Đề thi thử ĐH môn Toán - THPT Lương Tài 2 lần 2 năm 2012-2013
lượt xem 5
download
Hãy tham khảo đề thi thử ĐH môn Toán - THPT Lương Tài 2 lần 2 năm 2012-2013 kèm đáp án môn Toán để giúp các em biết thêm cấu trúc đề thi như thế nào, rèn luyện kỹ năng giải bài tập và có thêm tư liệu tham khảo chuẩn bị cho kì thi sắp tới đạt điểm tốt hơn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử ĐH môn Toán - THPT Lương Tài 2 lần 2 năm 2012-2013
- SỞ GD&ĐT BẮC NINH ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM HỌC 2012-2013 TRƯỜNG THPT LƯƠNG TÀI 2 Môn thi: TOÁN - Khối A,B Thời gian làm bài 180 phút, không kể thời gian phát đề ============== PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1. (2,0 điểm) Cho hàm số y x 4 2mx 2 m 2 m (1) 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) khi m = -2 2.Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành một tam giác có một góc bằng 1200 Câu 2. (1,0 điểm) Tìm nghiệm x thuộc khoảng (0; ) của phương trình x 3 4sin 2 ( ) 3 sin( 2 x ) 1 2cos 2 ( x ) . 2 2 4 2 2 2 2 ( x y )( x xy y 3) 3( x y ) 2 Câu 3. (1,0 điểm) Giải hệ phương trình 2 x, y 4 x 2 16 3 y x 8 x3 3x Câu 4. (1,0 điểm)Tính: I dx x 4 5x 2 6 Câu 5. (1,0 điểm) Cho hình chóp S.ABCD đáy là hình thoi cạnh 2a,SA = a, SB = a 3 ,gócBAD bằng 600, SAB ABCD ,gọi M,N lần lượt là trung điểm AB và BC. Tính thể tích khối chóp S.ABCD và cosin giữa hai đường thẳng SM và DN. Câu 6. (1,0 điểm) Cho các số dương a, b, c thỏa mãn a b c 3 a b c Chứng minh rằng: 3. b c a PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần( A hoặc B) A. Theo chương trình Chuẩn Câu 7.a (2,0 điểm) 1.Trong mặt phẳng Oxy, cho tam giác ABC có AB= 5 , C(-1;-1), phương trình cạnh AB là: x-2y-3=0, trọng tâm G thuộc đường thẳng: x+y-2=0. Tìm tọa độ các đỉnh A, B. 2.Trong mặt phẳng Oxy, cho đường tròn (C1): x 2 y 2 13 ,đường tròn (C2): ( x 6)2 y 2 25 . Gọi giao điểm có tung độ dương của (C1) và (C2) là A,viết phương trình đường thẳng đi qua A,cắt (C1) và (C2) theo hai dây cung có độ dài bằng nhau Câu 8.a (1,0 điểm) Có 12 học sinh giỏi gồm 3 học sinh khối 12, 4 học sinh khối 11, 5 học sinh khối 10.Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh B. Theo chương trình Nâng cao Câu 7.b (2,0 điểm) 1.Trong mặt phẳng Oxy cho hinh chữ nhật ABCD có diện tích bằng 12,tâm I là giao điểm của hai đường thẳng d1,d2 lần lượt có phương trình:x-y-3=0 và x+y-6+0.Trung điểm M của cạnh AD là giao điểm của d1 với trục Ox.Tìm toạ độ các đỉnh của hình chữ nhật x2 y2 2.Cho elip (E): 1 và A(0;2).Tìm B,C thuộc (E) đối xứng với nhau qua Oy sao cho tam 16 4 giác ABC đều Câu8.b (1,0điểm) Tìm m để phương trình: 3log 27 (2 x 2 x 2m 4m 2 ) log 1 x 2 mx 2m 2 0 3 có hai nghiệm x1,x2 sao cho x12 2 + x2 >1 ---------------- Hết ---------------- Cảm ơn bạn có nick (auco@ymail.com) gửi tới www.laisac.page.tl
- ĐÁP ÁN TOÁN A,B CÂU ĐÁP ÁN ĐIỂM 1 1.(1 điểm) (2điểm) Khi m=-2,ta có y=x4-2x2+2 *TXĐ *SBT -Chiều biến thiên:Tính y’,GPT y’=0 0.25 Nêu khoảng đb,nb -Cực trị 0.25 -Giới hạn BBT 0.25 Đồ thị 0.25 2.(1 điểm) Ta có: y’=4x3+4mx=4x(x2+m) Đồ thị có 3 điểm cực trị khi và chỉ khi m
- 4 x 2 22 3 x x 2 8 4( x 2) 3( x 2) ( x 2)( x 2) x22 22 3x 4 0.5 x 2 4 3 ( x 2) 0(*) x22 22 3x 4 Xét f(x)=VT(*) trên [-2;21/3],có f’(x)>0 nên hàm số đồng biến suy ra x=-1 là nghiệm duy nhất của (*) 0.25 KL: HPT có 2 nghiệm (2;0),(-1;-3) 4 Ta có: (1 điểm) 1 x2 3 1 x2 2 5 I 2 dx 2 2 dx 2 2 ( x 2)( x 2 3) 2 ( x 2)( x 2 3) 1 dx 2 5 1 1 2 1 2 x 2 3 2 ( x 2 3 x 2 2 )dx 1 5 x2 3 ln x 2 3 ln 2 C 2 2 x 2 5 BD 2a, AC 2a 3 (1 điểm) Tính được 1 S ABCD BD. AC 2a 2 3 0,25 2 Tam giác SAB vuông tại S,suy ra SM=a,từ đó tam giác SAM đều.Gọi H là trung điểm của AM,suy ra SH AB 0,25 ( SAB) ( ABCD ) SH ( ABCD) 3 SH a V a3 2 1 Gọi Q là điểm thoả mãn AQ AD MQ//DN 4 Gọi K là trung điểm của MQ,suy ra HK//AD,HK MQ,MQ (SHK) 0,25 ^ Góc giữa SM và DN là góc BAD 1 1 MK 2 MQ 4 DN 3 0,25 cos SM a a 4 6 a 2 b c b a2 b (1 điểm) Ta có: c 2a 2a 2a 4a 2a 4a c (1) 0,25 b c b c b c
- b2 c c2 a Tương tự: 2b 4b a (2), 2c 4c b(3) 0,25 c a a b Cộng (1),(2),(3) được 2 a b c 0,25 3(a b c) 9 b c a a b c 3 b c a 0,25 Dấu “=” xảy ra khi a=b=c=1 7a 1(1 điểm) (2 điểm) Gọi A(x1;y1),B(x2;y2).Vì A,B thuộc đường thẳng x-2y-3=0 nên ta được: x1 2 y1 3 0(1); x2 2 y2 3 0(2) G là trọng tâm tam giác ABC nên: x1 y1 1 3xG ; x2 y2 1 3 yG G thuộc đường thẳng x+y-2=0 0,5 x1 y1 1 x2 y2 1 6 x1 x2 y1 y2 8(3) 2 2 AB=5 ( x1 x2 ) ( y1 y2 ) 5(4) 22 x1 x2 3 Từ (1),(2),(3) y y 2 1 2 3 0,5 Từ (1),(2) x1 x2 2( y1 y2 ) thay vào (4) được y1 y2 1 14 5 8 1 TH1: y1 y2 1 .Tìm được A( ; ), B( ; ) 3 6 3 6 8 1 14 5 TH2: y1 y2 1 .Tìm được A( ; ), B( ; ) 3 6 3 6 2(1 điểm) (C1) có tâm O(0;0),bán kính R1 13 (C2) có tâm I(6;0),bán kính R2 5 . 0,25 Giao điểm của (C1) và (C2) là (2;3) và (2;-3).Vì A có tung độ dương nên A(2;3) Đường thẳng d qua A có pt:a(x-2)+b(y-3)=0 hay ax+by-2a-3b=0 Gọi d1 d (O, d ); d 2 d ( I , d ) 2 2 2 2 2 2 Yêu cầu bài toán trở thành: R2 d 2 R1 d1 d 2 d1 12 (4 a 3b ) 2 (2 a 3b ) 2 b 0 0,5 2 2 2 2 12 b 2 3ab 0 a b a b b 3a *b=0 ,chọ a=1,suy ra pt d là:x-2=0 *b=-3a ,chọ a=1,b=-3,suy ra pt d là:x-3y+7=0 0,25
- 8a 6 Tổng số cách chọn 6 học sinh trong 12 học sinh là C12 (1 điểm) 0,25 Số học sinh được chọn phải thuộc ít nhất 2 khối 6 -Số cách chọn chỉ có học sinh khối 12 và khối 11 là: C7 6 -Số cách chọn chỉ có học sinh khối 11 và khối 10 là: C9 0,5 6 -Số cách chọn chỉ có học sinh khối 12 và khối 10 là: C8 6 6 6 6 Số cách chọn thoả mãn đề bài là: C12 C7 C9 C8 805 (cách) 0,25 7b 1(1 điểm) (2 điểm) 9 3 Tìm được I ( ; ), M (3; 0) 0,25 2 2 Lập đươc pt AD:x+y-3=0,Tính được AD= 2 2 0,25 x y 3 0 Toạ độ A,D là nghiệm hpt 2 2 ( x 3) y 2 0,5 TÌm được:A(2;1),D(4;-1),C(7;2),B(5;4) hoặc A(2;1),D(4;-1),C(7;2),B(5;4) 2(1 điểm) Giả sử B(m;n),C(-m;n).Do B,C thuộc (E) và tam giác ABC đều nên ta được hệ : 17 3 m2 n2 m 1 3 16 4 m2 (n 2)2 4m2 m 17 3 3 1 17 3 22 17 3 22 17 3 22 17 3 22 Vậy B( ; ), C ( ; ) hoặc B ( ; ), C ( ; ) 3 13 3 13 3 13 3 13 8b BPT đã cho tương đương với (1 điểm) log (2 x 2 x 2m 4m 2 ) log ( x 2 mx 2m 2 ) 3 3 2 2 x 2 mx 2m 2 0 x mx 2m 0 2 2 x 1 m x (m 1) x 2m 2m 0 0,5 x 2m YCBT (2m)2 m(2m) 2m 2 0 4m 2 0 1 m 0 0,5 (1 m) m(1 m) 2m 0 2m m 1 0 2 2 2 2 1 2 m 2 2 (2m) (1 m) 1 5m 2 m 0 5 2 Cảm ơn bạn có nick (auco@ymail.com) gửi tới www.laisac.page.tl
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử ĐH môn Toán khối D năm 2013 - mã đề 23
8 p | 1776 | 814
-
Tuyển tập Đề thi thử ĐH môn Toán năm 2014
4 p | 137 | 25
-
Đề thi thử ĐH môn Toán lần 4 năm 2014 - THPT Chuyên ĐHSP Hà Nội
3 p | 159 | 19
-
Đề thi thử ĐH môn Toán đợt 4 - THPT Chuyên KHTN
2 p | 181 | 15
-
Đề thi thử ĐH môn Toán khối D lần 3 năm 2013-2014 - Sở GD & ĐT Hải Phòng
5 p | 149 | 13
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2014 - Trường THPT Chuyên Nguyễn Quang Diêu
7 p | 238 | 12
-
Đề thi thử ĐH môn Toán năm 2014 - Đề số 2
1 p | 72 | 8
-
Đề thi thử ĐH môn Toán lần 1 năm 2013 - 2014 - THPT Chuyên Lương Văn Chánh
6 p | 83 | 8
-
Đề thi thử ĐH môn Toán khối A, A1,B, D lần 1 năm 2014 - Trường Hà Nội Amsterdam
5 p | 142 | 8
-
Đề thi thử ĐH môn Toán khối A lần 2 năm 2014
1 p | 134 | 8
-
Đề thi thử ĐH môn Toán khối A,A1,B,D năm 2013-2014 - Trường THPT Quế Võ 1
5 p | 147 | 8
-
Đề thi thử ĐH môn Toán khối D lần 2 năm 2013-2014 - Trường THPT Ngô Gia Tự
6 p | 185 | 7
-
Đề thi thử ĐH môn Toán khối B & D năm 2013-2014 - Trường THPT Ngô Gia Tự
5 p | 112 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Trường THPT Tú Kỳ
6 p | 130 | 6
-
Đề thi thử ĐH môn Toán khối D lần 1 năm 2013-2014 - Sở GD & ĐT Vĩnh Phúc
7 p | 151 | 6
-
Đề thi thử ĐH môn Toán năm 2014 - Đề số 3
1 p | 80 | 6
-
Đáp án và thang điểm đề thi thử ĐH môn Toán khối A lần 2 năm 2014
6 p | 151 | 5
-
Đề thi thử ĐH môn Toán năm 2009 - 2010 - Trường THPT Chuyên Hạ Long
13 p | 93 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn