ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG MÔN TOÁN 2010 - ĐỀ SỐ 6
lượt xem 15
download
Tham khảo tài liệu 'đề thi thử đại học, cao đẳng môn toán 2010 - đề số 6', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG MÔN TOÁN 2010 - ĐỀ SỐ 6
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2010 Môn thi : TOÁN Thời gian 180 phút (không kể thời gian giao đề) ĐỀ 6 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) y f ( x) 8x 4 9x 2 1 Câu I (2 điểm) Cho hàm số 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Dựa vào đồ thị (C) hãy biện luận theo m số nghiệm của phương trình 8cos 4 x 9cos 2 x m 0 với x [0; ] . Câu II (2 điểm) : Giải phương trình, hệ phương trình: log3 x x y x 2 y 2 12 1 x 2 x x2 ; 1. 2. 2 y x 2 y 2 12 y | x 2 4 x | và y 2 x . Câu III: Tính diện tích của miền phẳng giới hạn bởi các đường Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ. Câu V (1 điểm) Định m để phương trình sau có nghiệm 4sin3xsinx + 4cos 3x - cos x + cos 2 2x + m 0 4 4 4 PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn.
- Câu VI.a (2 điểm) 1. Cho ABC có đỉnh A(1;2), đường trung tuyến BM: 2 x y 1 0 và phân giác trong CD: x y 1 0 . Viết phương trình đường thẳng BC. x 2 t y 2t .Gọi là đường thẳng qua điểm A(4;0;- 2. Cho đường thẳng (D) có phương trình: z 2 2t 1) song song với (D) và I(-2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt phẳng qua , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất. Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 1 1 1 5 xy 1 yz 1 zx 1 x y z 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ đỉnh C và D. x 1 2t 2. Cho hai điểm A(1;5;0), B(3;3;6) và đường thẳng có phương trình tham số y 1 t .Một điểm M z 2t thay đổi trên đường thẳng , tìm điểm M để chu vi tam giác MAB đạt giá trị nhỏ nhất. Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh 1 1 2 b c 2 a 3a b 3a c 2a b c 3a c 3a b
- ĐÁP ÁN ĐỀ THI THỬ SỐ 6 Câu Ý Nội dung Điểm I 2 1,00 Xét phương trình 8cos 4 x 9cos 2 x m 0 với x [0; ] (1) Đặt t cosx , phương trình (1) trở thành: 8t 4 9t 2 m 0 (2) 0,25 Vì x [0; ] nên t [1;1] , giữa x và t có sự tương ứng một đối một, do đó số nghiệm của phương trình (1) và (2) bằng nhau. Ta có: (2) 8t 4 9t 2 1 1 m (3) Gọi (C1): y 8t 4 9t 2 1 với t [1;1] và (D): y = 1 – m. 0,25 Phương trình (3) là phương trình hoành độ giao điểm của (C1) và (D). Chú ý rằng (C1) giống như đồ thị (C) trong miền 1 t 1 . Dựa vào đồ thị ta có kết luận sau: 81 m : Phương trình đã cho vô nghiệm. 32 81 1. m : Phương trình đã cho có 2 nghiệm. 32 0,50 81 1 m : Phương trình đã cho có 4 nghiệm. 32 : Phương trình đã cho có 2 nghiệm. 0 m 1 : Phương trình đã cho có 1 nghiệm. m0
- m
- u v 12 u2 u v 12 2 v u 4 u 3 hoặc v 8 v 9 x2 y 2 4 u 4 + (I) 0,25 v 8 x y 8 u 3 x 2 y 2 3 + (II) v 9 x y 9 Giải hệ (I), (II). 0,25 Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban đầu là S 5;3 , 5; 4 0,25 Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban 1,00 đầu là S 5;3 , 5; 4 III 0,25
- Diện tích miền phẳng giới hạn bởi: y | x 2 4 x | (C ) và d : y 2 x Phương trình hoành độ giao điểm của (C) và (d): x 0 x 0 x 0 2 2 | x 4 x | 2 x x 4 x 2 x x 6 x 0 x 2 2 0,25 x 2 4 x 2 x x2 2 x 0 x 6 Suy ra diện tích cần tính: 2 6 x x 2 2 S 4 x 2 x dx 4 x 2 x dx 0 2 2 Tính: I | x 2 4 x | 2 x dx 0 0,25 Vì x 0; 2 , x 2 4 x 0 nên | x 2 4 x | x 2 4 x 2 4 I x 2 4 x 2 x dx 3 0 6 Tính K | x 2 4 x | 2 x dx 2 0,25 Vì x 2; 4 , x 2 4 x 0 và x 4; 6 , x 2 4 x 0 nên 4 6 K 4 x x 2 x dx x 2 4 x 2 x dx 16 . 2 2 4 1,00 4 52 Vậy S 16 3 3 IV 0,25
- Gọi H, H’ là tâm của các tam giác đều 0,25 ABC, A’B’C’. Gọi I, I’ là trung điểm của AB, A’B’. Ta AB IC AB CHH ' ABB ' A ' CII ' C ' có: AB HH ' Suy ra hình cầu nội tiếp hình chóp cụt này tiếp xúc với hai đáy tại H, H’ và tiếp xúc với mặt bên (ABB’A’) tại điểm K II ' . Gọi x là cạnh đáy nhỏ, theo giả thiết 2x là cạnh đáy lớn. Ta có: 1 x3 1 x3 I ' K I ' H ' I 'C ' ; IK IH IC 0,25 3 6 3 3 x3x3 Tam giác IOI’ vuông ở O nên: I ' K .IK OK 2 r 2 x 2 6r 2 . 6 3 h Thể tích hình chóp cụt tính bởi: V B B ' B.B ' 3 0,25 2 2 2 Trong đó: B 4x 3 x 2 3 6r 2 3; B ' x 3 3r 3 ; h 2r 4 4 2 2r 2 3r 2 3 21r 3 . 3 3r 2 3 6r 2 3. 6r 3 Từ đó, ta có: V 0,25 3 2 2 3 V 1,00
- Ta có: +/ 4sin3xsinx = 2 cos2x - cos4x ; +/ 4cos 3x - cos x + 2 cos 2x - cos4x 2 sin 2x + cos4x 4 4 2 1 1 +/ cos 2 2x + 1 cos 4x + 1 sin 4x 0,25 4 2 2 2 Do đó phương trình đã cho tương đương: 1 1 2 cos2x + sin2x sin 4x + m - 0 (1) 2 2 Đặt t cos2x + sin2x = 2cos 2x - (điều kiện: 2 t 2 ). 4 Khi đó sin 4x = 2sin2xcos2x = t 2 1 . Phương trình (1) trở thành: t 2 4t 2m 2 0 (2) với 2 t 2 (2) t 2 4t 2 2m 0,25 Đây là phuơng trình hoành độ giao điểm của 2 đường ( D ) : y 2 2m (là đường song song với Ox và cắt trục tung tại điểm có tung độ 2 – 2m) và (P): y t 2 4t với 2 t 2 . Trong đoạn 2 ; 2 , hàm số y t 2 4t đạt giá trị nhỏ nhất là 2 4 2 tại 0,25 t 2 và đạt giá trị lớn nhất là 2 4 2 tại t 2 . 0,25 Do đó yêu cầu của bài toán thỏa mãn khi và chỉ khi 2 4 2 2 2m 2 4 2
- 2 2 m 2 2 . VIa 2,00 1 1,00 Điểm C CD : x y 1 0 C t ;1 t . 0,25 t 1 3 t Suy ra trung điểm M của AC là M ; . 2 2 0,25 t 1 3 t 1 0 t 7 C 7;8 Điểm M BM : 2 x y 1 0 2 2 2 Từ A(1;2), kẻ AK CD : x y 1 0 tại I (điểm K BC ). 0,25 Suy ra AK : x 1 y 2 0 x y 1 0 . x y 1 0 I 0;1 . Tọa độ điểm I thỏa hệ: x y 1 0 Tam giác ACK cân tại C nên I là trung điểm của AK tọa độ của K 1;0 . x 1 y 4x 3 y 4 0 Đường thẳng BC đi qua C, K nên có phương trình: 7 1 8 2
- Gọi (P) là mặt phẳng đi qua đường thẳng , thì ( P) //( D ) hoặc ( P) ( D ) . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có IH IA và IH AH . d D , P d I , P IH Mặt khác H P Trong mặt phẳng P , IH IA ; do đó maxIH = IA H A . Lúc này (P) ở vị trí (P0) vuông góc với IA tại A. Vectơ pháp tuyến của (P0) là n IA 6;0; 3 , cùng phương với v 2;0; 1 . Phương trình của mặt phẳng (P0) là: 2 x 4 1. z 1 2x - z - 9 = 0 . VIIa Để ý rằng xy 1 x y 1 x 1 y 0 ; 0,25 yz 1 y z và tương tự ta cũng có zx 1 z x Vì vậy ta có: 1,00
- 1 1 1 x y z x y z 111 xy 1 yz 1 zx 1 yz 1 zx 1 xy 1 x y z 3 yz 1 zx+y xy z 1 y z x 5 vv yz 1 zx y xy z y z x 1 5 z y yz 5 Ta có: AB 1;2 AB 5 . Phương trình của AB là: 2x y 2 0 . 0,25 I d : y x I t ; t . I là trung điểm của AC và BD nên ta có: C 2t 1; 2t , D 2t; 2t 2 . 4 Mặt khác: S ABCD AB.CH 4 (CH: chiều cao) CH . 0,25 5 4 5 8 8 2 t 3 C 3 ; 3 , D 3 ; 3 | 6t 4 | 4 Ngoài ra: d C ; AB CH 5 5 t 0 C 1;0 , D 0; 2 0,50 5 8 8 2 Vậy tọa độ của C và D là C ; , D ; hoặc C 1; 0 , D 0; 2 3 3 3 3 2 1,00 Gọi P là chu vi của tam giác MAB thì P = AB + AM + BM. Vì AB không đổi nên P nhỏ nhất khi và chỉ khi AM + BM nhỏ nhất. 0,25
- x 1 2t Đường thẳng có phương trình tham số: y 1 t . z 2t Điểm M nên M 1 2t ;1 t ; 2t . 2 2 2 2 2 9t 2 20 2 2t 4 t 2t 3t AM 25 2 2 2 2 2 9t 2 36t 56 4 2t 2 t 6 2t 3t 6 BM 25 2 2 2 2 3t 3t 6 AM BM 25 25 Trong mặt phẳng tọa độ Oxy, ta xét hai vectơ u 3t; 2 5 và v 3t 6; 2 5 . 2 2 3t | u | 25 Ta có 2 | v | 2 3t 6 25 0,25 Suy ra AM BM | u | | v | và u v 6; 4 5 | u v | 2 29 Mặt khác, với hai vectơ u , v ta luôn có | u | | v || u v | Như vậy AM BM 2 29 Đẳng thức xảy ra khi và chỉ khi u , v cùng hướng 3t 25 t 1 0,25 3t 6 2 5 M 1; 0; 2 và min AM BM 2 29 . Vậy khi M(1;0;2) thì minP = 2 11 29 0,25
- VIIb 1,00 a b c Vì a, b, c là ba cạnh tam giác nên: b c a . c a b a b ca y , a z x, y , z 0 x y z , y z x, z x y . x, Đặt 2 2 0,50 Vế trái viết lại: a b ac 2a VT 3a c 3a b 2a b c x y z yz zx x y 2z z Ta có: x y z z x y z 2 z x y . x y z x y x 2x y 2y ; . Tương tự: y z x y z z x x y z 0,50 2 x y z x y z 2. Do đó: y z z x x y x y z 1 1 2 b c 2 Tức là: a 3a b 3a c 2a b c 3a c 3a b
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học-Cao đẳng môn Hoá học - THPT Tĩnh Gia
4 p | 1797 | 454
-
ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC KHỐI D - ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi: TOÁN, khối A, B - TRƯỜNG THPT CHUYÊN LÊ QUÝ ĐÔN Lần II
6 p | 593 | 157
-
Đề thi thử Đại học, Cao đẳng môn Tiếng Anh khối D 2014 - Đề số 2
13 p | 310 | 54
-
Đề thi thử Đại học, Cao đẳng môn tiếng Anh - Trường THPT Cửa Lò (Đề 4)
8 p | 144 | 28
-
5 đề thi thử đại học cao đẳng môn hóa
29 p | 131 | 24
-
Đề thi thử Đại học, Cao đẳng môn Tiếng Anh khối D 2014 - Đề số 5
14 p | 141 | 13
-
Tuyển tập Đề thi thử Đại học, Cao đẳng môn Toán 2012 - Trần Sỹ Tùng
58 p | 115 | 11
-
Đề thi thử đại học, cao đẳng lần 1 môn Hóa - THPT Ninh Giang 2013-2014, Mã đề 647
4 p | 114 | 9
-
Đề thi thử đại học cao đẳng lần V môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 111 | 8
-
Đề thi thử đại học cao đẳng lần IV môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 107 | 7
-
Đề thi thử đại học cao đẳng 2012 môn Toán
61 p | 102 | 6
-
Đề thi thử đại học cao đẳng lần III môn Toán - Trường THPT chuyên Quang Trung năm 2011
1 p | 110 | 4
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 18 (Kèm đáp án)
7 p | 73 | 3
-
Đề thi thử Đại học Cao đẳng lần 1 năm 2013 môn Hóa học - Trường THPT Quỳnh Lưu 1
18 p | 80 | 3
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 25 (Kèm đáp án)
6 p | 54 | 2
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 10 (Kèm đáp án)
5 p | 82 | 2
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 3 (Kèm đáp án)
5 p | 90 | 2
-
Đề thi thử Đại học, Cao đẳng Toán 2012 đề 17 (Kèm đáp án)
7 p | 45 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn