Đề thi thử đại học môn toán năm 2012_Đề số 86-115
lượt xem 49
download
Tham khảo đề thi - kiểm tra 'đề thi thử đại học môn toán năm 2012_đề số 86-115', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 86-115
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 86) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2 điểm) Cho hàm số y = − x3 − 3x2 + mx + 4, trong đó m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho, với m = 0. 2. Tìm tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trên khoảng (0 ; + ∞ ). Câu II. (2 điểm) 1. Giải phương trình: 3 (2cos2x + cosx – 2) + (3 – 2cosx)sinx = 0 2. Giải phương trình: log 2 (x + 2) + log 4 (x − 5) + log 1 8 = 0 2 2 Câu III. (1 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = e x + 1 , trục hoành và hai đường thẳng x = ln3, x = ln8. Câu VI. (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = SB = a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD). Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD. Câu V. (1 điểm) Xét các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 1. x 2 (y + z) y 2 (z + x) z 2 (x + y) Tìm giá trị nhỏ nhất của biểu thức: P = + + yz zx xy II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa. (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có ph ương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai ti ếp tuyến v ới (C) mà góc gi ữa hai ti ếp tuy ến đó bằng 600. 2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đường thẳng d có phương trình: x = 1 + 2t y = −1 + t z = −t Viết phương trình tham số của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d. Câu VIIa. (1 điểm) Tìm hệ số của x2 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1) 6 B.Theo chương trình Nâng cao Câu VIb. (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có ph ương trình: x 2 + y2 – 6x + 5 = 0. Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai ti ếp tuyến v ới (C) mà góc gi ữa hai ti ếp tuy ến đó bằng 600. 2.Trong không gian với hệ tọa độ Oxyz, cho điểm M(2 ; 1 ; 0) và đ ường th ẳng d có ph ương trình: x −1 y +1 z = = . −1 2 1 Viết phương trình chính tắc của đường thẳng đi qua điểm M, cắt và vuông góc với đường thẳng d.
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... Câu VIIb. (1 điểm) Tìm hệ số của x3 trong khai triển thành đa thức của biểu thức P = (x2 + x – 1)5 ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 87) I. PHẦN BẮT BUỘC CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) x+2 Câu I. (2,0 điểm) Cho hàm số y = , có đồ thị là (C) x−2 1. Khảo sát và vẽ (C) 2. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến đi qua điểm A(– 6 ; 5) Câu II. (2,0 điểm) π� � 1. Giải phương trình: cos x + cos3x = 1 + 2 sin � + � 2x . 4� � x 3 + y3 = 1 2. Giải hệ phương trình: x 2 y + 2xy 2 + y 3 = 2 e 2x dx ln 3 Câu III. (1,0 điểm) Tính tích phân I = ex − 1 + ex − 2 ln 2 Câu VI. (1,0 điểm) Hình chóp tứ giác đều SABCD có khoảng cách từ A đến m ặt phẳng ( SBC ) bằng 2. Với giá trị nào của góc α giữa mặt bên và mặt đáy của chóp thì thể tích của chóp nhỏ nhất? 1 1 1 Câu V. (1,0 điểm) Cho a, b,c > 0 : abc = 1. Chứng minh rằng: + + 1 a + b +1 b + c +1 c + a +1 II . PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng Oxy cho các điểm A(1;0) ; B(–2;4) ;C(–1; 4) ; D(3 ; 5) và đ ường th ẳng d: 3x – y – 5 = 0. Tìm điểm M trên d sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2. Viết phương trình đường vuông góc chung của hai đường thẳng sau: x = −1 + 2t x y −1 z + 2 d1 : = = d2 : y = 1 + t ; −1 2 1 z=3 Câu VIIa. (1,0 điểm) Tìm số thực x, y thỏa mãn đẳng thức : x(3 + 5i) + y(1 – 2i)3 = 7 + 32i B. Theo chương trình Nâng cao Câu VIb. (2,0 điểm) 1.Trong mặt phẳng với hệ toạ độ Oxy cho đường thẳng d: x - 2y -2 = 0 và đi ểm A(0;1) ; B(3; 4). Tìm toạ độ điểm M trên đường thẳng d sao cho 2MA2 + MB2 là nhỏ nhất. 2.Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1;7;-1), B(4;2;0) và mặt ph ẳng (P): x + 2y - 2z + 1 = 0. Viêt phương trình hình chiếu của đường thẳng AB trên mặt phẳng (P) Câu VIIb. (1,0 điểm) Cho số phức z = 1 + 3 i. Hãy viết dạng lượng giác của số phức z5. -----------------------------------------Hết ---------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 88) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x 3 - 3x 2 + 4 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Gọi d là đường thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Câu II (2điểm) x 2 +1 + y(x + y) = 4y 1. Giải hệ phương trình: R) (x , y (x 2 +1)(x + y - 2) = y π 2. Giải phương trình: 2 2 sin(x − ).cos x = 1 12 1 2 Câu III (1 điểm) Tính tích phân I = xln(x + x +1)dx 0 Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông a2 3 góc với AA’, cắt lăng trụ theo một thiết diện có diện tích bằng . Tính thể tích khối lăng trụ 8 ABC.A’B’C’. CâuV (1 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Tìm GTLN của biểu thức 1 1 1 P= 2 +2 +2 . a + 2b + 3 b + 2c + 3 c + 2a 2 + 3 2 2 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm):1. Trong mp với hệ trục tọa độ Oxy cho parabol (P): y = x 2 - 2x và elip (E): x2 + y 2 = 1 .Chứng minh rằng (P) giao (E) tại 4 điểm phân biệt cùng nằm trên một đường tròn. Vi ết 9 phương trình đường tròn đi qua 4 điểm đó. 2. Trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2x + 4y - 6z -11 = 0 và mặt phẳng (α) có phương trình 2x + 2y – z + 17 = 0. Viết phương trình mặt phẳng (β) song song với (α) và cắt (S) theo giao tuyến là đường tròn có chu vi bằng 6π. n 1� � Câu VIIa (1 điểm): Tìm hệ số của số hạng chứa x trong khai triển nhị thức Niutơn của � x + 4 �, 2 2 x� � 22 23 2n+1 n 6560 biết rằng n là số nguyên dương thỏa mãn: 2C0 + C1 + C 2 + .......... + Cn = n n n 2 3 n +1 n +1 B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Trong mặt phẳng Oxy cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7 = 0 và tam giác ABC có A(2 ; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d1 và điểm C thuộc d2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x – y – z – 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng ( P). Tìm giá trị nhỏ nhất của biểu thức MA 2 + MB2 + MC2 .Câu VIIb (1 điểm): Tìm các giá trị của tham số thực m sao cho phương trình (m - 3) x + ( 2- m)x + 3 - m = 0 có nghiệm thực
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 89) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x − 3 Câu I (2 điểm): Cho hàm số y = có đồ thị là (C) x −2 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2. Tìm trên (C) những điểm M sao cho tiếp tuyến tại M c ủa (C) c ắt 2 tiệm c ận c ủa (C) t ại A, B sao cho AB ngắn nhất. Câu II (2 điểm): sin 3 x.sin3x + cos3 xcos3x 1 =- 1. Giải phương trình: � π� � π� 8 tan � - � � + � x tan x � 6� � 3� 8x 3 y 3 + 27 = 18y 3 (1) 2. Giải hệ phương trình: 4x 2 y + 6x = y 2 (2) π 1 2 2 Câu III (1 điểm): Tính tích phân I = sin x �sin x + dx 2 π 6 Câu IV (1 điểm): Cho hình chóp S. ABC có góc ((SBC), (ACB)) =60 0, ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). Câu V (1 điểm): Cho x, y, z là các số thực dương .Tìm giá trị lớn nhất của biểu thức x y z + + A= x + (x + y)(x + z) y + (y + x)(y + z) z + (z + x)(z + y) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Cho ∆ ABC có B(1; 2), phân giác trong góc A có phương trình ( ∆ ): 2x + y – 1 = 0; khoảng cách từ C đến (∆ ) bằng 2 lần khoảng cách từ B đến (∆ ). Tìm A, C biết C thuộc trục tung. 2. Trong không gian Oxyz cho mp (P): x – 2y + z – 2 = 0 và hai đường thẳng : x = 1 + 2t x +1 3 − y z + 2 ; (d2) y = 2 + t (t ᄀ ) . Viết phương trình tham số của đường thẳng ∆ nằm = = (d1) 1 1 2 z = 1+ t trong mp (P) và cắt cả 2 đường thẳng (d1), (d2). Câu VIIa (1điểm): Từ các số 0 , 1 , 2 , 3, 4, 5, 6. Lập được bao nhiêu số có 5 chữ số khác nhau mà nhất thiết phải có chữ số 5 B. Theo chương trình Nâng cao: Câu Vb (2điểm): 1. Cho ∆ ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G ∈ (d) 3x – y –8 =0. Tìm bán kính đường tròn nội tiếp ∆ ABC. 2. Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: (P): 2x – 2y – z +1 = 0, (Q): x + 2y – 2z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 + 4x – 6y +m = 0. Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN = 8. e x -y + e x + y = 2(x +1) Câu VIIb (1 điểm): Giải hệ phương trình R) (x , y x+y e = x - y +1
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 90 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x −1 Câu I (2 điểm): Cho hàm số y = (C) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng d: y = x + m cắt (C) tại hai điểm phân biệt A, B sao cho ∆OAB vuông tại O. cos 2 x.( cos x − 1) = 2(1 + sin x ) Câu II (2 điểm) 1. Giải phương trình: sin x + cos x x 2 + y 2 − xy = 3 2. Giải hệ phương trình: 2 x +1 + y2 +1 = 4 π ∫ (e ) 2 + sin x .sin 2 xdx Câu III (1 điểm): Tính tích phân: cos x 0 Câu IV (1điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông c ạnh a. SA ⊥ (ABCD) và SA = a. Gọi M, N lần lượt là trung điểm AD, SC. 1. Tính thể tích tứ diện BDMN và khoảng cách từ D đến mp (BMN). 2. Tính góc giữa hai đường thẳng MN và BD x2 Câu V (1 điểm): Chứng minh rằng: e x + cos x 2+x− , ∀x R 2 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Lập phương trình đường thẳng d đi qua điểm A(1; 2) và cắt đ ường tròn (C) có ph ương trình ( x − 2) 2 + ( y + 1) 2 = 25 theo một dây cung có độ dài bằng 8. 2. Chứng tỏ rằng phương trình x 2 + y 2 + z 2 + 2cosα .x − 2sin α . y + 4 z − 4 − 4 sin 2 α = 0 luôn là phương trình của một mặt cầu. Tìm α để bán kính mặt cầu là lớn nhất. Câu VIIa (1 điểm): Lập số tự nhiên có 5 chữ số khác nhau từ các chữ số {0; 1; 2; 3; 4; 5; 6; 7}. Hãy tính xác suất để lập được số tự nhiên chia hết cho 5. B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Cho ∆ ABC biết: B(2; -1), đường cao qua A có phương trình d 1: 3x - 4y + 27 = 0, phân giác trong góc C có phương trình d2: x + 2y - 5 = 0. Tìm toạ độ điểm A. y z -1 2. Trong không gian Oxyz , cho điểm A( 3 ; 4 ; 2) ; (d) x = = và m.phẳng (P): 4x +2y + z – 1 = 2 3 0 a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A lên mặt phẳng (P) . b) Viết phương trình mặt phẳng (α) chứa (d) và vuông góc với mặt phẳng (P) . Câu VIIb (1 điểm): Tính tổng: S = C 2009 + C 2009 + C 2009 + ... + C 2009 . 0 1 2 1004 -----------------------------------------Hết ---------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 91) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số y = x 3 − 3(m + 1) x 2 + 9 x − m , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với m = 1 . 2. Xác định m để hàm số đã cho đạt cực trị tại x1 , x 2 sao cho x1 − x 2 ≤ 2 . Câu II. (2,0 điểm) π 1 sin 2 x cot x + = 2 sin( x + ) . 1. Giải phương trình: sin x + cos x 2 2 2. Giải phương trình: 2 log 5 (3 x − 1) + 1 = log 3 5 ( 2 x + 1) . 5 x2 +1 Câu III. (1,0 điểm) Tính tích phân I = ∫ dx . x 3x + 1 1 Câu IV. (1,0 điểm) Cho hình lăng tr ụ tam giác đ ều ABC. A' B' C ' có AB = 1, CC ' = m (m > 0). Tìm m biết rằng góc giữa hai đường thẳng AB ' và BC ' bằng 60 0 . Câu V. (1,0 điểm) Cho các số thực không âm x, y , z thoả mãn x 2 + y 2 + z 2 = 3 . Tìm giá trị lớn nhất 5 của biểu thức A = xy + yz + zx + . x+ y+z II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ to ạ độ Oxy, cho tam giác ABC có A(4; 6) , phương trình các đường thẳng chứa đường cao và trung tuyến k ẻ t ừ đ ỉnh C lần lượt là 2 x − y + 13 = 0 và 6 x − 13 y + 29 = 0 . Viết phương trình đường tròn ngoại tiếp tam giác ABC . 2. Trong không gian với hệ toạ độ Oxyz, cho hình vuông MNPQ có M (5; 3; − 1), P (2; 3; − 4) . Tìm toạ độ đỉnh Q biết rằng đỉnh N nằm trong mặt phẳng (γ ) : x + y − z − 6 = 0. Câu VIIa. (1,0 điểm) Cho tập E = { 0,1, 2, 3, 4, 5, 6} . Từ các chữ số của tập E lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau? B. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, xét elíp ( E ) đi qua điểm M (−2; − 3) và có phương trình một đường chuẩn là x + 8 = 0. Viết phương trình chính tắc của ( E ). 2. Trong không gian với hệ toạ độ Oxyz, cho các điểm A(1; 0; 0), B (0;1; 0), C (0; 3; 2) và mặt phẳng (α ) : x + 2 y + 2 = 0. Tìm toạ độ của điểm M biết rằng M cách đều các điểm A, B, C và mặt phẳng (α ). Câu VIIb. (1,0 điểm) Khai triển và rút gọn biểu thức 1 − x + 2(1 − x) 2 + ... + n(1 − x ) n thu được đa thức 1 7 1 P ( x ) = a 0 + a1 x + ... + a n x n . Tính hệ số a8 biết rằng n là số nguyên dương thoả mãn 2 + 3 = . Cn Cn n -----------------------------------------Hết ---------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 92 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) ̉ Câu I (2 điêm). 1. Khảo sát và vẽ đồ thị hàm số y = x4 – 4x2 + 3 2. Tìm m để phương trình x − 4 x + 3 = log 2 m có đúng 4 nghiệm. 4 2 ̉ Câu II (2 điêm). ( )( ) 3 x x x+ 1. Giai bất phương trinh: ̉ ̀ 5 −1 + 5 +1 − 2 0 2 2. Giai phương trinh: x 2 − ( x + 2) x − 1 = x − 2 ̉ ̀ ̉ Câu III (1 điêm) e x −1 + tan( x 2 − 1) − 1 Tính giới hạn sau: lim x −1 3 x1 Câu IV (1 điểm). Cho hình chóp S.ABCD có đáy là hình thoi , BAD = α. Hai mặt bên (SAB) và (SAD) cùng vuông góc ᄀ với mặt đáy, hai mặt bên còn lại hợp với đáy một góc β . Cạnh SA = a. Tính diện tích xung quanh và thể tích khối chóp S.ABCD. Câu V (1 điểm). Cho tam giác ABC với các cạnh là a, b, c. Chứng minh rằng: a 3 + b3 + c 3 + 3abc a (b 2 + c 2 ) + b(c 2 + a 2 ) + c (a 2 + b 2 ) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu VIa.( 2 điểm) 1.Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆ : x + 2 y − 3 = 0 và hai điểm A(1; 0), B(3; - 4). uuu r uuur Hãy tìm trên đường thẳng ∆ một điểm M sao cho MA + 3MB nhỏ nhất. x = 1− t x=t 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: d1 : y = 2t và d 2 : y = 1 + 3t . Lập z = −2 + t z = 1− t phương trình đường thẳng đi qua M(1; 0; 1) và cắt cả hai đường thẳng d1 và d2. Câu VIIa. (1 điểm) Tìm số phức z thỏa mãn: z 2 + 2 z = 0 B. Theo chương trình Nâng cao Câu VIb.(2điểm) 1.Trong mặt phẳng tọa độ cho hai đường tròn (C1): x2 + y2 = 13 và (C2): (x - 6)2 + y2 = 25 cắt nhau tại A(2; 3). Viết phương trình đường thẳng đi qua A và cắt (C1), (C2) theo hai dây cung có độ dài bằng nhau. x = 1− t x=t 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng: d1 : y = 2t và d 2 : y = 1 + 3t . Lập z = −2 + t z = 1− t phương trình mặt cầu có đường kính là đoạn vuông góc chung của d1 và d2. Câu VIIb. (1 điểm) Trong các số phức z thỏa mãn điều kiện z + 1 + 2i = 1 , tìm số phức z có modun nhỏ nhất. -----------------------------------------Hết ---------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 93) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): 11 x3 Cho hàm số y = - + x2 + 3x - 3 3 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm trên đồ thị (C) hai điểm phân biệt M, N đối xứng nhau qua trục tung Câu II (2 điểm): 1. Giải phương trình: 2cos3x + 3 sinx + cosx = 0 x 2 + 91 = y − 2 + y 2 (1) 2. Giải hệ phương trình y 2 + 91 = x − 2 + x 2 (2) Câu III (1 điểm): exdx ln10 và tìm b→ln2 J. lim ∫b Cho số thực b ≥ ln2. Tính J = 3x e −2 Câu IV (1 điểm): Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, góc ᄀ BAD = 60 . Gọi M là trung điểm AA’ và N là trung điểm của CC’. Chứng minh rằng bốn điểm B’, M, 0 N, D đồng phẳng. Hãy tính độ dài cạnh AA’ theo a để tứ giác B’MDN là hình vuông. 111 Câu V (1 điểm) Cho x, y, z là các số dương thoả mãn + + = 2010 . Tìm giá trị lớn nhất của biểu xyz thức: 1 1 1 + + P= . 2x + y + z x + 2 y + z x + y + 2z II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Phương trình hai cạnh của một tam giác trong mp t ọa đ ộ là 5x - 2y + 6 = 0; 4x + 7y – 21 = 0. Vi ết phương trình cạnh thứ ba của tam giác đó, biết rằng trực tâm của nó trùng với gốc tọa độ O. x −1 y z + 2 == 2. Trong không gian Oxyz, tìm trên Ox điểm cách đều đ.thẳng (d) : và mp (P): 2x – y – 1 2 2 2z = 0. Câu VIIa(1 điểm): Cho tập hợp X = { 0,1 ,2,3,4,5,6,7} . Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau đôi một từ X sao cho 1 trong 3 chữ số đầu tiên phải bằng 1. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): 1. Trong mặt phẳng tọa độ cho hai đường tròn (C1): x2 + y2 = 13 và (C2): (x - 6)2 + y2 = 25 cắt nhau tại A(2; 3). Viết phương trình đường thẳng đi qua A và cắt (C1), (C2) theo hai dây cung có độ dài bằng nhau. x = 2t x = 3− t 2. Trong không gian Oxyz cho hai đường thẳng: (d1): y = t ; (d2) : y = t . z = 4 z= 0 Chứng minh (d1) và (d2) chéo nhau. Viết pt mặt cầu (S) có đường kính là đoạn vuông góc chung c ủa (d 1) và (d2). Câu VIIb (1 điểm): Giải pt sau trong C: z4 – z3 + 6z2 – 8z – 16 = 0.
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... -----------------------------------------Hết -------------------------------------------- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 94) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số: y = x 4 − 4x 2 + m (C) 1. Khảo sát hàm số với m = 3. 2. Giả sử đồ thị (C) cắt trục hoành tại 4 điểm phân biệt. Tìm m để hình phẳng gi ới h ạn b ởi đ ồ th ị (C) và trục hoành có diện tích phần phía trên và phần phía dưới trục hoành bằng nhau. Câu II (2 điểm): 1. Giải bất phương trình: x 2 − 3x + 2 − 2x 2 − 3x + 1 x − 1 2. Giải phương trình: cos3 x cos 3x + sin 3 x sin 3x = 2 4 Câu III (1 điểm): π 7 sin x − 5cos x 2 Tính tích phân: I = dx (sin x + cos x)3 0 Câu IV (1 điểm): Cho hình chóp đều S.ABCD có độ dài cạnh đáy bằng a, mặt bên t ạo v ới m ặt đáy góc 60o. Mặt phẳng (P) chứa AB và đi qua trọng tâm tam giác SAC c ắt SC, SD l ần l ượt t ại M, N. Tính th ể tích hình chóp S.ABMN theo a. 9+6 2 Câu V (1 điểm) Cho 4 số thực a, b, c, d thoả mãn: a2 + b2 = 1;c – d = 3. Cmr: F = ac + bd − cd . 4 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Tìm phương trình chính tắc của elip (E), biết tiêu cự là 8 và (E) qua điểm M(– 15; 1). x = −1 − 2t xyz 2. Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng d1 : = = và d 2 : y = t . 112 z = 1+ t Xét vị trí tương đối của d1 và d2. Viết phương trình đường thẳng qua O, cắt d2 và vuông góc với d1. Câu VIIa (1 điểm): Một hộp đựng 5 viên bi đỏ, 6 viên bi trắng và 7 viên bi vàng. Ng ười ta ch ọn ra 4 viên bi. H ỏi có bao nhiêu cách chọn để trong số bi lấy ra không có đủ cả 3 màu? B. Theo chương trình Nâng cao: Câu VIb (2 điểm):1.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình: x 2 y2 − = 1 . Viết phương trình chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của ( H) và ngoại 16 9 tiếp chữ nhật cơ sở của hình ( H). x+3 2. Trong không gian với hệ trục toạ độ Oxyz cho ( P ) : x + 2 y − z + 5 = 0 và ( d ) : = y +1 = z − 3 , 2 điểm A( -2; 3; 4). Gọi ∆ là đường thẳng nằm trên (P) đi qua giao điểm của ( d) và (P) đồng thời vuông góc với d.Tìm trên ∆ điểm M sao cho khoảng cách AM ngắn nhất. n �2 2 � x + � biết n thoả mãn: Câu VIIb (1 điểm): Tìm hệ số của x3 trong khai triển � � x� 2n −1 C 2n + C 2n + ... + C 2n = 2 . 1 3 23 -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 95) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x +1 Câu I (2 điểm) Cho hàm số y = có đồ thị (C). x −1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số . 2. Với điểm M bất kỳ thuộc đồ thị (C) tiếp tuyến tại M cắt 2 tiệm cận tại Avà B . Gọi I là giao hai tiệm cận , tìm vị trí của M để chu vi tam giác IAB đạt giá trị nhỏ nhất. Câu II (2 điểm) 3sin 2x - 2sin x =2 1. Giải phương trình: sin 2 x. cos x x 4 − 4 x 2 + y 2 − 6 y + 9 = 0 2. Giải hệ phương trình : 2 . x y + x 2 + 2 y − 22 = 0 π 2 Câu III (1 điểm) Tính tích phân sau: I= ∫ e sin x . sin x. cos 3 x. dx. 2 0 Câu IV (1 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a , mặt bên hợp với đáy góc α . Tìm α để thể tích của hình chóp đạt giá trị lớn nhất. Câu V (1 điểm) Cho 3 số dương x, y, z thoả mãn : x +3y+5z ≤ 3 .Chứng minh rằng: 3 xy 625 z 4 + 4 + 15 yz x 4 + 4 + 5 zx 81y 4 + 4 ≥ 45 5 xyz. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa (2 điểm) 1 1. Trong mặt phẳng với hệ toạ độ Oxy cho hình chữ nhật ABCD có tâm I( ; 0) . Đường thẳng chứa 2 cạnh AB có phương trình x – 2y + 2 = 0 , AB = 2AD. Tìm toạ độ các đỉnh A, B, C, D, biết A có hoành độ âm . 2.Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng (d1 ) và (d 2 ) có phương trình . x −1 y +1 z - 2 x - 4 y −1 z − 3 = = = = ( d1 ); ; (d 2 ) : 2 3 1 6 9 3 (d 2 ) . Lập phương trình mặt phẳng chứa (d 1 ) và Câu VIIa (1 điểm) Tìm m để phương trình 10 x 2 +8 x + 4 = m(2 x + 1). x 2 + 1 .có 2 nghiệm phân biệt B.Theo chương trình Nâng cao Câu VIb (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy cho hình vuông ABCD biết M(2;1); N(4; -2); P(2;0); Q(1;2) lần lượt thuộc cạnh AB, BC, CD, AD. Hãy lập phương trình các cạnh của hình vuông. 2. Trong không gian với hệ toạ độ Oxyz cho 2 đường thẳng ( ∆ ) và ( ∆' ) có phương trình . x = 3 + t x = -2 + 2 t' ; ( ∆ ) : y = 2 t' ( ∆ ) : y = -1 + 2t Viết phương trình đường vuông góc chung của ( ∆ ) và ( ∆' ) ' z = 4 z = 2 + 4t' Câu VIIb (1 điểm) Giải và biện luận phương trình : mx + 1 ( m 2 x 2 + 2mx + 2) = x 3 − 3x 2 + 4 x − 2. .................................................Heets................................................
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 96) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x − 3 Câu I: (2 điểm) Cho hàm số y = 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. x−2 2. Cho M là điểm bất kì trên ( C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của ( C) tại A và B. Gọi I là giao điểm của các đường tiệm cận.Tìm điểm M sao cho đường tròn ngoại tiếp ∆ IAB có diện tích nhỏ nhất. 2 π x x x2 Câu II (2 điểm) 1. Giải phương trình : 1 + sin sin x − cos sin x = 2 cos − 2 2 4 2 1 2. Giải bất phương trình : log2 (4x − 4x + 1) − 2x > 2 − ( x + 2) log 1 − x 2 2 2 e ln x Câu III (1 điểm) Tính tích phân I = ∫ + 3x 2 ln x dx 1 x 1 + ln x a ᄀ ᄀ AC . SA = a 3 , SAB = S = 300 . Tính Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a. BC = 2 thể tích khối chóp S.ABC. 3 Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c = . Tìm giá trị nhỏ nhất của biểu 4 1 1 1 thức P = +3 +3 a + 3b b + 3c c + 3a 3 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn Câu VIa (2 điểm) 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(-1;1) và B(3;3), đường thẳng (D): 3x – 4y + 8 = 0. Lập phương trình đường tròn qua A, B và tiếp xúc với đường thẳng(D). 2. Trong không gian với hệ toạ độ Oxyz cho hai điểm A(0; 0; -3), B(2; 0; -1) và mp (P) có pt: 3x − 8y + 7z + 1 = 0 . Viết pt chính tắc đường thẳng d nằm trên mp (P) và d vuông góc v ới AB t ại giao điểm của đường thẳng AB và (P). Câu VIIa (1 điểm) Tìm số nguyên dương n biế t: 2C2n+1 − 3.2.2C2n+1 + .... + ( − 1) k k( k − 1)2k− 2 C2n+1 + .... − 2n(2n + 1)22n−1 C2n++1 = −40200 2 3 k 2n 1 B. Theo chương trình Nâng cao Câu VIb (2 điểm) 1. Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng d1 : 2 x − y + 5 = 0 . d2: 3x + 6y – 7 = 0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2. 2. Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và mặt phẳng (P) có phương trình: x + y + z − 2 = 0 . Gọi A’là hình chiêú của A lên mặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4 điểm A’, B, C, D. Xác định toạ độ tâm và bán kính của đường tròn ( C) là giao 23 x+1 + 2y−2 = 3.2 y+3x của (P) và (S). Câu VIIb (1 điểm): Giải hệ phương trình 3x 2 + 1 + xy = x + 1
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 97) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) 2x + 1 Câu I (2 điểm): Cho hàm số y = có đồ thị là (C) x+2 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2. Chứng minh đường thẳng d: y = -x + m luôn luôn c ắt đ ồ th ị (C) t ại hai đi ểm phân bi ệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. Câu II (2 điểm): 1. Giải phương trình: 9sinx + 6cosx – 3sin2x + cos2x = 8 2. Giải bất phương trình: log 2 x − log 2 x 2 − 3 > 5 (log 4 x 2 − 3) 2 Câu III (1 điểm): dx Tìm nguyên hàm I = ∫ 3 sin x. cos 5 x Câu IV (1 điểm): Cho lăng trụ tam giác ABC.A 1B1C1 có tất cả các cạnh bằng a, góc tạo bởi c ạnh bên và m ặt phẳng đáy bằng 300. Hình chiếu H của điểm A trên mặt phẳng (A 1B1C1) thuộc đường thẳng B1C1. Tính khoảng cách giữa hai đường thẳng AA1 và B1C1 theo a. Câu V (1 điểm) Xét ba số thực không âm a, b, c thỏa mãn a 2010 + b2010 + c2010 = 3. Tìm GTLN của biểu thức P = a 4 + b4 + c4. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C) có phương trình (x - 1) 2 + (y + 2)2 = 9 và đường thẳng d: x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai ti ếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. x = 1 + 2t 2. Trong hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đường thẳng d có phương trình y = t . Lập pt z = 1 + 3t mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIa(1 điểm): Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn (C): x 2 + y2 - 2x + 4y - 4 = 0 và đường thẳng d có phương trình x + y + m = 0. Tìm m để trên đường thẳng d có duy nhất m ột đi ểm A mà t ừ đó k ẻ đ ược hai tiếp tuyến AB, AC tới đường tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông. x −1 y z −1 == 2. Trong không gian với hệ tọa độ Oxyz cho điểm A(10; 2; -1) và đường thẳng d : . 2 1 3 Lập phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Câu VIIb (1 điểm): Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong m ỗi số luôn luôn có m ặt hai chữ số chẵn và ba chữ số lẻ. -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 98 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = x3 – 3(m+1)x2 + 9x – m (1), m là tham số thực 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Xác định các giá trị m để hàm số (1) nghịch biến trên một khoảng có độ dài bằng 2. Câu II (2 điểm): x 1. Giải phương trình: 3x2 2 2 x −1 = 6 � π� � π� 2. Giải phương trình: tan � − � � + � 3 x = s inx + sin2x x tan x .sin � 6� � 3� Câu III (1 điểm): π 2 s inxdx Tính tích phân ( sinx + ) 3 3cosx 0 Câu IV (1 điểm): ᄀ ᄀ ᄀ Tính thể tích hình chóp S.ABC biết SA = a,SB = b, SC = c, ASB = 600 , BSC = 900 , CSA = 1200 . Câu V (1 điểm): log 2 x + 1 + log 2 y + 1 + log 2 z + 4 trong đó x, y, z là các số Tìm giá trị nhỏ nhất của biểu thức P = 2 2 2 dương thoả mãn điều kiện xyz = 8. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mp với hệ trục toạ độ Oxy cho hai đường th ẳng (d 1): x + y + 1 = 0, (d2): 2x – y – 1 = 0. Lập phươnguuur rđường thẳng (d) đi qua M(1;-1) cắt (d 1) và (d2) tương ứng tại A và B sao cho r trình uuuu 2MA + MB = 0 . 2. Trong không gian với hệ trục toạ độ Oxyz cho m ặt ph ẳng (P): x + 2y – 2z + 1 = 0 và hai đi ểm A(1;7;-1), B(4;2;0). Lập phương trình đường thẳng (D) là hình chi ếu vuông góc c ủa đ ường th ẳng AB trên (P). Câu VIIa(1 điểm): Ký hiệu x1 và x2 là hai nghiệm phức của phương trình 2x2 – 2x + 1 = 0. Tính giá trị 1 1 các số phức: 2 và 2 . x1 x2 B. Theo chương trình Nâng cao: Câu VIb(2 điểm): x2 y2 − = 1 . Giả sử (d) 1. Trong mặt phẳng với hệ trục toạ độ Oxy, cho hypebol (H) có phương trình 9 4 là một tiếp tuyến thay đổi và F là một trong hai tiêu điểm của (H), kẻ FM ⊥ (D). Chứng minh rằng M luôn nằm trên một đường tròn cố định, viết phương trình đường tròn đó. 2. Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Tìm t ọa đ ộ trực tâm của tam giác ABC. Câu VIIb (1 điểm): Người ta sử dụng 5 cuốn sách Toán, 6 cuốn Vật lý, 7 cuốn Hoá học (các cuốn sách cùng loại giống nhau) để làm giải thưởng cho 9 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong 9 học sinh trên có hai bạn Ngọc và Thảo. Tìm sác xuất để hai bạn Ngọc và Thảo có phần thưởng giống nhau. -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 99) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = x 3 + 2mx 2 + (m + 3)x + 4 có đồ thị là (Cm) 1.Khảo sát sự biến thiên và vẽ đồ thị (C1) của hàm số trên khi m = 1. 2. Cho (d) là đường thẳng có phương trình y = x + 4 và điểm K(1; 3). Tìm các giá trị của tham số m sao cho (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Câu II (2 điểm): 1. Giải phương trình: cos2x + 5 = 2(2- cos x )(sin x - cosx ) log 2 ( x + 1) − log 3 ( x + 1) 2 3 2. Giải bất phương trình : >0 x 2 − 3x − 4 π sin 6 x + cos6 x 4 dx Câu III (1 điểm): Tính tích phân I = 6x + 1 π − 4 Câu IV (1 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , tâm O . Hai mặt bên SAB và SAD cùng vuông góc với mặt phẳng đáy và SA = 2a . Gọi H , K lần lượt là hình chiếu của A lên SB ,SD . Tính thể tích khối chóp OAHK. Câu V (1 điểm): Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: 4a3 4b 3 4c 3 + + 3 (1+ b)(1+ c) (1+ c)(1+ a) (1+ a)(1+ b) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm I(2; 4) ; B(1;1) ; C(5;5) . Tìm điểm A sao cho I là tâm đường tròn nội tiếp ∆ ABC. 2. Trong không gian với hệ toạ độ Oxyz cho ba điểm A(2; 0; 1) B(1; 0; 0), C(1; 1; 1) và m ặt ph ẳng (P): x + y + z - 2 = 0. Viết phương trình mặt cầu đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (P) Câu VIIa (1 điểm): Giải phương trình: x + 4 − x 2 = 2 + 3 x 4 − x 2 B.Theo chương trình Nâng cao Câu VIb (2 điểm): 1.Trong mặt phẳng Oxy , cho hình thang ABCD có AB //CD và A( 10;5) ; B(15;- 5 ) ; D (-20;0 ) Tìm toạ độ C x = −t 2. Trong không gian Oxyz cho đường thảng ( ∆ ): y = −1 + 2t ( t ∈ R ) và mặt phẳng (P): 2x – y - 2z z=2+t – 2 = 0 Viết phương trình mặt cầu(S) có tâm I �∆ và khoảng cách từ I đến mp(P) là 2 và mặt cầu(S) cắt mp(P) theo giao tuyến đường tròn (C) có bán kính r = 3 Câu VIIb (1 điểm): Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: 2 2 9 + 1− x − (m + 2)3 + 1− x + 2m + 1 = 0 1 1 ----------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 100) PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) x+3 Câu I (2 điểm)Cho hàm số y = x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Cho điểm Mo(xo;yo) thuộc đồ thị (C). Tiếp tuyến của (C) tại M o cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh Mo là trung điểm của đoạn thẳng AB. Câu II (2 điểm) 1. Giải phương trình: 4sin3x + 4sin2x + 3sin2x + 6cosx = 0 2. Giải phương trình: x + 2 7 − x = 2 x − 1 + − x 2 + 8x − 7 + 1 ( x ∈ R) 2 Câu III (1 điểm) Tính tích phân: I = ∫ ( x − 2) ln xdx 1 Câu IV (1 điểm) 2 Cho hình lập phương ABCD. A'B'C'D' có cạnh bằng a và đi ểm K thu ộc c ạnh CC' sao cho CK = a. 3 Mặt phẳng (α) đi qua A, K và song song BD chia khối lập phương thành hai kh ối đa di ện. Tính th ể tích của hai khối đa diện đó. Câu V (1 điểm) Cho a, b, c là ba số dương. Chứng minh rằng a3 + b3 + c3 a 2 + b 2 b2 + c 2 c 2 + a 2 9 +2 + + ≥ c + ab a 2 + bc b 2 + ac 2 2abc II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa. (2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, lập phương trình chính tắc c ủa elip (E) có đ ộ dài tr ục l ớn bằng 4 2 , các đỉnh trên trục nhỏ và các tiêu điểm của (E) cùng nằm trên một đường tròn. 2.Trong không gian với hệ toạ độ Oxyz, cho A(1;2;0), B(0;4;0), C(0;0;3). a) Viết phương trình đường thẳng qua O và vuông góc với mặt phẳng (ABC). b) Viết phương trình (P) chứa OA, sao cho khoảng cách từ B đ ến (P) b ằng kho ảng cách t ừ C đ ến (P). Câu VIIa. (1 điểm) 1 Giải phương trình : 2(log2x + 1)log4x + log2 = 0 4 B. Theo chương trình Nâng cao: Câu VIb. (2 điểm) 1. Trong mặt phẳng tọa độ (Oxy), cho đường thẳng ( d ) : 2 x − y − 4 = 0 . Lập phương trình đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng (d). 2. Trong không gian với hệ tọa độ Oxyz , cho ( α ) : x + y + 2 z − 5 = 0 và mặt cầu (S) ( x − 1) 2 + ( y + 1) 2 + ( z − 2) 2 = 25 a) Lập phương trình tiếp diện của mặt cầu song song với Ox và vuông góc với ( α ) b) Lập phương trình mặt phẳng đi qua hai A(1;– 4;4) điểm B(3; – 5; – 1) và hợp với ( α ) một góc 0 60 Câu VIIb. (1 điểm) Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có 5 ch ữ s ố khác nhau mà mỗi số lập được đều nhỏ hơn 25000?
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... -----------------------------------------Hết -------------------------------------------- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 101) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2 điểm): x Cho hàm số y = (C) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho 2. Viết phương trình tiếp tuyến với đồ thị (C) , bi ết rằng kho ảng cách t ừ tâm đ ối xứng c ủa (C) đến tiếp tuyến là lớn nhất. Câu II: (2 điểm): 1 1. Giải phương trình: cos3x − cos2x + cosx = 2 x+4 + x−4 x + x 2 − 16 − 3 2. Giải bất phương trình : 2 e � 2� Câu III: (1 điểm): Tính tích phân: I = � + � lnxdx . x x� 1� Câu IV: (1 điểm): Cho hình chóp lục giác đều S.ABCDEF với SA = a, AB = b. Tính th ể tích c ủa hình chóp đó và khoảng cách giữa các đường thẳng SA, BE. Câu V: (1 điểm): Cho x, y là các số thực thõa mãn điều kiện: x 2 + xy + y 2 3. Chứng minh rằng : −(4 3 + 3) x 2 − xy − 3y 2 4 3 − 3. II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn: Câu VIa: (2 điểm): 1.Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC với B(2; -7), phương trình đường cao AA’: 3x + y + 11 = 0 ; phương trình trung tuyến CM : x + 2y + 7 = 0 . Viết phương trình tổng quát của đường thẳng AB và AC 2.Trong không gian với hệ tọa độ Oxyz, cho (P): 3x + 2y – z + 4 = 0 và điểm A(4;0;0), B(0; 4; 0). G ọi I là trung điểm của đoạn thẳng AB. a) Tìm tọa độ giao điểm E của đường thẳng AB với mặt phẳng (P). b) Xác định tọa độ điểm K sao cho KI vuông góc với mặt phẳng (P) đ ồng th ời K cách đ ều g ốc t ọa độ O và mặt phẳng (P). 3logx 3+ 2logx 2 3 Câu VIIa: (1 điểm): Giải bất phương trình: logx 3+ logx 2 B.Theo chương trình Nâng cao Câu VIb: (2 điểm): 1. Viết phương trình đường thẳng (d) đi qua M(1 ; 4 ) và cắt hai tia Ox,Oy tại hai điểm A,B sao cho độ dài OA + OB đạt giá trị nhỏ nhất. 2.Trong không gian với hệ toạ độ Oxyz, cho A(-1 ; 0 ; 2) ; B( 3 ; 1 ; 0) ; C(0 ; 1 ; 1) và đường thẳng (d) là giao tuyến của hai mặt phẳng (P) : 3x –z + 5 = 0 ; (Q) : 4x + y – 2z + 1 = 0 a) Viết phương trình tham số của (d) và phương trình mặt phẳng ( α ) qua A ; B; C . b) Tìm giao điểm H của (d) và ( α ) . Chứng minh H là trực tâm của tam giác ABC . Câu VIIb: (1 điểm): Cho tập A= { 0; 1; 2; 3; 4; 5; 6}. Có bao nhiêu số tự nhiên có 5 ch ữ số khác nhau chọn trong A sao cho số đó chia hết cho 15. -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 102) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Gọi (Cm) là đồ thị của hàm số y = − x 3 + (2m + 1) x 2 − m − 1 (1) m là tham số 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2.Tìm để đồ thị (Cm) tiếp xúc với đường thẳng y = 2mx − m − 1 Câu II (2 điểm): � π� 1. Tìm nghiệm x � �ủa phương rình: 0; c � 2� (1 + cos x) (sin x + 1)(1 + cos x) − (1 − cos x) (sin x + 1)(1 − cos x) = sin x + 2 x 2 + 2 + x + y2 + 3 + y = 5 2. Giải hệ phương trình: . x 2 + 2 − x + y2 + 3 − y = 2 Câu III (1 điểm): π 4 sin 4x Tính tích phân I = dx . cos x. tan x + 1 2 4 0 Câu IV (1 điểm): Cho khối lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đ ều c ạnh a và đ ỉnh A’ cách đều các đỉnh A, B, C. Cạnh bên AA’ tạo với đáy góc 600. Tính thể tích của khối lăng trụ theo a. Câu V (1 điểm) Cho 4 số thực x, y, z, t 1 . Tìm giá trị nhỏ nhất của biểu thức: �1 1� 1 1 P = (xyzt + 1) � 4 +4 +4 +4 � � +1 y +1 z +1 t +1 � x II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy cho D ABC có cạnh AC đi qua điểm M(0;– 1). Biết AB = 2AM, pt đường phân giác trong (AD): x – y = 0, đường cao (CH): 2x + y + 3 = 0. Tìm t ọa đ ộ các đ ỉnh c ủa D ABC . 2. Trong không gian với hệ trục tọa độ Oxyz cho 4 điểm A(3;0;0), B(0;1;4), C(1;2;2), D(-1;-3;1). Chứng tỏ A,B,C,D là 4 đỉnh của một tứ diện và tìm trực tâm của tam giác ABC. Câu VIIa (1 điểm): Cho tập hợp X = {0; 1; 2; 3; 4; 5; 6}. Từ các chữ số của tập X có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau và phải có mặt chữ số 1 và 2. B. Theo chương trình Nâng cao: Câu VIb(2 điểm): x +3 y-5 1. Viết phương trình đường thẳng (d) qua A(1 ; 2) và tạo với đường thẳng (D): một góc = 1 2 450 . 2. Trong không gian với hệ tọa độ Oxyz cho đường thẳng d là giao tuyến của 2 mp: (P) : x - my + z - m = 0 và Q) : mx + y - mz -1 = 0, m là tham số. a) Lập phương trình hình chiếu Δ của (d) lên mặt phẳng Oxy. b) Chứng minh rằng khi m thay đổi, đường thẳng Δ luôn ti ếp xúc v ới m ột đ ường tròn c ố đ ịnh trong mặt phẳng Oxy. Câu VIIb (1 điểm): Giải phương trình sau trên tập C : (z2 + z)2 + 4(z2 + z) – 12 = 0 -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 103 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): 2x − 4 1. Khảo sát và vẽ đồ thị (C) của hàm số y = . x +1 2. Tìm trên (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(- 3;0) và N(- 1; - 1). Câu II (2 điểm): 1 3x 7 1. Giải phương trình: 4cos4x – cos2x − cos4x + cos = 2 4 2 2. Giải phương trình: 3x.2x = 3x + 2x + 1 Câu III (1 điểm): π Tính tích phân: K = � + s inx � dx 2 1 ex � � 1+cosx � 0� Câu IV (1 điểm) Cho hình chóp tam giác đều S.ABC độ dài cạnh bên bằng 1. Các m ặt bên h ợp v ới m ặt ph ẳng đáy m ột góc α. Tính thể tích hình cầu nội tiếp hình chóp S.ABC. Câu V (1 điểm) Gọi a, b, c là ba cạnh của một tam giác có chu vi b ằng 2. CMR: 52 a 2 + b2 + c2 + 2abc < 2 27 II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho elip (E) : x2 + 4y2 = 16 a) Đường thẳng d qua tiêu điểm trái , vuông góc với trục lớn , cắt (E) tại M và N . Tính độ dài MN b) Cmr : OM2 + MF1.MF2 luôn là hằng số với M tùy ý trên (E) x−2 y z−4 = = 2. Trong không gian với hệ trục toạ độ Oxyz cho đường th ẳng (d): và hai điểm −2 3 2 A(1;2; - 1), B(7;-2;3). Tìm trên (d) những điểm M sao cho khoảng cách từ đó đến A và B là nhỏ nhất. Câu VIIa(1 điểm) Tính giá trị biểu thức sau : M = 1 + i + i2 + i3 + …………….. + i2010 B. Theo chương trình Nâng cao: Câu VIb(2 điểm): 1. Viết phương trình đường thẳng (d) đi qua A(- 4 ; 6 ) và tạo với hai trục tọa độ một tam giác có diện tích là 6 x−2 y +2 z −3 = = 2. Trong không gian Oxyz , cho điểm A(1 ; 2 ; 3) và hai đường thẳng :(d1) : −1 2 1 x −1 y −1 z +1 = = và (d2) : −1 2 1 a) Tìm toạ độ điểm A’ đối xứng điểm A qua đường thẳng (d1) . b) Chứng tỏ (d1) và (d2) chéo nhau . Viết phương trình đường vuông góc chung của (d1) và (d2) . x x −8 y = x + y y Câu VIIb (1 điểm): Giải hệ phương trình: x−y=5 -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 104 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm): Cho hàm số y = x 4 + mx3 − 2x2 − 3mx + 1 (1) . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) khi m = 0. 2. Định m để hàm số (1) có hai cực tiểu. Câu II (2 điểm): 2+ 3 2 1. Giải phương trình: cos3x.cos3x – sin3x.sin3x = 8 2. Giải phương trình: 2x +1 + x x 2 + 2 + ( x + 1) x 2 + 2x + 3 = 0 Câu III (2 điểm): π 2 ( x + 1) sin 2xdx . Tính tích phân: I = 0 Câu IV (1 điểm) ᄀ Cho hình chóp S.ABC có SA = SB = SC = a 2 . Đáy là tam giác ABC cân BAC = 1200 , cạnh BC = 2a. Gọi M là trung điểm của SA, tính khoảng cách từ M đến mặt phẳng (SBC). Câu V (1 điểm) Cho x, y, z là các số thực dương thoả mãn: x + y + z = xyz.Tìm GTNN của xy yz zx A= + + . z (1 + xy ) x (1 + yz ) y (1 + zx) II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn: Câu VIa (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M (–2 ; 5) và hai đường thẳng (d1) : 4x – 2y –1 = 0; x = -2 + 3t a) Tính góc giữa (d1) và (d2) . (d2) : y=t b) Tìm điểm N trên (d2) cách điểm M một khoảng là 5 2. Trong không gian với hệ trục tọa độ Oxyz, cho 3 điểm A(3;1;1), B(0;1;4), C(-1;-3;1). Lập ph ương trình của mặt cầu (S) đi qua A, B, C và có tâm nằm trên mặt phẳng (P): x +y – 2z + 4 = 0. Câu VIIa(1 điểm): Chứng minh 3 ( 1 + i ) = 4i ( 1 + i ) − 4(1+ i) 2010 2008 2006 B. Theo chương trình Nâng cao: Câu VIb (2 điểm): 1. Trong mặt phẳng với hệ tọa độ Oxy, cho ∆ABC với C(2; 3) , phương trình đường thẳng (AB): 3x – 4 y + 1 = 0 phương trình trung tuyến (AM) : 2x – 3y + 2 = 0 . Viết phương trình tổng quát của đường thẳng AC và BC. 2. Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1; -1; 0), B(1; -1; 2), C(2; -2; 1), D(-1; 1; 1). a) Viết phương trình của mặt phẳng chứa AB và song song với CD. Tính góc giữa AB, CD. b) Giả sử mặt phẳng (α) đi qua D và cắt ba trục tọa độ tại các điểm M, N, P khác gốc O sao cho D là trực tâm của tam giác MNP. Hãy viết phương trình của (α). ( )( ) x +1 Câu VIIb(1 điểm): Giải phương trình: 4 − 2 + 2 2 − 1 sin 2 + y − 1 + 2 = 0. x x x -----------------------------------------Hết --------------------------------------------
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 ......................................................................................................................................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN (ĐỀ 105 ) I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 + (1 – 2m)x2 + (2 – m)x + m + 2 (m là tham số) (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2 2. Tìm các giá trị của m để đồ thị hàm số (1) có điểm cực đại, điểm c ực ti ểu, đồng thời hoành đ ộ của điểm cực tiểu nhỏ hơn 1. Câu II (2 điểm) 1. Giải phương trình: cos2x + (1 + 2cosx)(sinx – cosx) = 0 ( x − y)( x 2 + y 2 ) = 13 (x, y ∈ ) 2. Giải hệ phương trình: ( x + y)( x 2 − y 2 ) = 25 e 3 − 2 ln x ∫x Câu III (1 điểm) Tính tích phân: I = dx 1 + 2 ln x 1 Câu IV (1 điểm) Cho lăng trụ ABC.A'B'C' có A'.ABC là h.chóp tam giác đều cạnh đáy AB = a, cạnh bên AA' = b. Gọi α là góc giữa hai mp (ABC) và (A'BC). Tính tanα và thể tích của khối chóp A'.BB'C'C Câu V (1 điểm) Cho hai số dương x, y thay đổi thỏa mãn đi ều kiện x + y ≥ 4. Tìm giá trị nhỏ nhất của biểu thức 3x 2 + 4 2 + y 3 + A= y2 4x II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A.Theo chương trình Chuẩn Câu VIa. (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có đỉnh A(2;1), đ ường cao qua đ ỉnh B có phương trình là x – 3y – 7 = 0 và đường trung tuyến qua đỉnh C có ph ương trình là x + y + 1 = 0. Xác định tọa độ các đỉnh B và C của tam giác. 2. Trong không gian với hệ toạ độ Oxyz, cho điểm G(1 ; 1 ; 1) . a) Viết phương trình mặt phẳng ( α ) qua G và vuông góc với đường thẳng OG . b) ( α ) cắt Ox, Oy ,Oz tại A, B,C . Chứng minh tam giác ABC đều và G là trực tâm tam giác ABC. Câu VIIa. (1 điểm) Cho hai đường thẳng song song d1 và d2. Trên đường thẳng d1 có 10 điểm phân biệt, trên đường thẳng d2 có n điểm phân biệt (n ≥ 2). Biết rằng có 2800 tam giác có đỉnh là các điểm đã cho. Tìm n. B.Theo chương trình Nâng cao Câu VIb. (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy , cho (E): 9x 2 + 16y2 = 144 Viết phương trình đường thẳng ∆ đi qua M(2 ; 1) và cắt elip (E) tại A và B sao cho M là trung điểm của AB 2.Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): 2x – y + 2z + 5 = 0 và các đi ểm A(0; 0; 4), B(2; 0; 0) a)Viết phương trình hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P) b)Viết phương trình mặt cầu đi qua O, A, B và tiếp xúc với mặt phẳng (P). Câu VIIb. (1 điểm) ( ) n x 2lg(10−3 ) + 5 2(x − 2) lg 3 Tìm các giá trị x trong khai triển nhị thức Newton biết rằng số hạng thứ 6 của bằng 21 và C n + Cn = 2C n . 1 3 2 khai triển -----------------------------------------Hết --------------------------------------------
CÓ THỂ BẠN MUỐN DOWNLOAD
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 909 | 329
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 01)
6 p | 445 | 242
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 02)
6 p | 386 | 184
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 03)
7 p | 336 | 161
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 04)
8 p | 331 | 143
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 10)
6 p | 363 | 141
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 05)
6 p | 288 | 130
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 06)
6 p | 301 | 128
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 08)
7 p | 306 | 119
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 07)
8 p | 313 | 114
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 09)
6 p | 298 | 114
-
Đề thi thử Đại học môn Lý khối A - Đề số 1
5 p | 236 | 54
-
Đề thi thử Đại học môn Lý khối A - Đề số 2
6 p | 208 | 47
-
Đề thi thử Đại học môn Lý khối A - Đề số 18
5 p | 169 | 31
-
Đề thi thử Đại học môn Lý khối A - Đề số 4
7 p | 171 | 29
-
Đề thi thử Đại học môn Lý khối A - Đề số 3
6 p | 178 | 25
-
Đề thi thử Đại học môn Lý khối A - Đề số 5
4 p | 181 | 25
-
Bộ đề thi thử Đại học môn Toán (25tr)
25 p | 92 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn