Các bài toán giải hệ phương trình (Bài tập và hướng dẫn giải)
lượt xem 203
download
Tham khảo tài liệu 'các bài toán giải hệ phương trình (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán giải hệ phương trình (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 12 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 12-05 Giải các hệ phương trình sau: 1 3 2x + = 1 1 y x x− = y− 1, 2, y x 2 y + 1 = 3 2 y = x3 + 1 x y x(3 x + 2 y )( x + 1) = 12 x2 + y2 + x + y = 4 3, 2 4, x + 2 y + 4x − 8 = 0 x( x + y + 1) + y ( y + 1) = 2 x2 + y2 = 5 3x 2 − 2 xy = 16 5, 4 6, 2 x − x y + y = 13 x − 3 xy − 2 y = 8 2 2 4 2 ( x 2 + 1) + y ( y + x ) = 4 y xy + x + 1 = 7 y 7, 2 8, ( x + 1) ( y + x − 2 ) = y x y + xy + 1 = 13 y 2 2 2 x ( x + y + 1) − 3 = 0 2 xy + 3x + 4 y = −6 9, 5 10, ( x + y ) − 2 + 1 = 0 2 x + 4 y + 4 x + 12 y = 3 2 2 x x 2 − xy + y 2 = 3( x − y ), x3 − 8 x = y 3 + 2 y 11, 2 12, 2 x + xy + y = 7( x − y ) x − 3 = 3 ( y + 1) 2 2 2 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 12-05 1 3 2x + = y x 1, - đây là hệ đối xứng loại II 2 y + 1 = 3 x y - Điều kiện: x ≠ 0; y ≠ 0 1 1 x = y - Trừ vế theo vế ta được: 2( x − y) = 4 − ⇔ x y xy = −2 2 Với x = y , hệ tương đương với 2 x = ⇔ x = ±1 x −2 x 3 3x 3 x = 2 → y = − 2 Với xy = −2 ⇒ y = , thế vào pt đầu được: 2 x − = ⇔ = ⇔ x 2 x 2 x x = − 2 → y = 2 { - Vậy hệ có nghiệm: ( x; y ) = ( 1;1) , ( −1; −1) , ( )( 2; − 2 , − 2, 2 )} 1 1 1 x − y = y − x ( x − y ) 1 + = 0 2, ⇔ xy 2 y = x3 + 1 2 y = x + 1 3 −1 ± 5 −1 ± 5 ⇒ ĐS: ( x; y ) = ( 1;1) ; 2 ; 2 x(3 x + 2 y )( x + 1) = 12 ( 3 x + 2 y ) ( x 2 + x ) = 12 3, 2 ⇔ x + 2 y + 4x − 8 = 0 ( 3 x + 2 y ) + ( x + x ) = 8 2 Page 2 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 uv = 12 u = 6 u = 2 Đặt u = 3 x + 2 y; v = x 2 + x suy ra: ⇔ ∨ u + v = 8 v = 2 v = 6 11 ( x; y ) = ( −2;6 ) , 1; 3 Giải từng trường hợp ta dẫn tới đáp số: , ( 2; −2 ) , −3, 2 2 x2 + y 2 + x + y = 4 ( x + y ) 2 + x + y − 2 xy = 4 x + y = 0 ∨ x + y = −1 4, ⇔ ⇔ x( x + y + 1) + y ( y + 1) = 2 xy = −2 xy = −2 ⇒ ĐS: ( x; y ) = {( )( ) 2; − 2 , − 2, 2 , ( −2,1) , ( 1, −2 ) } x2 + y2 = 5 5, 4 x − x y + y = 13 2 2 4 - Đây là hệ đối xứng loại I đối với x 2 và y 2 - Đáp số: ( x; y ) = { ( 2; ±1) , ( −2; ±1) , ( 1; ±2 ) , ( −1, ±2 ) } 3x 2 − 2 xy = 16 6, 2 - Đây là hệ đẳng cấp bậc 2 x − 3xy − 2 y = 8 2 - Nhận xét x = 0 không thỏa mãn hệ, ta xét x ≠ 0 , đặt y = tx x 2 ( 3 − 2t ) = 16 Hệ trở thành: 2 x ( 1 − 3t − 2t ) = 8 2 - Giải hệ này tìm t, x - Đáp số: ( x; y ) = { ( 2; −1) , ( −2,1) } x2 + 1 ( x 2 + 1) + y ( y + x ) = 4 y y + ( y + x) = 4 x2 + 1 =1 7, ⇔ 2 ⇔ y ( x + 1) ( y + x − 2 ) = y x + 1 ( y + x − 2) = 1 y + x = 3 2 y ⇒ ĐS: ( x; y ) = { ( 1; 2 ) ; ( −2;5) } Page 3 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 x 1 x x+ + =7 x + + = 7 xy + x + 1 = 7 y y y y y 8, 2 2 ⇔ ⇔ x y + xy + 1 = 13 y 2 2 x 2 + 1 + x = 13 1 x y2 y x + y − y = 13 3 1 x ( x + y + 1) − 3 = 0 ( x + y ) − x = −1 x + y = 2 x + y = 2 9, 5 ⇔ ⇔ 1 ∨ ( x + y ) − 2 + 1 = 0 ( x + y ) 2 − 5 = −1 2 x =1 1 = 1 x x 2 x 2 3 ⇒ ĐS: ( x; y ) = ( 1;1) ; 2; − 2 2 xy + 3x + 4 y = −6 ( x + 2 ) ( 2 y + 3) = 0 10, ⇔ 2 x + 4 y + 4 x + 12 y = 3 x + 4 y + 4 x + 12 y = 3 2 2 2 1 3 3 3 ⇒ ĐS: ( x; y ) = −2; ; −2; − ; 2; − ; −6; − 2 2 2 2 x 2 − xy + y 2 = 3( x − y ) x 2 − xy + y 2 = 3( x − y ) x 2 − xy + y 2 = 3( x − y ) 11, 2 ⇔ 2 ⇔ y x + xy + y = 7( x − y ) x = 2 y ∨ x = 2 2 2 x − 5 xy + 2 y = 0 2 2 ⇒ ĐS: ( x; y ) = { ( 0;0 ) ; ( 1; 2 ) ; ( −1; −2 ) } Page 4 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 12, x3 − 8 x = y 3 + 2 y x3 − y 3 = 8 x + 2 y (1) 2 ⇔ 2 x − 3 = 3 ( y + 1) 2 x − 3 y = 6(2) 2 x3 − 8 x = 0 x ( x2 − 8) = 0 x = 0 *) Xét y = 0 ⇒ 2 ⇔ ⇔ 2 (Vô lý) x −3 = 3 x = 6 2 x =6 *) Chia 2 vê ' (1) cho y 3 và 2 vê ' (2) cho y 2 ta có : x 3 x y 3 8t + 2 − 1 = 8 3 + 2 3 t −1 = 2 y y y x y t2 − 3 .Coi : t = ⇒ ⇒ t 3 − 1 = (8t + 2). y t 2 − 3 = 6 6 2 x 6 y −3 = 2 y 2 y t = 0 ⇔ 3t 3 − 3 = (4t + 1)(t 2 − 3) ⇔ t 3 + t 2 − 12t = 0 ⇔ t (t 2 + t − 12) = 0 ⇔ t = −4 t = 3 +) t = 0 ⇒ x = 0 ⇒ y 2 = −2 < 0(loai ) +)t = 3 ⇒ x = 3 y ⇒ 9 y 2 − 3 y 2 = 6 ⇔ y = ±1 ⇔ (3;1), (−3; −1) 6 6 6 6 6 +)t = −4 ⇒ x = −4 y ⇒ 16 y 2 − 3 y 2 = 6 ⇒ y = ± ⇒ (−4 ; );(4 ;− ) 13 13 13 13 13 6 6 Vây S = ( ±3; ±1) , ±4 ;m 13 13 • BTVN NGÀY 14-05 1, x − 3 = 5 − 3x + 4 - Điều kiện: x≥3 Với điều kiến trên ta biến đổi về dạng: x − 3 + 3 x + 4 = 5 sau đó bình phương 2 vế, đưa về dạng cơ bản f ( x) = g ( x) ta giải tiếp. - Đáp số: x = 4 2, x 2 + 5 x + 1 = ( x + 4) x 2 + x + 1 Page 5 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 - Đặt t = x 2 + x + 1 > 0 , pt đã cho trở thành: t = x t 2 − ( x + 4) t + 4x = 0 ⇔ t = 4 Với t = x ⇔ x 2 + x + 1 = x : vô nghiệm −1 ± 61 Với t = 4 ⇔ x 2 + x − 15 = 0 ⇔ x = 2 −1 ± 61 - Vậy phương trình có nghiệm: x = 2 3, 4 18 − x = 5 − 4 x − 1 - Ta đặt u = 4 18 − x ≥ 0; v = 4 x − 1 ≥ 0 ⇒ u 4 + v 4 = 17 , ta đưa về hệ đối xứng loại I đối với u, v giải hệ này tìm được u, v suy ra x - Đáp số: Hệ vô nghiệm ( ) 4, 3 2 + x − 2 = 2 x + x + 6 ( *) - Điều kiện: x ≥ 2 8 ( x − 3) x = 3 - Ta có: ( *) ⇔ 2 ( x − 3) = ⇔ 3 x−2 + x+6 3 x − 2 + x + 6 = 4 108 + 4 254 - Đáp số: x = 3; 25 5, 2 x2 + 8x + 6 + x2 − 1 = 2x + 2 x = −1 2 x 2 + 8 x + 6 ≥ 0 - Điều kiện: 2 ⇔ x ≥ 1 x −1 ≥ 0 x ≤ −3 - Dễ thấy x = -1 là nghiệm của phương trình - Xét với x ≥ 1 , thì pt đã cho tương đương với: 2 ( x + 3) + x − 1 = 2 x + 1 Page 6 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bình phương 2 vế, chuyển về dạng cơ bản f ( x) = g ( x) ta dẫn tới nghiệm trong trường hợp này nghiệm x = 1 - Xét với x ≤ −3 , thì pt đã cho tương đương với: −2 ( x + 3) + − ( x − 1) = 2 − ( x + 1) Bình phương 2 vế, chuyển về dạng cơ bản f ( x) = g ( x) ta dẫn tới nghiệm trong 25 trường hợp này là: x = − 7 25 - Đáp số: x = − ; ±1 7 9 6, x( x − 1) + x( x + 2) = 2 x 2 ĐS: x = 0; 8 7, 3 x+ 4 − 3 x− 3 = 1 - Sử dụng phương pháp hệ quả để giải quyết bài toán, thử lại nghiệm tìm được. - Đáp số: x = { −5; 4} 4 −2 − 14 8, x + 4 − x = 2 + 3x 4 − x → t = x + 4 − x ⇒ t = − ; 2 ⇒ x = 0; 2; 2 2 2 3 3 9, x 2 − 3x + 3 + x 2 − 3x + 6 = 3 - Đặt t = x 2 − 3 x + 3 > 0 ⇒ x 2 − 3 x + 3 = t 2 3 ≥ t - Phương trình thành: t + t + 3 = 3 ⇔ t + 3 = 3 − t ⇔ 2 2 ⇔ t =1 2 2 t + 3 = ( 3 − t ) Suy ra x − 3 x + 2 = 0 ⇔ x = { 1; 2} 2 - Vậy tập nghiệm của phương trình là x = { 1; 2} 10, x2 + 2x + 4 = 3 x3 + 4x - Điều kiện: x ≥ 0 Page 7 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 u 2 = v 2 + 4 2 u = v + 4 2 - Đặt u = x + 4 ≥ 2; v = x ≥ 0 ⇒ 2 ⇒ 2 u + 2v = 3uv ( u − v ) ( u − 2v ) = 0 2 4 Giải ra ta được x = (thỏa mãn) 3 11, 3x − 2 + x − 1 = 4 x − 9 + 2 3 x 2 − 5 x + 2 - Điều kiện: x ≥ 1 - Khi đó: 3x − 2 + x − 1 = 4 x − 9 + 2 3x 2 − 5 x + 2 Đặt t = 3x − 2 + x − 1 (t > 0) ta có: t = t 2 − 6 ⇔ t 2 − t − 6 = 0 ⇔ t = 3; t = −2(< 0) 3x − 2 + x − 1 = 3 Giải tiếp bằng phương pháp tương đương, ta được nghiệm x = 2 12, 3 2 − x = 1− x −1 - Điều kiện: x ≥ 1 u = 1 − v - Đặt u = 3 2 − x ; v = x − 1 ≥ 0 dẫn tới hệ: 3 2 u + v = 1 Thế u vào phương trình dưới được: v ( v − 1) ( v − 3) = 0 - Đáp số: x = { 1; 2;10} y3 + 1 = 2 x −1 ± 5 13, x + 1 = 2 2x − 1 3 3 → y = 2x −1 ⇒ 3 3 ⇒ x = y ⇒ x = 1; x +1 = 2 y 2 9 14, 5 x 2 + 14 x + 9 − x 2 − x − 2 = 5 x + 1 ĐS: x = −1; ;11 4 15, 2 3 3 x − 2 + 3 6 − 5 x = 8 - Giải hoàn toàn tương tự như ý bài 1.12 Page 8 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 - Đáp số: x = { −2} 16, 2 x + 7 − 5 − x = 3x − 2 2 - Điều kiện: ≤ x≤5 3 - Chuyển vế sao cho 2 vế dương, rồi bình phương 2 vế ta dẫn tới phương trình cơ bản. Sau đó giải tiếp theo như đã học. 14 - Đáp số: x = 1; 3 17, x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1 - Điều kiện: 1 ≤ x ≤ 7 - Ta có: x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1 x −1 = 2 x = 5 ⇔ x −1 ( ) ( x −1 − 7 − x = 2 x −1 − 7 − x ) ⇔ x −1 = 7 − x ⇔ x = 4 - Đáp số: x = { 4;5} x+3 x+3 ⇔ 2 ( x + 1) − 2 = 2 18, 2 x 2 + 4 x = 2 2 x + 3 ⇒ 2 ( x + 1) = y + 3 2 - Đặt y + 1 = 2 ( y + 1) = x + 3 2 2 −3 ± 17 −5 ± 13 - Đáp số: x = ; 4 4 19, −4 x 2 + 13 x − 5 = 3 x + 1 ⇔ − ( 2 x − 3) + x + 4 = 3 x + 1 2 ( 2 y − 3) 2 = 3 x + 1 - Đặt 2 y − 3 = 3x + 1 ⇒ − ( 2 x − 3) + x + 4 = 2 y − 3 2 Page 9 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 15 − 97 11 + 73 - Đáp số: x = ; 8 8 5 2 5 2 20, − x + 1 − x2 + − x − 1 − x2 = x + 1 4 4 - Điều kiện: x ≤ 1 1 1 - PT đã cho ⇔ 1 − x + + 1 − x2 − = x + 1 2 2 2 3 - Đáp số: x = ; −1 5 x+5 + y−2 = 7 21, ⇒ x+5 + y−2 = y+5 + x−2 ⇔ x = y y+5 + x−2 = 7 ⇒ ĐS: ( x; y ) = ( 11;11) 2x + y +1 − x + y = 1 22, 3x + 2 y = 4 u = 2 x + y + 1 ≥ 0 u − v = 1 u = 2 u = −1 - Đặt ⇒ 2 2 ⇒ ∨ v = x + y ≥ 0 u + v = 5 v = 1 v = −2 - Đáp số: ( x; y ) = ( 2; −1) 2 xy x+ = x2 + y x − 2x + 9 3 2 23, y + 2 xy = y2 + x 3 y2 − 2 y + 9 ⇒ ĐS: ( x; y ) = { ( 0;0 ) ; ( 1;1) } • BTVN NGÀY 16-05 Page 10 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 13 1, ( x − 3) x 2 − 4 ≤ x 2 − 9 ĐS: x ∈ ∪ −∞; − ∪ [ 3; ∞ ) 6 2, x + 3 ≥ 2x − 8 + 7 − x ĐS: x ∈ [ 4;5] ∪ [ 6;7 ] 1 − 1 − 4x2 4x 1 1 3, 4 x − 3 ĐS: x ∈ − ; \ { 0} x 1+ 1− 4x 2 2 2 3 1 1 4, 3 x + < 2x + − 7 → t = 2x + ≥2 2 x 2x 2x 8−3 7 1 8+3 7 ĐS: x ∈ 0; ∪ ;1 ∪ ;∞ 2 4 2 5, x +1 > 3 − x + 4 ĐS: x ∈ ( 0; ∞ ) 6, 5 x 2 + 10 x + 1 ≥ 7 − x 2 − 2 x → t = x 2 + 2 x { ĐS: x ∈ ( 1; ∞ ) ∪ ( −∞; −3) \ −1 ± 2 2 } 1 1 7, 8x2 − 6x + 1 − 4x + 1 ≤ 0 ĐS: x ∈ ; ∞ ∪ 2 4 8, 2 x − 1 + 3x − 2 < 4 x − 3 + 5 x − 4 4 - Điều kiện: x > 5 1− x 3 ( x − 1) - ( *) ⇔ 3 x − 2 − 4 x − 3 < 5 x − 4 − 2 x − 1 ⇔ < 3x − 2 + 4 x − 3 5x − 4 + 2 x −1 Nếu x ≤ 1 ⇒ VT ≥ 0 ≥ VP : BPT vô nghiệm Nếu x > 1 ⇒ VT < 0 < VP : BPT luôn đúng - Đáp số: x ∈ ( 1; ∞ ) • BTVN NGÀY 18-05 Bài 1. Tìm tham số m để phương trình: Page 11 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1, 4 x 2 + 1 − x = m có nghiệm 2, 4 x 4 − 13x + m + x − 1 = 0 có đúng một nghiệm HDG: 1, 4 x 2 + 1 − x = m có nghiệm - Điều kiện x ≥ 0 - Đặt t = x ≥ 0 , pt đã cho thành: ( ) 2 f t = 4 t +1 − 4 t = m PT đã cho có nghiệm thì f(t)=m có nghiệm t ≥ 0 ⇔ 0 < m ≤1 2, 4 x 4 − 13 x + m + x − 1 = 0 có đúng một nghiệm - Ta có: 4 x 4 − 13 x + m + x − 1 = 0 ⇔ 4 x 4 − 13 x + m = 1 − x x ≤ 1 x ≤ 1 ⇔ 4 4 ⇔ x − 13 x + m = ( 1 − x ) 4 x − 6 x − 9 x = 1 − m, ( 1) 3 2 - PT đã cho có đúng 1 nghiệm ⇔ ( 1) có đúng 1 nghiệm thảo mãn x ≤ 1 ⇔ đồ thị hàm số y = 4 x − 6 x − 9 x với x ∈ ( −∞;1] giao với đường thẳng y = 1 − m 3 2 tại đúng 1 điểm. - Xét hàm y = 4 x − 6 x − 9 x với x ∈ ( −∞;1] , lập bảng biến thiên từ đó ta dẫn 3 2 tới đáp số của bài toán là: 1 − m < −11 ⇔ m > 10 Bài 2. Tìm tham số m để bất phương trình: m ( ) x 2 − 2 x + 2 + 1 + x(2 − x) ≤ 0 có nghiệm x ∈ 0;1 + 3 HDG: Page 12 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 m ( ) x 2 − 2 x + 2 + 1 + x(2 − x) ≤ 0 có nghiệm x ∈ 0;1 + 3 - Đặt t = x 2 − 2 x + 2 , với x ∈ 0;1 + 3 ⇒ t ∈ [ 1; 2] . Hệ trở thành: t2 − 2 m ( t + 1) + 2 − t 2 ≤ 0 ⇔ m ≤ = f ( t ) , ( *) t +1 - BPT đã cho có nghiệm x ∈ 0;1 + 3 ⇔ ( *) có nghiệm t ∈ [ 1; 2] 2 ⇔ m ≤ max f ( t ) ⇔ m ≤ [ 1;2] 3 Bài 3. Tìm tham số m để hệ phương trình: 2 x − y − m = 0 x + xy = 1 có nghiệm duy nhất HDG: 2 x − y − m = 0 có nghiệm duy nhất x + xy = 1 2 x − y − m = 0 y = 2x − m - Ta có: ⇔ x + xy = 1 x ( 2x − m) = 1− x y = 2x − m y = 2x − m ⇔ x ≤ 1 ⇔ x ≤ 1 f x = x2 − m − 2 x −1 = 0 x ( 2x − m) = ( 1− x) ( ) ( ) 2 - Hệ đã cho có nghiệm duy nhất ⇔ f(x) có duy nhất một nghiệm nhỏ hơn hoặc bằng 1, (*). Vì ∆ = ( m − 2 ) + 4 > 0, ∀m nên f(x) luôn có 2 nghiệm phân 2 biệt; do đó (*) xảy ra khi và chỉ khi af ( 1) = 2 − m ≤ 0 ⇔ m ≥ 2 - Đáp số Page 13 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 14 of 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
203 Bài tập hệ phương trình -GV Hoàng Hải
31 p | 2279 | 800
-
Giải hệ phương trình bằng phương pháp thế - Luyện tập môn Toán
8 p | 1133 | 530
-
Một số kỹ thuật giải hệ phương trình 2
0 p | 397 | 128
-
Rèn luyện kỹ năng giải hệ PT và hình phẳng OXY - Đặng Việt Hùng
69 p | 290 | 93
-
Một số phương pháp giải hệ phương trình - luyện thi đại học
22 p | 308 | 63
-
Một số phương pháp giải hệ phương trình - Nguyễn Minh Hiền
3 p | 213 | 36
-
Các phương pháp giải hệ phương trình 2
13 p | 217 | 22
-
Bài tập về hệ phương trình và lời giải chi tiết
28 p | 164 | 21
-
Sáng kiến kinh nghiệm THPT: Tư duy sử dụng hàm đặc trưng để giải hệ phương trình trong việc bồi dưỡng học sinh khá giỏi
58 p | 33 | 7
-
Khám phá các bài toán phương trình và hệ phương trình: Phần 1 - Nguyễn Minh Tuấn
115 p | 20 | 4
-
Bài toán giải hệ phương trình bằng phương pháp hàm số
30 p | 9 | 4
-
Giải bài tập Giải hệ phương trình bằng phương pháp thế SGK Toán 9 tập 2
10 p | 95 | 4
-
Khám phá các bài toán phương trình và hệ phương trình: Phần 2 - Nguyễn Minh Tuấn
156 p | 20 | 4
-
Giáo án Đại số 9 - Bài 3: Giải hệ phương trình bằng phương pháp thế
20 p | 34 | 2
-
Sáng kiến kinh nghiệm: Thế biến – kỷ năng tạo niềm đam mê sáng tạo cho học sinh thông qua bài toán giải hệ phương trình
22 p | 27 | 2
-
SKKN: Thế biến – kỷ năng tạo niềm đam mê sáng tạo cho học sinh thông qua bài toán giải hệ phương trình
22 p | 27 | 1
-
Giải bài tập Giải hệ phương trình bằng phương pháp cộng đại số SGK Toán 9 tập 2
10 p | 122 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn