intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi thử THPT quốc gia lần 1, có đáp án môn: Toán 12 - Trường THPT Việt Yên 1 (Năm học 2015-2016)

Chia sẻ: LƯƠNG TÂM | Ngày: | Loại File: PDF | Số trang:5

72
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Kì thi trung học phổ thông là kì thi quan trọng đối với mỗi học sinh. Dưới đây là đề thi thử THPT quốc gia lần 1, có đáp án môn "Toán 12 - Trường THPT Việt Yên 1" năm học 2015-2016 giúp các em kiểm tra lại đánh giá kiến thức của mình và có thêm thời gian chuẩn bị ôn tập cho kì thi sắp tới được tốt hơn.

Chủ đề:
Lưu

Nội dung Text: Đề thi thử THPT quốc gia lần 1, có đáp án môn: Toán 12 - Trường THPT Việt Yên 1 (Năm học 2015-2016)

  1. SỞ GD&ĐT BẮC GIANG ĐỀ THI THỬ THPT QUỐC GIA LẦN THỨ 1 TRƯỜNG THPT VIỆT YÊN II NĂM HỌC: 2015 – 20156 Môn: TOÁN Lớp 12 (Thời gian làm bài: 120 phút) Câu 1. (3,0 điểm) 2x  2 Cho hàm số y  C  2x 1 a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của đồ thị (C) với trục hoành. c) Tìm m để đường thẳng d : y  2mx  m  1 cắt (C) tại hai điểm phân biệt A và B sao cho biểu thức P = OA2 + OB2 đạt giá trị nhỏ nhất (với O là gốc tọa độ). Câu 2. (1,0 điểm) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: f (x ) x5 5x 4 5x 3 1 trên đoạn [–1;2] Câu 3. (1,0 điểm) Cho hàm số y  x 3  mx 2  7 x  3 Tìm m để hàm số đồng biến trên R. Câu 4. (2,0 điểm) a) Giải phương trình cos 2 x  cos x  3  sin 2 x  sin x  b) Lập số tự nhiên có 5 chữ số khác nhau từ các chữ số {0; 1; 2; 3; 4; 5; 6; 7}. Hãy tính xác suất để lập được số tự nhiên chia hết cho 5. Câu 5. (1,0 điểm) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60 . Gọi M, N lần lượt là trung điểm AB, BC. Tính thể tích khối chóp S.ABC và khoảng cách từ C đến mặt phẳng (SMN). Câu 6. (0,5 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có AB  AD 2 , tâm I 1; 2  . Gọi M là trung điểm cạnh CD, H  2; 1 là giao điểm của hai đường thẳng AC và BM. Tìm tọa độ các điểm A, B. Câu 7. (1,0 điểm) Giải bất phương trình x  1  x 2  2  3x  4 x 2 . Câu 8. (0,5 điểm) Giả sử a, b, c là các số thực dương thỏa mãn a  b  c  1. Tìm giá trị nhỏ nhất của biểu thức a2 b2 3 P   ( a  b) 2 . (b  c)  5bc (c  a)  5ca 4 2 2 --- HẾT ---
  2. SỞ GD&ĐT BẮC GIANG HƯỚNG DẪN CHẤM TRƯỜNG THPT VIỆT YÊN II ĐỀ THI THỬ THPT QUỐC GIA LẦN THỨ 1 NĂM HỌC: 2015 – 20156 Môn: TOÁN Lớp 12 Câu Đáp án Điểm 1.a 1,0  1 2 1 *TXĐ: \    *SBT: y '   0, x    2 x  12 0,25  2 2  1  1  Hàm số nghịch biến trên các khoảng  ;   và   ;    2  2  0,25 Tính giới hạn và tiệm cận Lập bảng biến thiên 0,25 *Đồ thị: Giao Ox: (- 1; 0); Giao Oy: (0; 2) Vẽ đúng đồ thị 0,25 1.b 1,0 2 y'  , đồ thị ( C) giao với trục ox tại điểm M(-1;0) 0,5  2 x  1 2 y '1  2 , PTTT là y  2  x  1  2 x  2 0,5 * (d) cắt (C ) tại hai điểm phân biệt  PT (1) có hai nghiệm phân biệt khác -1/2 1.c  m  0  0,5    '  4m  0  m  0   g     0 1   2  *Gọi hoành độ các giao điểm A và B là x1, x2 thì x1, x2 là các nghiệm của PT (1)   x1  x2  1   m 1  x1. x2  4m Có: OA2+OB2 = x1   2mx1  m  1  x2   2mx2  m  1 2 2 2 2 0,25  2  = 4m  1 x1  x2 2   4m  m  1 x  x   2 m  1 2 1 2 2 =  4m  1 1   m 1   4m  m  1  2  m  1 2 2  2m  5 1 5 9 =  2m    2  (Áp dụng BĐT cô si vì m dương) 2 2m 2 2 0,25 1 1 Dấu bằng xảy ra  m  ( thỏa mãn);KL: m  là giá trị cần tìm 2 2
  3. 2 1,0  Hàm số f (x ) x5 5x 4 5x 3 1 liên tục trên đoạn [–1;2] y 5x 4 20x 3 15x 2 5x 2 (x 2 4x 3) x 0 [ 1;2] (nhan) 0,5 2 2 5x 2 0  Cho y 0 5x (x 4x 3) 0 x 1 [ 1;2] (nhan) x2 4x 3 0 x 3 [ 1;2] (loai) *  Ta có, f (0) 05 5.04 5.03 1 1 f (1) 15 5.14 5.13 1 2 5 4 f ( 1) ( 1) 5.( 1) 5.( 1)3 1 10 0,5 5 4 3 f (2) 2 5.2 5.2 1 7  Trong các kết quả trên, số nhỏ nhất là 10 và số lớn nhất là 2  Vậy, min y 10 khi x 1; max y 2 khi x 1 [ 1;2] [ 1;2] 3 1,0 y '  3x  2mx  7 . Để hàm số đồng biến trên R khi và chỉ khi y '  0, x  R 2 0,5  3x2  2mx  7  0 x  R '  0 x  R  m2  21  0  m   21; 21 0,5 1,0 4a 1 3 3 1  cos 2 x  3 sin 2 x  3 sin x  cos x  cos 2 x  sin 2 x  sin x  cos x 0,5 2 2 2 2     2  2 x   x   k 2  x  k 2     3 3 3  cos  2 x    cos  x      ,k  0,5  3  3  2 x     x    k 2  x  k 2  3 3  3 4b 1,0 Gọi A là biến cố lập được số tự nhiên chia hết cho 5, có 5 chữ số khác nhau. * Số các số tự nhiên gồm 5 chữ số khác nhau: A85  A74  5880 số 0,5 * Số các số tự nhiên chia hết cho 5 có 5 chữ số khác nhau: A74 + 6. A63 = 1560 số 1560 13 0,5  P(A) =  5880 49 5 1,0 *)Vì S.ABC là hình chóp đều nên ABC là tam giác đều tâm G và SG   ABC   VS . ABC  SG.S ABC 1 3 Tam giác ABC đều cạnh a nên a 3 a2 3 AN   S ABC  0,25 2 4 Có AG là hình chiếu của AS trên (ABC) nên góc giữa cạnh bên SA với đáy là (SA,AG) = SAG  60 (vì SG  AG  SAG nhọn)
  4. 2 a 3 Vì G là trọng tâm tam giác ABC nên AG  AN  3 3 Trong tam giác SAG có SG  AG.tan 60  a 0,25 1 a 2 3 a3 3 Vậy VS . ABC  .a.  3 4 12 Do G là trọng tâm tam giác ABC nên C, G, M thẳng hàng và CM = 3GM mà M  (SMN) nên dC , SMN   3dG , SMN  Ta có tam giác ABC đều nên SG   ABC   SG  MN  MN   SGK  . 0,25 Trong (GKH), kẻ GH  SK  GH  MN  GH   SMN  , H  SK  dG , SMN   GH 1 2 2 1 1 a 3 Ta có BK  AN ; BG  AG  AN  GK  AN  AN  AN  2 3 3 2 6 12 Trong tam giác vuông SGK có GH là đường cao nên 1 1 1 1 48 49 a 0,25 2  2  2  2  2  2  GH  GH SG GK a a a 7 3a Vậy dC , SMN   3GH  7 6 0,5 Theo giả thiết ta có H là trọng tâm tam giác BCD nên IC  3IH Mà IH  1;1 , giả sử  x  1  3.1 x  4 C  x; y      C  4;1  y  2  3.1  y  1 Do I là trung điểm AC nên A(-2;-5) CM BC 1 Lại có AB  2 AD nên    MBC  BAC BC AB 2 Mà BAC  BCA  90  MBC  BCA  90  AC  BM Đường thẳng BM đi qua H(2;-1), có vtpt IH  1;1  pt BM: x + y – 1 = 0  B  t;1  t  Có AB   t  2;6  t  ; CB   t  4; t  Vì AB  BC  AB.CB  0   t  2  t  4   t  6  t   0    t  2  2  B 2  2; 1  2 hoặc B 2  2; 1  2   7 1,0 x  0 0  x  1   3  41 Điều kiện: 1  x  0 2   3  41 3  41  0  x  . (*)   x 8 0,5 2  3x  4 x  0  2 8 8 Bất phương trình đã cho tương đương với x  1  x 2  2 x(1  x 2 )  2  3x  4 x 2  3( x2  x)  (1  x)  2 ( x  x 2 )(1  x)  0
  5.  5  34  x x x 2 x x 2 x x 1 2 9 3 2 1  0    9 x 2  10 x  1  0   1 x 1 x 1 x 3  5  34 0,5 x  .  9 5  34 3  41 Kết hợp điều kiện (*), ta suy ra nghiệm của bất phương trình là x . 9 8 8 0,5 Áp dụng bất đẳng thức Côsi, ta có a2 a2 4a 2 b2 4b2   . Tương tự, ta có  . (b  c)2  5bc (b  c) 2  5 (b  c) 2 9(b  c) 2 (c  a)2  5ca 9(c  a) 2 4 4  a2 b2  2  a 2 a 2 b2 b  Suy ra         (b  c)2  5bc (c  a)2  5ca 9  (b  c)2 (c  a)2  9  b  c c  a  2  ( a  b) 2  2   c ( a  b )  2 0,25 2  a  b  c ( a  b)  2 2 2 2 2  2(a  b) 2  4c(a  b)           . 9  ab  c(a  b)  c 2  9  ( a  b) 2 2  9  (a  b) 2  4c(a  b)  4c 2    c ( a  b)  c   4  Vì a  b  c  1  a  b  1  c nên 2 2  2(1  c)2  4c(1  c)  3 2 8 2  3 P  2   (1  c)2  1    (1  c) . 2 (1) 9  (1  c)  4c(1  c)  4c  4 2 9  c 1  4 2 8 2  3 Xét hàm số f (c)  1    (1  c) với c  (0; 1). 2 9  c 1  4 16  2  2 3 Ta có f '(c)  1  .  (c  1); 9  c  1  (c  1) 2 2   f '(c)  0  (c  1) 64  (3c  3)3  0  c  . 1 3 Bảng biến thiên: 1 c 0 3 1 f '(c) – 0 + 0,25 f (c ) 1 9 1 Dựa vào bảng biến thiên ta có f (c)   với mọi c  (0; 1). (2) 9 1 1 Từ (1) và (2) suy ra P   , dấu đẳng thức xảy ra khi a  b  c  . 9 3 1 1 Vậy giá trị nhỏ nhất của P là  , đạt khi a  b  c  . 9 3
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2