/s: 72 cách Lời giải: Ta coi 3 nam và 2 nữ ngồi cùng nhau là 2 nhóm a và b. Số cách sắp xếp trong nhóm a là 3! = 6 và trong nhóm b là 2! = 2 cách. Trong 7 chỗ ngồi gồm 3 nam và 2 nữ nên số ghế trống là 2, nếu ta coi 3 nam và 2 nữ ngồi cạnh nhau là các nhóm riêng biệt thì số chỗ ngồi mặc định là 4, từ đó số cách sắp xếp 2 nhóm a và b vào 4 chỗ ngồi là C42 = 6 cách. Vậy số cách là 3!.2!. C 24 = 72. Ví dụ 10. [ĐVH]: Người ta xếp ngẫu nhiên 5 lá phiếu từ 1 đến 5 cạnh nhau. a) Có bao nhiêu cách sắp xếp để các phiếu số chẵn luôn ở cạnh nhau. b) Có bao nhiêu cách xếp để các phiếu phân thành các nhóm chẵn lẻ riêng biệt. Đ/s: a) 48 cách b) 24 cách Lời giải: a) Coi như 2 phiếu chẵn cạnh nhau là 1 phiếu : có thể là 24 hoặc 42 ⇒ có 2 cách chọn . Khi coi 2 phiếu chẵn cạnh nhau là 1 phiếu thì từ 5 phiếu cần sắp xếp thì giờ ta có 4 phiếu để sắp xếp nên số cách sắp 4 phiếu này là 4! = 24. Vậy nên số cách sắp xếp là 2.4! = 48. b) Coi 2 phiếu chẵn cạnh nhau (số 2,4) là 1 phiếu a và 3 phiếu lẻ cạnh nhau (1,3,5) là 1 phiếu b. Số cách tạo ra phiếu a là 2! = 2. Số cách tạo ra phiếu b là 3! = 6. Tham gia trọn vẹn các khóa Luyện thi môn Toán tại MOON.VN để hướng đến kì thi THPT Quốc gia 2015
- Khóa học CHINH PHỤC TỔ HỢP – XÁC SUẤT – Thầy ĐẶNG VIỆT HÙNG www.Moon.vn Khi ta coi như vậy thì từ việc sắp xếp 5 phiếu thì giờ ta phải sắp xếp 2 phiếu a và b nên số cách sắp xếp là 2! = 2. Vậy số cách sắp xếp là 2!.3!.2! = 24 cách. Ví dụ 11. [ĐVH]: Một lớp có 10 học sinh nam và 10 học sinh nữ. Cần chọn ra 5 học sinh để đi làm công tác “Mùa hè xanh”. Hỏi có bao nhiêu cách chọn nếu trong 5 học sinh đó phải có ít nhất: a) Hai học sinh nữ và hai học sinh nam. b) Một học sinh nữ và một học sinh nam. Đ/s: a) 10800 cách b) 15000 cách Lời giải: a) Các trường hợp có thể xảy ra là 2 nữ 3 nam và 3 nữ 2 nam nên số cách chọn là : C102 .C103 + C103 .C102 = 10800. b) Các trường hợp có thể xảy ra là: 1 nữ 4 nam, 2 nữ 3 nam, 3 nữ 2 nam,4 nữ 1 nam nên số cách chọn là : C101 .C104 + C102 .C103 + C103 .C102 + C104 .C101 = 15000. Ví dụ 12. [ĐVH]: Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu hỏi trung bình, 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau và nhất thiết phải có đủ 3 loại câu hỏi (khó, trung bình, dễ) và số câu hỏi dễ không ít hơn 2. Đ/s: 56875 đề Lời giải: Ta có trong bộ đề có 5 năm và phải có đủ 3 loại câu hỏi (khó , dễ, trung bình) nên mỗi đề với 1 loại câu hỏi thì số câu tối đa là 3 mà số câu dễ không ít hơn 2 nên số câu dễ hoặc 2 hoặc 3. Trường hợp 1: Nếu số câu dễ bằng 3 thì số câu khó và trung bình phải lần lượt bằng 1 nên số cách ra đề là C51 .C101 .C153 = 22750. Trường hợp 2 : Nếu số câu dễ bằng 2 thì có 2 khả năng xảy ra. Hoặc số câu trung bình = 2 và số câu khó = 1 hoặc số câu trung bình bằng 1 và số câu khó bằng 2 nên số cách ra đề là C152 (C102 .C51 + C101 .C52 ) = 34125 . Như vậy thì tổng số cách ra đề là 22750 + 34125 = 56875. Ví dụ 13. [ĐVH]: Đội thanh niên xung kích của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong 3 lớp trên. Hỏi có bao nhiêu cách chọn như vậy? Đ/s: 225 cách Lời giải: Số cách chọn 4 học sinh từ 12 học sinh đã cho là Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau : Lớp A có 2 học sinh, các lớp B,C mỗi lớp có 1 học sinh. Số cách chọn là Lớp B có 2 học sinh, các lớp A,C mỗi lớp có 1 học sinh. Số cách chọn là Lớp C có 2 học sinh, các lớp A,B mỗi lớp có 1 học sinh. Số cách chọn là vậy theo quy tắc cộng có 120 + 90 + 60 = 270 cách chọn mà mỗi lớp có it nhất 1 học sinh vậy theo đề bài số cách chọn là : 495 − 270 = 225 cách chọn. Ví dụ 14. [ĐVH]: Từ một nhóm gồm 15 học sinh khối A, 10 học sinh khối B, 5 học sinh khối C, chọn ra 15 học sinh sao cho có ít nhất 5 học sinh khối A và đúng 2 học sinh khối C. Tính số cách chọn. Tham gia trọn vẹn các khóa Luyện thi môn Toán tại MOON.VN để hướng đến kì thi THPT Quốc gia 2015
- Khóa học CHINH PHỤC TỔ HỢP – XÁC SUẤT – Thầy ĐẶNG VIỆT HÙNG www.Moon.vn Đ/s: 51836470 cách Lời giải: Chọn 15 học sinh có đúng 2 học sinh khối C có: C52 .C25 13 Ta xét các khả năng chọn được ít hơn 5 học sinh khối A sau: Chọn 2 học sinh khối C, 10 học sinh khối B và 3 học sinh khối A có: C52 .C1010 .C153 Chọn 2 học sinh khối C, 9 học sinh khối B và 4 học sinh khối A có: C52 .C109 .C154 Vậy có tổng cộng C52 .C25 13 − C52 .C1010 .C153 − C52 .C109 .C154 = 51861950. Ví dụ 15. [ĐVH]: Một hộp đựng 4 viên bi đỏ, 5 viên bi trắng và 6 viên bi vàng. Người ta chọn ra 4 viên bi từ hộp đó. Hỏi có bao nhiêu cách chọn để trong số bi lấy ra không có đủ cả 3 màu? Đ/s: 645 cách Lời giải: 4 Số cách chọn ra 4 viên bi trong 15 viên bi là: C15 Số cách chọn ra 4 viên bi trong 15 viên bi có đủ 3 màu là: TH1: 2 viên bi đỏ, 1 viên bi trắng và 1 viên bi vàng có: C42 .C51.C61 = 180 cách TH2: 1 viên bi đỏ, 2 viên bi trắng và 1 viên bi vàng có: C41 .C52 .C61 = 240 cách TH3: 1 viên bi đó, 1 viên bi trắng và 2 viên bi vàng có: C41 .C51.C62 = 300 cách Vậy có C154 − 180 − 240 − 300 = 645 cách. Ví dụ 16. [ĐVH]: Có hai chuồng gà, chuồng 1 nhốt 3 gà trống và 4 gà mái, chuồng 2 nhốt 4 gà trống và 5 gà mái. Hỏi có bao nhiêu cách bắt một lần 3 con gà từ một trong hai chuồng đã cho, trong đó có hai gà trống và một gà mái? Đ/s: 42 cách Lời giải: TH1: Chuồng được chọn là chuồng 1: Số cách 3 con gà ở chuồng 1 trong đó có hai gà trống và một gà mái là: C32 .C41 = 12 . Th2: Chuồng được chọn là chuồng 2: Số cách 3 con gà ở chuồng 2 trong đó có hai gà trống và một gà mái là: C42 .C51 = 30 . Vậy theo quy tắc cộng có: 12 + 30 = 42 cách chọn. Ví dụ 17. [ĐVH]: Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập tổ công tác. Đ/s: 111300 cách Lời giải: Số cách chọn 5 người để lập tổ công tác trong đó có 1 tổ trưởng nam, 1 tổ phó nam và không có nữ là: C151 .C141 .C133 = 60060 . Số cách chọn ra 5 người để lập đội công tác trong đó có 1 tổ trưởng nam, 1 tổ phó nam là: C151 .C141 .C183 = 171360 . Vậy khi đó số cách thoã mãn bài toán là: 171360 − 60060 = 111300 cách. Tham gia trọn vẹn các khóa Luyện thi môn Toán tại MOON.VN để hướng đến kì thi THPT Quốc gia 2015
CÓ THỂ BẠN MUỐN DOWNLOAD
-
500 bài toán bất đẳng thức chọn lọc P1
25 p | 1135 | 434
-
500 bài toán bất đẳng thức chọn lọc P2
24 p | 787 | 297
-
Một số bài toán chọn lọc bồi dưỡng học sinh giỏi Toán
46 p | 619 | 205
-
Tuyển chọn và giải các bài toán tổ hợp qua các kì thi đại học
12 p | 367 | 107
-
Môn Toán - Tuyển chọn các bài toán trắc nghiệm khách quan Đại số và lượng giác: Phần 1
164 p | 286 | 101
-
Các bài toán bất đẳng thức qua các kì thi tuyển sinh Đại học – Cao đẳng
4 p | 401 | 92
-
Tuyển tập 200 bài toán vô địch toán P1
20 p | 360 | 84
-
tuyển chọn các bài toán hình học phẳng trong đề thi học sinh giỏi các tỉnh, thành phố nắm 2010-2011
53 p | 426 | 81
-
Sáng kiến kinh nghiệm Tiểu học: Một số biện pháp rèn kĩ năng giải toán chuyển động đều cho học sinh lớp 5
34 p | 56 | 14
-
Các bài toán oxy chọn lọc hướng tới kì thi THPT Quốc gia 2016: Phần 1 - GV. Nguyễn Thanh Tùng
11 p | 105 | 12
-
Cẩm nang cho mùa thi: Tuyển chọn 50 bài toán giải bất phương trình - Nguyễn Hữu Biển
21 p | 116 | 12
-
Phương pháp giải nhanh 999 bài toán chọn lọc: Phần 1
253 p | 51 | 7
-
Các chuyên đề chọn lọc Toán 6 tập 1
157 p | 43 | 6
-
Tuyển chọn bất đẳng thức và bài toán Min - Max: Phần 2
193 p | 39 | 4
-
Sáng kiến kinh nghiệm THPT: Ứng dụng tích phân để giải các bài toán tổ hợp
21 p | 110 | 3
-
108 bài Toán chọn lọc lớp 6 - TS. Nguyễn Văn Lợi
25 p | 24 | 3
-
Ebook Kỹ năng giải Toán trắc nghiệm Dạng bài Hàm số và các bài toán liên quan: Phần 1
82 p | 27 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn