Đề tham khảo tuyển sinh đại học năm 2010 - Môn Toán Khối A (Đề 01)
lượt xem 533
download
Đề tham khảo của bộ giáo dục và đào tạo, giúp cho việc luyện thi đại học của các bạn được củng cố hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề tham khảo tuyển sinh đại học năm 2010 - Môn Toán Khối A (Đề 01)
- Bộ Giáo Dục và Đào tạo ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2010 ĐỀ THAM KHẢO Môn thi : TOÁN - khối A. Email: phukhanh@moet.edu.vn Ngày thi : 28.02.2010 (Chủ Nhật ) ĐỀ 01 I. PHẦN BẮT BUỘC ( 7,0 điểm ) x +3 Câu I : ( 2 điểm ) Cho hàm số : y = x −1 , có đồ thị là C ( ). ( ) 1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số . ( ) ( ) ( ) 2. Cho điểm M 0 x 0 ; y 0 ∈ C . Tiếp tuyến của C tại M 0 cắt các đường tiệm cận của C ( ) tại các điểm A, B . Chứng minh M 0 là trung điểm của đoạn AB . Câu II: ( 2 điểm ) 6x − 4 sin 3 x .sin 3x + cos3 x cos 3x 1 1. Giải phương trình : 2x + 4 − 2 2 − x = 2. Giải phương trình : =− x2 + 4 π π 8 ta n x − ta n x + 6 3 3 −1 dx Câu III: ( 1 điểm ) Tính tích phân I = ∫ 0 x + 2x + 2 2 Câu IV: ( 1 điểm ) Cho tứ diện OABC có đáy OBC là tam giác vuông tại O ,OB = a, OC = 3, (a > 0 ) . và đường cao OA = a 3 . Gọi M là trung điểm của cạnh BC . Tính khoảng cách giữa hai đường thẳng AB,OM . 1 1 1 1 Câu V: ( 1 điểm ) Cho 3 số thực dương x , y , z thỏa mãn + + = . Tìm giá trị lớn nhất của biểu x y z xyz 2 x 2 y z −1 thức P = + + 1+x 1+y z +1 II. PHẦN TỰ CHỌN ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz ( ) ( ) ( ) ( ) 1. Cho 4 điểm A 1; 0; 0 , B 0; −1; 0 ,C 0; 0;2 , D 2; −1;1 . Tìm vectơ A ' B ' là hình chiếu của vectơ AB lên CD . x y −2 z 2. Cho đường thẳng : d : 1 = () 2 2 ( ) = và mặt phẳng P : x − y + z − 5 = 0 . Viết phương trình tham số của đường thẳng () ( ) ( ) t đi qua A 3; −1;1 nằm trong P và hợp với d một góc 450 . () Câu VII.a( 1 điểm ) Một giỏ đựng 20 quả cầu. Trong đó có 15 quả màu xanh và 5 quả màu đỏ. Chọn ngẫu nhiên 2 quả cầu trong giỏ.Tính xác suất để chọn được 2 quả cầu cùng màu ? 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) Trong không gian với hệ trục tọa độ Oxyz x −1 y +2 z − 3 1. Cho 3 điểm A ( 0;1; 0 ) , B ( 2;2; 2 ) và đường thẳng (d ) : = = . Tìm điểm M ∈ d để diện tích() 2 −1 2 tam giác ABM nhỏ nhất. x +1 y −1 z −2 x −2 y +2 2. Cho hai đường thẳng (d ) : −2 = 3 = 2 và d ' : 1 = 2 ( ) = z −2 . Chứng minh d vuông góc với d ' , viết () ( ) ( ) phương trình đường vuông góc chung của d và d ' . ( ) 8 3 x −1 − log ( 3x − 1 +1 ) 1 Câu VII.b ( 1 điểm ) Cho khai triển 2 log2 9 + 7 + 2 5 2 . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 trong khai triển này là 224 . ............…………………………….Cán bộ coi thi không giải thích gì thêm ………………………………………...............
- I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) x +3 Câu I : ( 2 điểm ) Cho hàm số : y = x −1 , có đồ thị là C . ( ) ( ) 1. Khảo sát sự biến thiên và vẽ đồ thị C của hàm số . 4 y ( ) ( ) 2. Cho điểm M 0 x 0 ; y 0 ∈ C . Tiếp tuyến của C tại ( ) ( ) 2 M 0 cắt các đường tiệm cận của C tại các điểm A, B . A x Chứng minh M 0 là trung điểm của đoạn AB . -4 -2 2 4 M -2 B -4 Câu II: ( 2 điểm ) 6x − 4 1. Giải phương trình : 2x + 4 − 2 2 − x = x2 + 4 Điều kiện : −2 ≤ x ≤ 2 6x − 4 6x − 4 6x − 4 2x + 4 − 2 2 − x = ⇔ = x2 + 4 2x + 4 + 2 2 − x x2 + 4 1 1 ( ⇔ 2 3x − 2 ) 2x + 4 + 2 2 − x − =0 x2 + 4 2 2 x = x = ⇔ 3 ⇔ 3 2x + 4 + 2 2 − x = x + 4 4 2(2 + x )(2 − x ) + (2 − x )(x + 4) = 0 2 2 2 ⇔x = ⇔ x = 3 3 2 − x (4 2(2 + x ) + (x + 4) 2 − x ) = 0 x =2 sin 3 x .sin 3x + cos3 x cos 3x 1 2. Giải phương trình : =− π π 8 ta n x − ta n x + 6 3 π π π π Điều kiện : sin x − sin x + cos x − cos x + ≠ 0 6 3 6 3 π π π π Ta có : t a n x − t a n x + = t a n x − cot − x = −1 6 3 6 6 sin x .sin 3x + cos x cos 3x 3 3 1 1 Phương trình : = − ⇔ sin 3 x .sin 3x + cos3 x cos 3x = π π 8 8 ta n x − ta n x + 6 3 1 − cos 2x cos 2x − cos 4x 1 + cos 2x cos 2x + cos 4x 1 ⇔ ⋅ + ⋅ = 2 2 2 2 8 1 1 1 ⇔ 2(cos 2x + cos 2x cos 4x ) = ⇔ cos3 2x = ⇔ cos 2x = 2 8 2
- π x = + kπ (không thoa) π ⇔ 6 . Vậy phương trình cho có họ nghiệm là x = − + k π π x = − + kπ 6 6 3 −1 dx Câu III: ( 1 điểm ) Tính tích phân I = ∫ 0 x 2 + 2x + 2 3 −1 3 −1 dx dx I = ∫ 0 x + 2x + 2 2 = ∫ 0 1 + (x + 1)2 π π Đặt x + 1 = t a n t, t ∈ − ; ⇒ dx = (t a n x + 1)dt 2 2 2 π π Đổi cận : x = 0 ⇒ t = , x = 3 −1⇒t = . 4 3 π π t a n2 t + 1 3 3 π π π I = ∫ dt = ∫ dt = − = . π 1 + ta n t 2 π 3 4 12 4 4 Câu IV: ( 1 điểm ) Cho tứ diện OABC có đáy OBC là tam giác vuông tại O , OB = a,OC = 3, (a > 0 ) . và đường cao OA = a 3 . Gọi M là trung điểm của cạnh BC . Tính khoảng cách giữa hai đường thẳng AB,OM . Chọn hệ trục tọa độ như hình vẽ. Khi đó O(0;0;0), a a 3 A(0; 0; a 3), B (a; 0; 0), C (0; a 3; 0), M ; 2 ; 0 , 2 a 3 a 3 gọi N là trung điểm của AC ⇒ N 0; ; . 2 2 MN là đường trung bình của tam giác ABC ⇒ AB // MN ⇒ AB //(OMN) ⇒ d(AB;OM) = d(AB;(OMN)) = d(B;(OMN)). a a 3 a 3 a 3 OM = ; 2 ; 0 , ON = 0; ; 2 2 2 3a2 a2 3 a 2 3 a 2 3 a2 3 [OM ; ON ] = 4 ; 4 ; 4 = 4 ( 3; 1; 1 =) 4 n , với n = ( 3; 1; 1) . Phương trình mặt phẳng (OMN) qua O với vectơ pháp tuyến n : 3x + y + z = 0 3.a + 0 + 0 a 3 a 15 Ta có: d ( B; (OMN )) = = = . Vậy, 3 +1+1 5 5 a 15 d ( AB; OM ) = . 5 1 1 1 1 Câu V: ( 1 điểm ) Cho 3 số thực dương x , y , z thỏa mãn + + = . Tìm giá trị lớn nhất của x y z xyz 2 x 2 y z −1 biểu thức P = + + 1+x 1+y z +1
- 1 1 1 1 Ta có : + + = ⇔ x. y + y. z + z . x = 1 . Điều này gợi ý ta đưa đến hướng x y z xyz A B C giải lượng giác . Đặt x = tan , y = tan , z = tan 2 2 2 A B B C C A Nếu A, B,C ∈ (0; π ), A + B + C = π thì t a n t a n + t a n t a n + t a n t a n = 1. 2 2 2 2 2 2 C A−B C Khi đó P = sin A + sin B − cosC = 2 cos cos − 2 cos2 + 1 2 2 2 C 1 A−B 2 1 A−B 3 P = −2(cos − cos ) + 1 + cos2 ≤ 2 2 2 2 2 2 2π π 2− 3 3 C = x = y = tan2 = Vậy max P = khi 3 ⇔ 12 2 + 3 2 A = B = π z = 3 6 II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình nâng cao : Câu VI.b ( 2 điểm ) 1. Trong không gian với hệ trục tọa độ Oxyz cho A ( 0;1; 0 ) , B ( 2;2; 2 ) ,C ( −2; 3;1) và đường thẳng x = 1 + 2t ( ) ( ) d : y = −2 − t . Tìm điểm M ∈ d để diện tích tam giác ABN nhỏ nhất. z = 3 + 2t M ∈ (d ) ⇒ M (1 + 2t; − 2 − t ; 3 + 2t ). AB = (2; 1; 2), AC = (−2; 2;1) ⇒ [AB; AC ] = (−3; − 6; 6) = −3(1; 2; − 2) = −3.n, n = (1; 2; − 2) Mặt phẳng (ABC ) qua A ( 0;1; 0 ) và có vecto pháp tuyến n = (1; 2; − 2) nên có phương trình x + 2y − 2z − 2 = 0 1 1 9 1 + 2t + 2(−2 − t ) − 2(3 + 2t ) − 2 −4t − 11 S ABC = [AB; AC ] = (−3)2 + (−6)2 + 62 = , MH = d (M (ABC )) = = 2 2 2 1+ 4 + 4 3 1 9 4t + 11 5 17 VMABC = 3 ⇔ V = . . = 3 ⇔ 4t + 11 = 6 ⇔ t = − hay t = − . 3 2 3 4 4 3 3 1 15 9 11 Vậy M − ; − ; hay M − ; ; là tọa độ cần tìm. 2 4 2 2 4 2 x +1 y −1 z −2 x −2 y +2 2. Cho hai đường thẳngờ d : −2 = 3 = 2 ( ) và d ' : 1 = 2 = z −2 . Chứng minh d vuông góc với d ' , ( ) ( ) ( ) viết phương trình đường vuông góc chung của d và d ' . ( ) ( ) 8 3 9x − 1 + 7 1 ( − log 2 3x − 1 +1 ) . Hãy tìm các giá trị của x biết rằng số hạng thứ 6 Câu VII.b ( 1 điểm ) Cho khai triển 2 log 2 +2 5 trong khai triển này là 224 . k =8 1 1 ( ) 1 ( ) ( ) − log2 3x −1 +1 ( ) = ∑C a 8 − log2 9x −1 + 7 3 8 −k k x −1 x −1 Ta có : a + b k 8 b với a = 2 = 9 +7 3 ; b =2 5 = 3 +1 5 k =0 + Theo thứ tự trong khai triển trên , số hạng thứ sáu tính theo chiều từ trái sang phải của khai triển là 3 5 1 1 ( ) ( ) ( )( ) − −1 T6 = C 9x −1 + 7 5 3 . 3x −1 + 1 5 x −1 x −1 = 56 9 + 7 . 3 + 1 8
- 9x −1 + 7 ( )( ) −1 + Theo giả thiết ta có : 56 9x −1 + 7 . 3x −1 + 1 = 224 ⇔ = 4 ⇔ 9x −1 + 7 = 4(3x −1 + 1) 3x −1 + 1 3x −1 = 1 x = 1 ( ) 2 ⇔ 3x −1 − 4(3x −1 ) + 3 = 0 ⇔ x −1 ⇔ 3 = 3 x = 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
10 phương pháp giải nhanh trắc nghiệm hóa học và 25 đề thi thử tuyển sinh đại học và cao đẳng.
306 p | 1242 | 401
-
Đề tham khảo tuyển sinh đại học năm 2010 - Môn Toán Khối A (Đề 02)
6 p | 1117 | 397
-
Đề tham khảo tuyển sinh đại học năm 2010 - Môn Toán Khối A-B-D-V (Đề 02)
4 p | 581 | 297
-
Đề thi tuyển sinh đại học, cao đẳng năm 2010 môn Toán - Khối A (Đề 1)
5 p | 906 | 234
-
Bộ đề thi thử tuyển sinh Đại học Cao đẳngToán học - Hóa học - Vật lý năm 2010
25 p | 363 | 158
-
Đề thi thử tuyển sinh đại học, cao đẳng năm 2010 môn Hóa đề số 3
5 p | 278 | 80
-
Đề thi thử tuyển sinh Đại học Cao đẳng môn Vật Lý mã đề 483
5 p | 254 | 78
-
ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2012 MÔN TOÁN KHỐI A THPT CHUYÊN LÝ TỰ TRỌNG
2 p | 276 | 77
-
Đề thi tham khảo tuyển sinh đại học môn Toán - Khối A
3 p | 260 | 70
-
Đề thi tham khảo tuyển sinh Đại học môn Toán - Khối A - Đề số 6
6 p | 205 | 56
-
Đề thi tham khảo tuyển sinh Đại học môn Toán - Khối A - Đề số 7
4 p | 226 | 52
-
ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2012 MÔN TOÁN KHỐI B THPT CHUYÊN LÝ TỰ TRỌNG
2 p | 209 | 44
-
Đề thi thử tuyển sinh đại học - 2012- lần 3 môn Hóa, khối A,B
4 p | 119 | 42
-
ĐỀ THI VÀ BÀI GIẢI TUYỂN SINH ĐẠI HỌC KHỐI A NĂM 2013 Môn thi : HÓA, khối A - Mã đề : 374
11 p | 156 | 35
-
Đề thi tham khảo tuyển sinh Đại học môn Toán - Khối A - Đề số 9
3 p | 160 | 33
-
Đề thi tham khảo tuyển sinh Đại học môn Toán - Khối A - Đề số 8
3 p | 145 | 33
-
Đề tham khảo tuyển sinh Đại học môn Vật lí khối A và A1 năm 2014
7 p | 63 | 6
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn