intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử ĐH môn Toán năm 2013 - Đề số 7

Chia sẻ: Phung Tuyet | Ngày: | Loại File: PDF | Số trang:2

145
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đề thi thử Đại học môn Toán khối A năm 2013 dành cho các bạn đang có nhu cầu học tập và ôn thi Đại học - Cao đẳng. Đây sẽ là tài liệu tham khảo hay và hữu ích giúp cho quá trình học tập và ôn thi của các bạn.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử ĐH môn Toán năm 2013 - Đề số 7

  1. ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn: Toán học ĐỀ SỐ 07 Thời gian: 180 phút ------------------------------ I/ PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7đ) Câu I (2 điểm) Cho hàm số: y = - x3 + 3x - 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Tìm phương trình đường thẳng (d) đi qua điểm A(-2; 0) sao cho khoảng cách từ điểm cực đại của (1) đến (d) là lớn nhất. Câu II (2 điểm) 3 3 1. Giải phương trình: sin x. sin 3 x  cos x. cos 3x   1     8 tan  x  . tan  x    6  3 2. Tìm m để phương trình sau có nghiệm: 2 x 2  2( m  4) x  5m  10  3  x  0  2 cos x. ln(sin x) Câu III (1 điểm) Tính: I   dx  sin 2 x 6 Câu IV: (1 điểm)Cho lăng trụ tam giác ABC. A’B’C’ có các mặt bên là các hình vuông cạnh a. Gọi D, E, F là trung điểm các đoạn BC, A’C’, C’B’. Tính khoảng cách giữa DE và A’F. Câu V (1 điểm)Cho x, y, z là các số thực thỏa mãn: x + y + z = 0; x + 1 > 0; y + 1 > 0; z + 4 > 0. Tìm giá trị lớn nhất của biểu thức: x y z Q   x 1 y 1 z  4 II/ PHẦN RIÊNG (Thí sinh chỉ được chọn làm một trong hai ban) Theo chương trình chuẩn Câu VI.a: (2 điểm) 1. Cho tam giác ABC cân, đáy BC có phương trình: x – 3y – 1 = 0; cạnh AB có phương trình: x – y – 5 = 0. Đường thẳng chứa cạnh AC đi qua M(-4; 1). Tìm tọa độ đỉnh C. 2. Trong không gian Oxyz cho tứ diện ABCD với A(1; -2; 3), B(1; 2; -1), C(1; 6; 3), D(5; 2; 3) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Câu VIIa: (1 đ)Trên các cạnh AB, BC, CA của tam giác ABC lần lượt cho 1, 2, và n điểm phân biệt khác A, B, C (n > 2). Tìm số n biết số tam giác có 3 đỉnh lấy từ n + 3 điểm đã cho là 166. Theo chương trình nâng cao Câu VI.b: (2 điểm)
  2. 1. Cho tam giác ABC có A( -1;2) , trọng tâm G(1;1) , trực tâm H(0;-3). Tìm toạ độ B,C và tâm đường tròn ngoại tiếp tam giác ABC. 2. Trong không gian Oxyz cho tứ diện ABCD với A(1; -2; 3), B(1; 2; -1), C(1; 6; 3), D(5; 2; 3) Viết phương trình mặt phẳng (P) chứa trục Oz và đồng thời cắt mặt cầu (S) theo một đường tròn có bán kính bằng 4. (S) là mặt cầu ngoại tiếp tứ diện ABCD. Câu VIIb(1đ)Giải phương trình: log2(2x - 1).log4(2x+1 - 2) = 1. -------------------------------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2