Đề thi thử ĐH môn Toán - THPT Liên Hà năm 2011
lượt xem 2
download
Đề thi thử ĐH môn Toán - THPT Liên Hà năm 2011 dành cho học sinh lớp 12 đang chuẩn bị thi tuyển sinh Đại học, giúp các em phát triển tư duy, năng khiếu môn Toán. Chúc các bạn đạt được điểm cao trong kì thi này nhé.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử ĐH môn Toán - THPT Liên Hà năm 2011
- Sở giáo dục và đào tạo Hà nội Trường THPT Liên Hà ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 **************** Môn : TOÁN; khối: A,B(Thời gian làm bài: 180 phút, không kể thời gian phát đề) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (2 điểm) 2x 1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y x 1 2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng 2. Câu II (2 điểm) 17 x 1) Giải phương trình sin(2x ) 16 2 3.s inx cos x 20 sin 2 ( ) 2 2 12 x 4 x 3y x 2y 2 1 2) Giải hệ phương trình : 3 2 x y x xy 1 4 tan x .ln(cos x ) Câu III (1 điểm): Tính tích phân: I = dx cos x 0 Câu IV (1 điểm): Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 600. Tính côsin của góc giữa hai mặt phẳng (SAB) và (SBC) . Câu V: (1 điểm) Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng: a b b c c a 3 ab c bc a ca b PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (1 điểm) Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng : 2x + 3y + 4 = 0. Tìm tọa độ điểm B thuộc đường thẳng sao cho đường thẳng AB và hợp với nhau góc 450. Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-1;1) x y 1 z x y 1 z 4 và hai đường thẳng (d ) : và (d ') : 1 2 3 1 2 5 Chứng minh: điểm M, (d), (d’) cùng nằm trên một mặt phẳng. Viết phương trình mặt phẳng đó. Câu VIII.a (1 điểm) Giải phương trình: Lo g x (24x 1)2 x logx 2 (24x 1) x 2 log (24x 1) x Theo chương trình Nâng cao Câu VI.b (1 điểm) Trong mặt phẳng tọa độ Oxy cho đường tròn (C ) : x 2 y 2 1 , đường thẳng (d ) : x y m 0 . Tìm m để (C ) cắt (d ) tại A và B sao cho diện tích tam giác ABO lớn nhất. Câu VII.b (1 điểm) Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng: (P): 2x – y + z + 1 = 0, (Q): x – y + 2z + 3 = 0, (R): x + 2y – 3z + 1 = 0 x2 y 1 z và đường thẳng 1 : = = . Gọi 2 là giao tuyến của (P) và (Q). 2 1 3
- Viết phương trình đường thẳng (d) vuông góc với (R) và cắt cả hai đường thẳng 1 , 2 . Câu VIII.b (1 điểm) Giải bất phương trình: logx( log3( 9x – 72 )) 1 ----------Hết---------- ĐÁP ÁN VÀ THANG ĐIỂM Câu -ý Nội dung Điểm 1.1 *Tập xác định : D \ 1 1 *Tính y ' 0 x D (x 1)2 Hàm số nghịch biến trên các khoảng (;1) và (1; ) 0.25 *Hàm số không có cực trị *Giới hạn Lim y Lim y x 1 x 1 Lim y 2 Lim y 2 x x 0.25 Đồ thị có tiệm cận đứng :x=1 , tiệm cận ngang y=2 *Bảng biến thiên x 1 y’ - - 0.25 y *Vẽ đồ thị 0.25 1.2 *Tiếp tuyến của (C) tại điểm M (x 0 ; f (x 0 )) (C ) có phương trình y f '(x 0 )(x x 0 ) f (x 0 ) Hay x (x 0 1) 2 y 2x 0 2 2x 0 1 0 (*) 0.25 *Khoảng cách từ điểm I(1;2) đến tiếp tuyến (*) bằng 2 2 2x 0 0.25 2 1 (x 0 1) 4 giải được nghiệm x 0 0 và x 0 2 0.25 *Các tiếp tuyến cần tìm : x y 1 0 và x y 5 0 0.25 2.1 *Biến đổi phương trình đã cho tương đương với 0.25 c os2x 3 sin 2x 10c os(x ) 6 0 6 c os(2x ) 5c os(x ) 3 0 3 6
- 0.25 2c os 2 (x ) 5c os(x ) 2 0 6 6 1 Giải được c os(x ) và c os(x ) 2 (loại) 6 2 6 0.25 1 5 *Giải c os(x ) được nghiệm x k 2 và x k 2 6 2 2 6 0.25 2.2 2 2 (x xy ) 1 x y 3 0.25 *Biến đổi hệ tương đương với 3 2 x y (x xy ) 1 x 2 xy u u 2 1 v 0.25 *Đặt ẩn phụ 3 , ta được hệ x y v v u 1 *Giải hệ trên được nghiệm (u;v) là (1;0) và (-2;-3) 0.25 *Từ đó giải được nghiệm (x;y) là (1;0) và (-1;0) 0.25 3 *Đặt t=cosx 1 Tính dt=-sinxdx , đổi cận x=0 thì t=1 , x thì t 4 2 1 2 ln t 1 ln t 0.25 Từ đó I dt dt 1 t2 1 t2 2 1 1 1 *Đặt u ln t ;dv dt d u d t ;v 0.25 t2 t t 1 1 1 1 1 2 1 Suy ra I ln t 1 t 2 d t 2 ln 2 t 1 0.25 t 1 2 2 2 2 0.25 *Kết quả I 2 1 ln 2 2 4 *Vẽ hình *Gọi H là trung điểm BC , chứng minh S H (A B C ) *Xác định đúng góc giữa hai mặt phẳng (SAB) , (SAC) với mặt đáy là SEH SFH 600 *Kẻ H K S B , lập luận suy ra góc giữa hai mặt phẳng (SAB) và (SBC) bằng H K A . a 2 a 3 *Lập luận và tính được AC=AB=a , H A , SH H F tan 600 2 2 0.25 1 1 1 3 *Tam giác SHK vuông tại H có 2 2 2 K H a HK HS HB 10 0.25
- a 2 AH 2 20 *Tam giác AHK vuông tại H có tan A K H 0.25 KH 3 3 a 10 3 cos A K H 23 0.25 5 a b 1c 1c 0.25 *Biến đổi ab c ab 1 b a (1 a )(1 b ) 1c 1b 1a 0.25 *Từ đó V T (1 a )(1 b ) (1 c )(1 a ) (1 c )(1 b ) Do a,b,c dương và a+b+c=1 nên a,b,c thuộc khoảng (0;1) => 1-a,1-b,1-c 0.25 dương *áp dụng bất đẳng thức Côsi cho ba số dương ta được 1c 1 b 1a V T 3. 3 . . =3 (đpcm) 0.25 (1 a )(1 b ) (1 c )(1 a ) (1 c )(1 b ) 1 Đẳng thức xảy ra khi và chỉ khi a b c 3 6.a x 1 3t * có phương trình tham số và có vtcp u (3; 2) y 2 2t 0.25 *A thuộc A (1 3t ; 2 2t ) 1 A B .u 1 *Ta có (AB; )=450 c os(A B ; u ) 0.25 2 AB.u 2 15 3 169t 2 156t 45 0 t t 0.25 13 13 32 4 22 32 *Các điểm cần tìm là A 1 ( ; ), A 2 ( ; ) 0.25 13 13 13 13 7.a *(d) đi qua M 1 (0; 1; 0) và có vtcp u 1 (1; 2; 3) (d’) đi qua M 2 (0;1; 4) và có vtcp u 2 (1; 2;5) *Ta có u 1 ; u 2 (4; 8; 4) O , M 1M 2 (0; 2; 4) 0.25 Xét u 1 ; u 2 .M 1M 2 16 14 0 (d) và (d’) đồng phẳng . 0.25 *Gọi (P) là mặt phẳng chứa (d) và (d’) => (P) có vtpt n (1; 2; 1) và đi qua M1 nên có phương trình x 2y z 2 0 0.25 *Dễ thấy điểm M(1;-1;1) thuộc mf(P) , từ đó ta có đpcm 0.25 8.a *Điều kiện :x>0 *TH1 : xét x=1 là nghiệm 0.25 *TH2 : xét x 1 , biến đổi phương trình tương đương với
- 1 2 1 0.25 1 2logx (24x 1) 2 logx (24x 1) logx (24x 1) Đặt logx (x 1) t , ta được phương trình 1 2 1 giải được t=1 và t=-2/3 1 2t 2 t t 0.25 *Với t=1 logx (x 1) 1 phương trình này vô nghiệm 2 *Với t=-2/3 logx (x 1) 3 2 3 x .(24x 1) 1 (*) 1 Nhận thấy x là nghiệm của (*) 8 1 Nếu x thì VT(*)>1 8 1 1 0.25 Nếu x thì VT(*)
- 1 1 23 *d đi qua A ( ; ; ) và có vtcp n (1; 2; 3) 12 12 8 1 1 23 x y z => d có phương trình 12 12 8 0.25 1 2 3 8.b x 0 0.25 *Điều kiện : log 3 (9x 72) 0 giải được x log9 73 x 9 72 0 Vì x log9 73 >1 nên bpt đã cho tương đương với 0.25 log 3 (9x 72) x 9x 72 3x 3x 8 x x 2 0.25 3 9 *Kết luận tập nghiệm : T (log 9 72; 2] 0.25 Lưu ý : Nếu thí sinh làm cách khác đúng thì giám khảo chấm theo các bước làm của cách đó .
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử ĐH môn Toán đợt 4 - THPT Chuyên KHTN
2 p | 180 | 15
-
Đề thi thử ĐH môn Toán khối D lần 3 năm 2013-2014 - Sở GD & ĐT Hải Phòng
5 p | 149 | 13
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2014 - Trường THPT Chuyên Nguyễn Quang Diêu
7 p | 238 | 12
-
Đề thi thử ĐH môn Toán khối A lần 2 năm 2014
1 p | 134 | 8
-
Đề thi thử ĐH môn Toán khối A,A1,B,D năm 2013-2014 - Trường THPT Quế Võ 1
5 p | 147 | 8
-
Đề thi thử ĐH môn Toán khối A, A1,B, D lần 1 năm 2014 - Trường Hà Nội Amsterdam
5 p | 142 | 8
-
Đề thi thử ĐH môn Toán khối D lần 2 năm 2013-2014 - Trường THPT Ngô Gia Tự
6 p | 185 | 7
-
Đề thi thử ĐH môn Toán khối B & D năm 2013-2014 - Trường THPT Ngô Gia Tự
5 p | 110 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Trường THPT Tú Kỳ
6 p | 130 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Sở GD & ĐT Vĩnh Phúc
7 p | 151 | 6
-
Đề thi thử ĐH môn Toán năm 2009 - 2010 - Trường THPT Chuyên Hạ Long
13 p | 91 | 5
-
Đáp án và thang điểm đề thi thử ĐH môn Toán khối A lần 2 năm 2014
6 p | 150 | 5
-
Đề thi thử ĐH môn Toán lần 1 năm 2017-2018 - Sở GD&ĐT Bắc Giang
33 p | 41 | 3
-
Đề thi thử ĐH môn Toán lần 1 năm 2017-2018 - Sở GD&ĐT Quảng Ninh
34 p | 65 | 3
-
Đề thi thử ĐH môn Toán lần 1 năm 2017-2018 - THPT Chuyên Ngữ Hà Nội
27 p | 125 | 2
-
Đề thi thử ĐH môn Toán lần 2 năm 2017-2018 - Chuyên ĐHSP Hà Nội
25 p | 51 | 1
-
Đề thi thử ĐH môn Toán lần 2 năm 2017-2018 - THPT Chuyên Hạ Long
28 p | 82 | 1
-
Đề thi thử ĐH môn Toán lần 1 năm 2017-2018 - Sở GD&ĐT Hà Tĩnh
27 p | 51 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn