intTypePromotion=1
ADSENSE

Đề kiểm tra học kì 2 lớp 11 năm 2012-2013 môn Toán - Trường THPT Phan Chu Trinh

Chia sẻ: Mai Mai | Ngày: | Loại File: PDF | Số trang:3

34
lượt xem
0
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Nhằm giúp các bạn học sinh đang chuẩn bị bước vào kì thi có thêm tài liệu ôn tập, TaiLieu.VN giới thiệu đến các bạn Đề kiểm tra học kì 2 lớp 11 năm 2012-2013 môn Toán - Trường THPT Phan Chu Trinh để ôn tập nắm vững kiến thức. Chúc các bạn đạt kết quả cao trong kì thi!

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra học kì 2 lớp 11 năm 2012-2013 môn Toán - Trường THPT Phan Chu Trinh

SỞ GD – ĐT ĐĂK LĂK<br /> TRƯỜNG THPT PHAN CHU TRINH<br /> <br /> ĐỀ KIỂM TRA HỌC KỲ II – NĂM HỌC 2012 - 2013<br /> <br /> Môn: Toán – Lớp 11 (Ban cơ bản)<br /> Thời gian: 90 phút (không kể thời gian phát đề)<br /> <br /> Câu 1: (2,0 điểm) Tính các giới hạn sau:<br /> 3n 2 + 7n + 1<br /> 9+ x −3<br /> a) lim 2<br /> b) lim<br /> x →0<br /> n +n+4<br /> 2x<br />  2 x 2 + x3<br /> khi x ≠ −2<br /> <br /> Câu 2: (1,0 điểm) Cho hàm số: f ( x) =  x + 2<br /> (m là tham số)<br />  mx + 2<br /> khi x = −2<br /> <br /> Tìm m để hàm số trên liên tục tại điểm x = −2.<br /> Câu 3: (1,5 điểm) Tính đạo hàm của các hàm số sau:<br /> x2 − x + 3<br /> a) y = ( x + 3) sin x<br /> b) y =<br /> x +1<br /> 3<br /> Câu 4: (2,5 điểm) Cho hàm số: f ( x) = x − 3 x − 1 có đồ thị (C).<br /> a) Viết phương trình tiếp tuyến của đồ thị (C):<br /> 1) tại điểm A ( 3;17 ) .<br /> 2) biết tiếp tuyến của đồ thị (C) song song với đường thẳng d : 9 x − y + 1 = 0 .<br /> b) Không dùng máy tính bỏ túi, chứng tỏ phương trình f ( x) = 0 có 3 nghiệm phân biệt<br /> và tìm ba nghiệm đó.<br /> Câu 5: (3,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a và<br /> 3a<br /> <br /> ABC = 600 . Cạnh bên SA vuông góc với mp(ABCD) và SA = .<br /> 2<br /> a) Chứng minh: (SAC) ⊥ (SBD).<br /> b) Tính góc tạo bởi hai mặt phẳng (ABCD) và (SBC).<br /> c) Tính khoảng cách giữa hai đường thẳng AD và SB.<br /> <br /> Sở GD – ĐT ĐăkLăk<br /> Trường THPT Phan Chu Trinh<br /> Năm học: 2012 - 2013<br /> Câu<br /> Câu 1:<br /> ( 2,0 điểm)<br /> <br /> ĐÁP ÁN ĐỀ KIỂM TRA HỌC KỲ II – MÔN TOÁN<br /> LỚP 11 ; NĂM HỌC 2012 – 2013<br /> (Đáp án – Thang điểm này gồm 2 trang)<br /> ................<br /> ...............<br /> Đáp án<br /> <br /> Điểm<br /> <br /> 7 1<br /> 3+ + 2<br /> 3n 2 + 7n + 1<br /> n n =3<br /> lim 2<br /> = lim<br /> 1 4<br /> n +n+4<br /> 1+ + 2<br /> n n<br /> 9+ x −3<br /> 1<br /> 1<br /> lim<br /> = lim<br /> =<br /> x →0<br /> x →0<br /> 2x<br /> 2 9 + x + 3 12<br /> <br /> (<br /> <br /> 1,0<br /> <br /> 1,0<br /> <br /> )<br /> <br /> Tập xác định: D = R<br /> Câu 2:<br /> ( 1,0 điểm) f (−2) = 2 − 2m<br /> 2 x 2 + x3<br /> lim f ( x) = lim<br /> =4<br /> x →−2<br /> x →−2<br /> x+2<br /> Hàm số f ( x) liên tục tại x = −2 khi và chỉ khi:<br /> lim f ( x) = f (−2) ⇔ m = −1<br /> <br /> 0,25<br /> 0,5<br /> <br /> 0,25<br /> <br /> x →−2<br /> <br /> Câu 3:<br /> ( 1,5 điểm)<br /> <br /> y ' = ( x + 3) '.sin x + ( x + 3)( sin x ) ' = sin x + ( x + 3) cos x<br /> <br /> (x<br /> y' =<br /> <br /> 2<br /> <br /> − x + 3) '. ( x + 1) − ( x + 1) '. ( x 2 − x + 3)<br /> <br /> ( x + 1)<br /> <br /> 2<br /> <br /> =<br /> <br /> 0,75<br /> <br /> x2 + 2 x − 4<br /> <br /> ( x + 1)<br /> <br /> 2<br /> <br /> Câu 4:<br /> Ta có: f '( x) = 3 x 2 − 3<br /> ( 2,5 điểm) Phương trình tiếp tuyến của đồ thị (C) tại điểm A ( 3;17 ) .<br /> <br /> y − 17 = f '(3) ( x − 3) ⇔ y = 24 x − 55<br /> <br /> Ta có: d : 9 x − y + 1 = 0 ⇔ y = 9 x + 1 có hệ số góc k = 9<br /> Vì tiếp tuyến của đồ thị (C) song song với đường thẳng d nên<br /> f '( x) = 9 ⇔ 3x 2 − 3 = 9 ⇔ x = ±2<br /> x = −2 ⇒ y = −3 , pttt: y = 9 x + 15<br /> x = 2 ⇒ y = 1 , pttt: y = 9 x − 17<br /> <br /> Xét hàm số f ( x) = x3 − 3 x − 1 xác định và liên tục trên R<br /> f (−2) = −3 ; f (−1) = 1 ; f (0) = −1 ; f (2) = 1<br /> Vì f (−2). f (−1) = −3 < 0 nên phương trình f ( x) = 0 có ít nhất một nghiệm<br /> thuộc khoảng ( −2; −1)<br /> Vì f (−1). f (0) = −1 < 0 nên phương trình f ( x) = 0 có ít nhất một nghiệm<br /> thuộc khoảng ( −1;0 )<br /> Vì f (0). f (2) = −1 < 0 nên phương trình f ( x) = 0 có ít nhất một nghiệm<br /> thuộc khoảng ( 0;2 )<br /> Mặt khác f ( x) = 0 là phương trình bậc 3 nên có nhiều nhất 3 nghiệm. Vậy<br /> pt f ( x) = 0 có 3 nghiệm phân biệt<br /> Theo chứng minh trên 3 nghiệm phân biệt thuộc khoảng ( −2;2 ) nên ta chỉ<br /> cần tìm 3 nghiệm trong khoảng này. Đặt x = 2cos t với t ∈ ( 0; π )<br /> <br /> 0,75<br /> 0,25<br /> 0,5<br /> <br /> 0,25<br /> 0,25<br /> 0,25<br /> <br /> 0,25<br /> <br /> 0,25<br /> <br /> Câu<br /> <br /> Đáp án<br /> <br /> Điểm<br /> <br /> Phương trình trở thành: 8cos3 t − 6cos t − 1 = 0 ⇔ 4cos3 t − 3cos t =<br /> <br /> ⇔ cos3t = cos<br /> <br /> π<br /> 3<br /> <br /> ⇔ t=±<br /> <br /> π<br /> <br /> +k<br /> <br /> 2π<br /> 3<br /> <br /> 1<br /> 2<br /> <br /> 9<br /> π<br /> 5π<br /> 7π<br /> ;t=<br /> Với t ∈ ( 0; π ) , ta chỉ có các nghiệm: t = ; t =<br /> 9<br /> 9<br /> 9<br /> π<br /> 5π<br /> 7π<br /> Vậy pt f ( x) = 0 có 3 nghiệm: x = 2cos ; x = 2cos<br /> ; x = 2cos<br /> 9<br /> 9<br /> 9<br /> Câu 5:<br /> BD ⊥ AC <br /> ( 3,0 điểm) BD ⊥ SA  ⇒ BD ⊥ (SAC)<br /> <br /> Mà BD ⊂ ( SBD) nên (SAC) ⊥ (SBD)<br /> Gọi M là trung điểm BC,<br /> ∆ABC đều nên BC ⊥ AM, BC ⊥ SA (gt)<br /> Do đó góc giữa hai mặt phẳng<br /> <br /> (ABCD) và (SBC) là góc SMA<br /> a 3<br />  = SA = 3<br /> , tan SMA<br /> Tính AM =<br /> 2<br /> AM<br /> Hình vẽ đúng 0,5<br /> 0<br />  = 60<br /> ⇒ SMA<br /> Chứng minh (SAM) ⊥ (SBC), trong tam giác SAM từ A kẻ AH ⊥ SM tại H<br /> thì AH ⊥ (SBC)<br /> 1<br /> 1<br /> 1<br /> 3a<br /> Tam giác SAM vuông tại A nên:<br /> =<br /> +<br /> , suy ra: AH =<br /> 2<br /> 2<br /> 2<br /> AH<br /> AS<br /> AM<br /> 4<br /> Vì AD // (SBC) nên d ( AD, SB ) = d ( AD,( SBC ) )<br /> <br /> = d ( A,( SBC ) ) = AH =<br /> <br /> 3a<br /> 4<br /> <br /> 0,25<br /> <br /> 0,25<br /> <br /> 0,5<br /> 0,25<br /> <br /> 0,25<br /> <br /> 0,25<br /> 0,25<br /> <br /> 0,5<br /> <br /> 0,5<br /> <br /> Chú ý: Hướng dẫn chấm này chỉ trình bày sơ lược một cách giải , trong bài làm học sinh phải<br /> trình bày chặt chẽ mới đạt điểm tối đa .Nếu học sinh có cách giải khác với đáp án mà đúng vẫn<br /> đạt được điểm tối đa. Điểm toàn bài phải làm tròn đến 0,5.<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2