intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 25 - Đề 15

Chia sẻ: Mao Ga | Ngày: | Loại File: PDF | Số trang:5

26
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi thử đại học khối a, a1, b, d toán 2013 - phần 25 - đề 15', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề Thi Thử Đại Học Khối A, A1, B, D Toán 2013 - Phần 25 - Đề 15

  1. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 Môn thi : TOÁN Câu I (2.0 điểm) Cho hàm số y  x  2mx 2  m  1 (1) , với m là tham số thực. 4 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m  1 . 2.Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1. Câu II : ( 2, 0 điểm) Giải các phương trình 1. 4sin 3 x.cos3x  4cos3 x.sin 3x  3 3cos4x  3 2. log 3 (x 2  5x  6)  log 3 (x 2  9x  20)  1  log 3 8 CâuVI:( 1,0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC = 2 3a , BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng a 3 (ABCD). Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng , tính thể tích khối chóp 4 S.ABCD theo a. CâuV :( 2, 0 điểm).  2 1. TÝnh tÝch ph©n sau: I   cos 2 x.cos 2 2 x.dx 0 1. Cho 3 sè d­¬ng x, y, z tho¶ m·n : x +3y+5z  3 .Chøng minh r»ng: 3xy 625z 4  4 + 15 yz x 4  4 + 5 zx 81 y 4  4  45 5 xyz. Câu VI :(2,0 điểm) 1. Trong mặt phẳng (Oxy), cho đường tròn (C ): 2x 2  2y2  7x  2  0 và hai điểm A(-2; 0), B(4; 3). Viết phương trình các tiếp tuyến của (C ) tại các giao điểm của (C ) với đường thẳng AB. 2x 2  (m  1)x  3 2. Cho hàm số y  . Tìm các giá trị của m sao cho tiệm cận của đồ thị hàm số xm 2 tiếp xúc với parabol y = x +5 8 1  3 9 x 1  7   log 2 3x 1 1  Câu VII :(1,0 điểm) Cho khai triển  2 log 2 2 5  . Hãy tìm các giá trị của x biết rằng   số hạng thứ 6 trong khai triển này là 224 ----------------***HÕt***----------------
  2. ĐÁP ÁN Câu Nội dung Điểm I 1.(1 điểm). Khi m  1 hàm số trở thành: y  x 4  2 x 2 (2đi  TXĐ: D= ¡ ểm) x  0  Sự biến thiên: y '  4 x3  4 x  0  4 x  x 2  1  0    x  1 0.25 yCD  y  0   0, yCT  y  1  1 0.25  Bảng biến thiên x - -1 0 1 + y’  0 + 0  0 + y + 0 + -1 -1 0.25  Đồ thị 0.25 x  0 2. (1 điểm) y '  4 x3  4mx  4 x  x 2  m   0   2 x  m Hàm số đã cho có ba điểm cực trị  pt y '  0 có ba nghiệm phân biệt và y ' đổi dấu khi x đi qua các nghiệm đó  m  0 0.25  Khi đó ba điểm cực trị của đồ thị hàm số là:    A  0; m  1 , B  m ; m 2  m  1 , C m ; m 2  m  1  0.25 1  SVABC  yB  yA . xC  xB  m 2 m ; AB  AC  m 4  m , BC  2 m 2 0.25  R AB. AC .BC 1  m 4  m  2 m  1  m3  2m  1  0   m  1  4SVABC 4m 2 m  m  5 1   2 0.25 Câu II 1. (1,0 điểm) (2,0 Phương trình đã cho tương đương với phương trình : điểm) 1. Phương trình : 4 sin 3 x.cos3x  4co s 3 x.sin 3x  3 3 co s4x  3  4[(1  cos 2 x) sin x.cos3x  (1  sin 2 x)cos x.sin 3x ]  3 3 co s4x  3  4[( sin x.cos3x  cos x.sin 3x)  cos x sin x(co sx.cos3x  sin x.sin 3x)]  3 3 cos4x  3 1  1   4[ sin 4x  sin 2x.co s2x ]  3 3 cos4x  3  4  sin 4x  sin 4x   3 3 co s4x  3  3sin 4x  3 3 cos4x  3 2  4  1 3 1   0,50  sin 4x  3 cos4x  1  sin 4x  cos 4x   sin(4x  )  sin 2 2 2 3 6             4x  3  6  k2  4x  3  6  k2 4x   6  k2  x   24  k 2     (k  Z)  4x    5  k2  4x    5  k2 4x    k2 x    k  0,50   3 6   3 6   2   8 2 Đáp án Điểm
  3. 2.(1,0 điểm) PT log 3 (x 2  5x  6)  log 3 (x 2  9x  20)  1  log 3 8 (*) 2 x  5 + Điều kiện :  x  5x  6  0   x   3  x   2    4  x   3   2  , và có :  x  9x  20  0  x  5  x   4  x  2 0,25  1  log3 8  log3 24 + PT (*)  log 3  ( x 2  5x  6)(x 2  9x  20)   log 3 24   (x 2  5x  6)( x 2  9x  20)  24 0,25        (x   5)  (  4  x   3)  (x   2)   (x   5)  (  4  x   3)  ( x   2)  (x  2)( x  3)(x  4)(x  5)  24 (*)    (x   5)  (  4  x   3)  (x   2) (**) 0,25 + Đặt t  (x  3)( x  4)  x 2  7 x  12  ( x  2)( x  5)  t  2 , PT (*) trở thành : t(t-2) = 24  (t  1)2  25  t  6  t  4  t = 6 : x 2  7 x  12  6  x 2  7x  6  0   x   1 ( thỏa đkiện (**))  0,25 x  6  t = - 4 : x 2  7 x  12   4  x 2  7 x  16  0 : vô nghiệm + Kết luận : PT có hai nghiệm là x = -1 và x = - 6 Tính thể tích khối chóp S.ABCD theo a Câu III Từ giả thiết AC = 2a 3 ; BD = 2a và AC ,BD vuông góc với nhau tại trung điểm O của (1,0 điểm) mỗi đường chéo.Ta có tam giác ABO vuông tại O và AO = a 3 ; BO = a , do đó · A BD  600 0,25 Hay tam giác ABD đều. Từ giả thiết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD) nên giao tuyến của chúng là SO  (ABCD). Do tam giác ABD đều nên với H là trung điểm của AB, K là trung điểm của HB ta có DH  AB và DH = a 3 ; OK // DH và 1 a 3 OK  DH   OK  AB  AB  0,25 2 2 (SOK) Gọi I là hình chiếu của O lên SK ta có OI  SK; AB  OI  OI  (SAB) , hay OI là khoảng cách từ O đến mặt phẳng (SAB). Tam giác SOK vuông tại O, OI là đường cao Deleted: S 1 1 1 a     SO  OI 2 OK 2 SO 2 2 0,25 Diện tích đáy S ABC D  4S ABO  2.OA.OB  2 3a 2 ; a I đường cao của hình chóp SO  . D 2 A 3a Thể tích khối chóp S.ABCD: O 0,25 1 3a 3 H VS . ABC D  S ABC D .SO  3 3 a K C B
  4. IV Cho 3 sè d­¬ng x, y, z tho¶ m·n : x +3y+5z  3 . Chøng minh r»ng: (1,0 3xy 625 z 4  4 + 5 zx 81y 4  4  15 yz x 4  4  45 5 xyz điểm) BÊt ®¼ng thøc 4 4 4  x 2  2 + 9 y 2  2 + 25 z 2   45 x 9y 25 z 2 2 2 2 2 36 VT  ( x  3 y  5 z ) 2  (   ) 2  9(.3 x.3 y.5 z )  . 0,25 x 3 y 5z 3 ( x.3 y.5 z ) 2 §Æt t = 3 ( x.3 y.5 z ) 2 3  x  3 y  5z  ta cã 3 ( x.3 y.5 z )     1 do ®ã t  1 0,25  3  36 36 36 §iÒu kiÖn . 0 < t  1. XÐt hµm sè f(t)= 9t +  36t   27t  2 36t.  27 = 45 0,25 t t t 1 1 DÊu b»ng x¶y ra khi: t=1 hay x=1; y= ; z= . 0,25 3 5 Câu V. 1.(1,0 điểm) (2,0 1/ + Đường tròn (C ) 2 điểm) 7  7 65 : 2x 2  2y2  7x  2  0  x 2  y 2  x  1  0   x    y 2  2  4 16 7  65  (C ) có tâm I  ;0  và bán kính R   4  4 x2 y x2 + Đường thẳng AB với A(-2; 0) và B(4; 3) có phương trình  , hay : y  0,25 6 3 2 + Giao điểm của (C ) với đường thẳng AB có tọa độ là nghiệm hệ PT 2  2  x2 2x 2  2y2  7x  2  0 2x  2    7x  2  0 5x(x  2)  0    2    x  0; y  1  x2   x2  y = y = x  2 y = 2  x  2; y  2  2    2 0,25 Vậy có hai giao điểm là M(0; 1) và N(2; 2) uuu  7  r + Các tiếp tuyến của (C ) tại M và N lần lượt nhận các vectơ IM    ;1 và  4  uu  1  r IN   ; 2  làm các vectơ pháp tuyến , do đó các TT đó có phương trình lần lượt là : 4  7   (x  0)  1(y  1)  0 , hay : 7x  4y  4  0 4 0,50 1  (x  2)  2(y  2)  0 , hay : x  8y  18  0 4
  5. 2x 2  (m  1)x  3 2/ Cho hàm số y  . Tìm các giá trị của m sao cho tiệm cận của đồ thị x m Điểm hàm số tiếp xúc với parabol y = x2 +5 2x 2  (m  1)x  3 Hàm số y  xác định với mọi x   m xm m2  m  3 Viết hàm số về dạng y  2x  1  m  xm 0,25 1  13 + TH1 : m 2  m  3  0  m  : Có hàm số bậc nhất y  2x  1  m ( x  m ) : 2 đồ thị không có tiệm cận 1  13 0,25 + TH2 : m 2  m  3  0  m  : Đồ thị hàm số có tiệm cận đứng là đường thẳng 2 (d1) x = -m và tiệm cận xiên là đường thẳng (d2) y = 2x + 1 - m 0,25 + Đường thẳng (d1) x = - m luôn cắt parabol parabol y = x2 +5 tại điểm (-m ; m2 +5) ( với 1  13 mọi m  ) và không thể là tiếp tuyến của parabol 2 0,25 + Tiệm cận xiên (d2) y = 2x + 1 - m tiếp xúc với parabol y = x2 +5  PT x2 +5 = 2x + 1 - m , hay PT x2 – 2x + 4 +m = 0 có nghiệm kép   '  1-(4 + m) = 0  m  3 ( thỏa điều kiện) Kết luận : m = -3 là giá trị cần tìm VI.  3 x 1 1  log  3x 1 1  8 (1,0 (1,0 điểm) Cho khai triển  2 log 2 9  7  2 5 2  . Hãy tìm các giá trị của x biết rằng số hạng thứ   điểm) 6 trong khai triển này là 224 1 8 k8  log 2 3 9 x1 7  log 2 3x1 1  8 2 2 5  Ta có :  a  b    C8 a 8 k bk với k   k 0 1 1 1 3 x 1    log 2 3x1 1  a  2log 2 9 7 =  9 x 1  7  ; b  2 3 5   3x 1  1 5 0,25 + Theo thứ tự trong khai triển trên , số hạng thứ sáu tính theo chiều từ trái sang phải của 1 3 1 5      1 0,25 khai triển là T6  C8   9x 1  7  3  .   3x 1  1 5   56  9x 1  7  .  3x 1  1 5     x 1 + Theo giả thiết ta có : 56  9x 1  7  .  3x 1  1 = 224  9 x 1  7  4  9x 1  7  4(3x 1  1) 1 0,25 3 1 2 3x 1  1 x  1   3x 1   4(3x 1 )  3  0   x 1  0,25 3  3  x  2 Chý ý häc sinh lµm c¸ch kh¸c kÕt quÈ ®óng vÉn ®­îc ®iÓm tèi ®a ----Hết-----
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2